天然源痕量活性有机气体,也叫生物源挥发性有机化合物(BVOCs),是地球系统中重要的痕量活性有机气体,对全球碳循环、大气化学和气候调控具有重要作用。BVOCs在大气中通过与氧化剂(如羟基自由基OH、臭氧O3和NO3自由基)快速反应,驱动二次有机气溶胶(SOA)的生成,调节大气辐射强迫,影响区域和全球气候。同时,BVOCs通过对流层与平流层臭氧的交互作用影响大气中羟基自由基(OH)的浓度,间接参与温室气体的生命周期调控。全球BVOCs排放量估计为每年1 000 Tg碳以上,主要来自森林生态系统,其中异戊二烯和单萜占主导地位。近年来,BVOCs排放的观测技术取得了显著进展,从传统的离线采样与气相色谱-质谱(GC-MS)分析到高时间分辨率的在线技术(如质子转移反应质谱PTR-MS和飞行时间质谱PTR-ToF-MS),极大提高了BVOCs排放数据的时间分辨率与化学精度。此外,基于无人机、卫星遥感与地基通量塔的多尺度监测技术,也为区域BVOCs排放的时空动态研究提供了新工具。结合动态箱法、涡度相关法和建模模拟,研究人员逐步构建了更精确的BVOCs排放清单,为理解其与气候变化的复杂反馈机制奠定了基础。环境因子对BVOCs排放的影响研究日益深入。光照和温度是控制BVOCs排放的关键因子,光照强度变化直接影响光合作用及异戊二烯的排放,而温度升高则加速BVOCs的生物合成和挥发。二氧化碳(CO2)浓度的升高可能通过光合作用调节BVOCs的排放强度,同时降低气孔导度减少BVOCs的释放速率,但其长期效应可能因植物种类和适应机制的差异而有所变化。臭氧(O3)浓度升高对BVOCs的作用具有双重效应:一方面通过胁迫反应诱导BVOCs的防御性释放,另一方面可能损伤叶片并抑制排放。气溶胶浓度和BVOCs之间存在重要的正反馈机制,高BVOCs排放可促进SOA生成,而SOA形成反过来通过散射光效应影响光合作用与BVOCs排放。氮循环改变对BVOCs排放的影响较为复杂,高氮输入可能通过改变植物养分分配与代谢路径,增加某些BVOCs的排放或抑制其他种类BVOCs的合成。未来全球变化情景下,气候变暖、极端天气频发和CO2浓度持续升高可能显著改变BVOCs的排放模式及其与大气化学和气候系统的耦合机制。综合利用观测和建模技术,加强对多因子交互作用及长时间尺度下BVOCs排放的定量研究,将为揭示BVOCs的多圈层耦合作用机制提供重要支撑,并为气候变化和大气化学研究提供新的科学视角。