地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 274-287.DOI: 10.13745/j.esf.sf.2025.3.23
收稿日期:
2025-02-06
修回日期:
2025-02-22
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*韦刚健(1968—),男,博士,研究员,博士生导师,主要从事同位素地球化学和气候环境演变等方面的研究。E-mail:作者简介:
崔 灏(1994—),男,博士研究生,主要从事元素地球化学与古环境重建方面研究。E-mail:cuihao@gig.ac.cn
基金资助:
CUI Hao1,2(), WEI Gangjian1,*(
)
Received:
2025-02-06
Revised:
2025-02-22
Online:
2025-03-25
Published:
2025-04-20
摘要: 始新世—渐新世的气候转型(Eocene-Oligocene Transition,EOT)是新生代时期最为显著的全球降温事件之一,标志着地球气候系统从“温室”向“冷室”模式的关键转变。虽然深海沉积物较为一致地记录了这一降温事件,但众多陆相沉积记录却显示不同区域的气候响应呈现出显著的空间差异,凸显了全球气候背景与区域环境相互作用的重要性。青藏高原隆升显著影响全球大陆风化的格局,与新生代全球气候变化有密切关系,因而高原周缘的大陆风化演变是反映全球与区域气候变化的良好指示。本文汇总了晚始新世—渐新世青藏高原周缘大陆风化的演变记录,结合我们在青藏高原东南缘吕合盆地35~26 Ma期间的风化历史,探索这一时期青藏高原周缘风化演变的共同性和差异性。结果显示:青藏高原北部大部分区域自晚始新世起的风化强度便开始下降并延续至渐新世,与降温和干旱化过程相耦合;而东南缘则表现为多阶段的温度波动及持续湿润的气候特征。这种区域性差异主要由全球降温、构造隆升和季风系统演化的共同调控驱动。本研究为理解青藏高原不同区域在EOT期间的风化模式及其驱动机制提供了重要线索。
中图分类号:
崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287.
CUI Hao, WEI Gangjian. The weathering evolution during the Eocene-Oligocene Transition in the surrounding regions of the Tibetan Plateau and its response to global and regional climate changes[J]. Earth Science Frontiers, 2025, 32(3): 274-287.
年龄/ Ma | 深度/ m | 全岩矿物质量分数/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 斜长石 | 钾长石 | 高岭石 | 云母 | 蒙脱石 | 绿泥石 | 白云石 | 方解石 | 方石英 | 菱铁矿 | 赤铁矿 | ||
— | 0.0 | 10.3 | 10.1 | 46.8 | 12.7 | 10.3 | 5.6 | — | — | — | 4.2 | — | — |
— | 7.0 | 6.3 | 0.2 | 29.6 | 3.2 | 12.5 | 42.5 | — | — | — | 5.7 | — | — |
34.935 09 | 22.5 | 32.0 | 10.3 | 19.2 | 11.3 | 17.4 | 9.7 | — | — | — | — | — | 0.1 |
34.923 18 | 23.0 | 23.8 | — | 13.2 | 10.2 | 13.5 | — | — | 37.6 | — | — | 1.7 | — |
34.899 36 | 24.5 | 21.7 | 4.0 | 29.3 | 19.2 | 19.2 | 6.6 | — | — | — | — | — | — |
34.792 15 | 28.5 | 16.7 | — | 9.7 | 11.8 | 17.8 | — | — | 40.6 | — | — | — | 3.4 |
34.637 30 | 35.0 | 26.2 | 6.9 | 20.9 | 17.8 | 22.6 | 5.6 | — | — | — | — | — | — |
34.577 74 | 37.5 | 34.0 | 7.5 | 13.5 | 14.9 | 23.1 | — | 3.7 | — | — | — | 3.9 | — |
34.345 29 | 47.5 | 27.8 | 8.1 | 14.7 | 18.0 | 15.7 | 15.7 | — | — | — | — | — | — |
33.781 10 | 71.0 | 21.3 | 4.1 | 27.7 | 10.3 | 9.4 | 27.2 | — | — | — | — | — | — |
33.535 64 | 81.0 | 21.9 | 12.1 | 24.4 | 7.9 | 18.0 | 13.5 | — | — | — | 2.2 | — | — |
33.196 27 | 95.0 | 38.5 | 18.8 | 11.1 | 6.6 | 13.9 | 11.1 | — | — | — | — | — | — |
32.874 65 | 108.5 | 32.7 | 7.1 | 11.4 | 12.0 | 17.9 | 18.9 | — | — | — | — | — | — |
32.838 91 | 110.0 | 30.5 | 12.2 | 13.5 | 7.0 | 15.9 | 19.1 | — | — | — | — | — | — |
32.695 97 | 116.0 | 39.6 | 13.8 | 15.5 | 9.4 | 15.4 | 6.3 | — | — | — | — | — | — |
32.124 94 | 139.0 | 5.3 | 5.3 | 7.7 | 1.7 | 4.8 | 33.4 | — | 35.7 | 6.1 | — | — | — |
31.654 30 | 158.5 | 26.0 | 6.9 | 21.6 | 11.5 | 16.7 | 17.3 | — | — | — | — | — | — |
31.024 86 | 187.0 | 15.1 | 5.0 | 15.9 | 5.1 | 12.6 | 46.2 | — | — | — | — | — | — |
30.886 00 | 193.0 | 22.4 | 8.4 | 16.9 | 12.4 | 15.6 | 18.2 | — | — | — | 1.4 | 4.3 | 0.4 |
30.032 23 | 219.5 | 28.3 | 5.7 | 17.8 | 10.8 | 22.3 | 13.5 | — | — | — | 1.6 | — | |
29.497 44 | 243.5 | 22.7 | 9.6 | 23.5 | 6.6 | 12.8 | 12.9 | — | — | — | 2.5 | 9.4 | — |
29.106 47 | 260.0 | 27.0 | 5.4 | 11.8 | 13.9 | 21.0 | 19.1 | — | — | — | 1.8 | — | |
28.160 48 | 299.0 | 23.4 | 10.8 | 13.8 | 17.1 | 18.1 | 13.7 | — | — | — | — | 3.1 | — |
27.766 42 | 317.0 | 46.8 | 5.6 | 11.1 | 8.9 | 10.7 | 16.9 | — | — | — | — | — | — |
27.208 73 | 339.5 | 29.7 | 8.7 | 15.4 | 12.0 | 20.4 | 13.8 | — | — | — | — | — | — |
26.587 60 | 361.0 | 30.1 | 8.0 | 11.7 | 11.9 | 19.7 | 16.6 | — | — | — | 1.5 | — | 0.5 |
26.049 62 | 381.5 | 34.7 | 9.4 | 10.5 | 9.4 | 19.4 | 14.6 | — | — | — | 1.8 | — | 0.2 |
表1 吕合盆地沉积物矿物含量特征
Table 1 Mineral content characteristics of the sediments in the Lühe Basin
年龄/ Ma | 深度/ m | 全岩矿物质量分数/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 斜长石 | 钾长石 | 高岭石 | 云母 | 蒙脱石 | 绿泥石 | 白云石 | 方解石 | 方石英 | 菱铁矿 | 赤铁矿 | ||
— | 0.0 | 10.3 | 10.1 | 46.8 | 12.7 | 10.3 | 5.6 | — | — | — | 4.2 | — | — |
— | 7.0 | 6.3 | 0.2 | 29.6 | 3.2 | 12.5 | 42.5 | — | — | — | 5.7 | — | — |
34.935 09 | 22.5 | 32.0 | 10.3 | 19.2 | 11.3 | 17.4 | 9.7 | — | — | — | — | — | 0.1 |
34.923 18 | 23.0 | 23.8 | — | 13.2 | 10.2 | 13.5 | — | — | 37.6 | — | — | 1.7 | — |
34.899 36 | 24.5 | 21.7 | 4.0 | 29.3 | 19.2 | 19.2 | 6.6 | — | — | — | — | — | — |
34.792 15 | 28.5 | 16.7 | — | 9.7 | 11.8 | 17.8 | — | — | 40.6 | — | — | — | 3.4 |
34.637 30 | 35.0 | 26.2 | 6.9 | 20.9 | 17.8 | 22.6 | 5.6 | — | — | — | — | — | — |
34.577 74 | 37.5 | 34.0 | 7.5 | 13.5 | 14.9 | 23.1 | — | 3.7 | — | — | — | 3.9 | — |
34.345 29 | 47.5 | 27.8 | 8.1 | 14.7 | 18.0 | 15.7 | 15.7 | — | — | — | — | — | — |
33.781 10 | 71.0 | 21.3 | 4.1 | 27.7 | 10.3 | 9.4 | 27.2 | — | — | — | — | — | — |
33.535 64 | 81.0 | 21.9 | 12.1 | 24.4 | 7.9 | 18.0 | 13.5 | — | — | — | 2.2 | — | — |
33.196 27 | 95.0 | 38.5 | 18.8 | 11.1 | 6.6 | 13.9 | 11.1 | — | — | — | — | — | — |
32.874 65 | 108.5 | 32.7 | 7.1 | 11.4 | 12.0 | 17.9 | 18.9 | — | — | — | — | — | — |
32.838 91 | 110.0 | 30.5 | 12.2 | 13.5 | 7.0 | 15.9 | 19.1 | — | — | — | — | — | — |
32.695 97 | 116.0 | 39.6 | 13.8 | 15.5 | 9.4 | 15.4 | 6.3 | — | — | — | — | — | — |
32.124 94 | 139.0 | 5.3 | 5.3 | 7.7 | 1.7 | 4.8 | 33.4 | — | 35.7 | 6.1 | — | — | — |
31.654 30 | 158.5 | 26.0 | 6.9 | 21.6 | 11.5 | 16.7 | 17.3 | — | — | — | — | — | — |
31.024 86 | 187.0 | 15.1 | 5.0 | 15.9 | 5.1 | 12.6 | 46.2 | — | — | — | — | — | — |
30.886 00 | 193.0 | 22.4 | 8.4 | 16.9 | 12.4 | 15.6 | 18.2 | — | — | — | 1.4 | 4.3 | 0.4 |
30.032 23 | 219.5 | 28.3 | 5.7 | 17.8 | 10.8 | 22.3 | 13.5 | — | — | — | 1.6 | — | |
29.497 44 | 243.5 | 22.7 | 9.6 | 23.5 | 6.6 | 12.8 | 12.9 | — | — | — | 2.5 | 9.4 | — |
29.106 47 | 260.0 | 27.0 | 5.4 | 11.8 | 13.9 | 21.0 | 19.1 | — | — | — | 1.8 | — | |
28.160 48 | 299.0 | 23.4 | 10.8 | 13.8 | 17.1 | 18.1 | 13.7 | — | — | — | — | 3.1 | — |
27.766 42 | 317.0 | 46.8 | 5.6 | 11.1 | 8.9 | 10.7 | 16.9 | — | — | — | — | — | — |
27.208 73 | 339.5 | 29.7 | 8.7 | 15.4 | 12.0 | 20.4 | 13.8 | — | — | — | — | — | — |
26.587 60 | 361.0 | 30.1 | 8.0 | 11.7 | 11.9 | 19.7 | 16.6 | — | — | — | 1.5 | — | 0.5 |
26.049 62 | 381.5 | 34.7 | 9.4 | 10.5 | 9.4 | 19.4 | 14.6 | — | — | — | 1.8 | — | 0.2 |
图1 吕合盆地采样点及青藏高原其他地区始新世—渐新世古气候陆相记录分布点 (兰州盆地,引自文献[31,56-57];西宁盆地,引自文献[58⇓⇓-61];柴达木盆地,引自文献[62-63];准噶尔盆地,引自文献[64⇓⇓-67];塔里木盆地,引自文献[68-69];塔吉克盆地,引自文献[70-71];伦坡拉盆地,引自文献[72];芒康盆地,引自文献[73-74];剑川盆地,引自文献[75];吕合盆地,引自文献[37]和本研究)
Fig.1 Sampling site in the Lühe Basin and distribution points of Eocene-Oligocene paleoclimate terrestrial records in other regions of the Tibetan Plateau. Lanzhou Basin adapted from [31,56-57]; Xining Basin adapted from [58⇓⇓-61]; Qaidam Basin adapted from [62-63]; Junggar Basin adapted from [64⇓⇓-67]; Tarim Basin adapted from [68-69]; Tajik Basin adapted from [70-71]; Lunpola Basin adapted from [72]; Markam Basin adapted from [73-74]; Jianchuan Basin adapted from [75]; Lühe Basin adapted from [37] and this study.
区域 | 地点 | 风化指标 | 年代范围 | 来源 | 其他古气候指标 | 来源 |
---|---|---|---|---|---|---|
东北缘 | 兰州盆地 | Na/Al,赤铁矿/针铁矿 CIA,K2O/Al2O3 | 约35.25~31.20 Ma 约35.5~31.2 Ma | [ [ | 沉积相 | [ |
西宁盆地 | vogt残留指数 | 35~22 Ma | [ | 沉积相 古植物孢粉 | [ [ | |
北缘 | 柴达木盆地 | 黏土矿物特征 | 40.5~31.0 Ma | [ | 湖泊碳酸盐δ18O | [ |
西北缘 | 准噶尔盆地 | 黏土矿物含量 | 35.8~33.3 Ma | [ | 古生物化石 | [ |
塔里木盆地 | — | — | — | 沉积相 | [ | |
塔吉克盆地 | WIP | 28.39~30.19 Ma | [ | 湖泊碳酸盐δ18O 沉积相 | [ [ | |
中部 | 伦坡拉盆地 | — | — | — | 地貌学 | [ |
东南缘 | 芒康盆地 | — | — | — | 古植物孢粉 | [ |
剑川盆地 | — | — | — | 沉积相 | [ | |
吕合盆地 | CIA 黏土矿物含量 | 35.5~25.5 Ma 34.94~26.05 Ma | [ 本研究 | 古植物孢粉 | [ |
表2 青藏高原周缘盆地始新世—渐新世气候转换期古气候记录
Table 2 Paleoclimate records of the Eocene-Oligocene Transition in the marginal basins of the Tibetan Plateau
区域 | 地点 | 风化指标 | 年代范围 | 来源 | 其他古气候指标 | 来源 |
---|---|---|---|---|---|---|
东北缘 | 兰州盆地 | Na/Al,赤铁矿/针铁矿 CIA,K2O/Al2O3 | 约35.25~31.20 Ma 约35.5~31.2 Ma | [ [ | 沉积相 | [ |
西宁盆地 | vogt残留指数 | 35~22 Ma | [ | 沉积相 古植物孢粉 | [ [ | |
北缘 | 柴达木盆地 | 黏土矿物特征 | 40.5~31.0 Ma | [ | 湖泊碳酸盐δ18O | [ |
西北缘 | 准噶尔盆地 | 黏土矿物含量 | 35.8~33.3 Ma | [ | 古生物化石 | [ |
塔里木盆地 | — | — | — | 沉积相 | [ | |
塔吉克盆地 | WIP | 28.39~30.19 Ma | [ | 湖泊碳酸盐δ18O 沉积相 | [ [ | |
中部 | 伦坡拉盆地 | — | — | — | 地貌学 | [ |
东南缘 | 芒康盆地 | — | — | — | 古植物孢粉 | [ |
剑川盆地 | — | — | — | 沉积相 | [ | |
吕合盆地 | CIA 黏土矿物含量 | 35.5~25.5 Ma 34.94~26.05 Ma | [ 本研究 | 古植物孢粉 | [ |
图3 青藏高原周缘盆地与海洋晚始新世—渐新世古气候记录对比 (A—兰州盆地Na/Al,引自文献[56];B—兰州盆地赤铁矿/针铁矿含量比值,引自文献[56];C—兰州盆地CIA,引自文献[31];D—兰州盆地K2O/Al2O3比值,引自文献[31];E—西宁盆地Vogt残留指数,引自文献[58];F—柴达木盆地不同晶面间距绿泥石比值,引自文献[62];G—准噶尔盆地黏土矿物,引自文献[64];H—塔吉克盆地WIP,引自文献[70];I—吕合盆地黏土矿物(本研究);J—吕合盆地CIA,引自文献[37];以上风化指标中Na/Al比值、K2O/Al2O3比值和WIP数值与风化强度呈负相关,其余风化指标与风化强度呈正相关;K—赤道地球海水表层年平均温度,引自文献[89];L—深海底栖有孔虫δ18O,引自文献[2]。)
Fig.3 Comparison of Late Eocene-Oligocene paleoclimate records between the surrounding regions of the Tibetan Plateau and marine
[1] | BROWNING J V, MILLER K G, PAK D K. Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: the icehouse cometh[J]. Geology, 1996, 24(7): 639-642. |
[2] | WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. |
[3] | HUTCHINSON D K, COXALL H K, LUNT D J, et al. The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons[J]. Climate of the Past, 2021, 17(1): 269-315. |
[4] | POUND M J, SALZMANN U. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition[J]. Scientific Reports, 2017, 7(1): 43386. |
[5] | SILVA I P, JENKINS D G. Decision on the Eocene-Oligocene boundary stratotype[J]. Episodes Journal of International Geoscience, 1993, 16(3): 379-382. |
[6] | KENNETT J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. |
[7] | SAVIN S M, DOUGLAS R G, STEHLI F G. Tertiary marine paleotemperatures[J]. Geological Society of America Bulletin, 1975, 86(11): 1499-1510. |
[8] | SHACKLETON N J. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281[J]. Initial Reports Deep Sea Drilling Project, 1975, 29: 743-755. |
[9] | COXALL H K, PEARSON P N. The Eocene-Oligocene Transition[M]. London: Geological Society of London, 2007. |
[10] | PETERSEN S V, SCHRAG D P. Antarctic ice growth before and after the Eocene-Oligocene transition: new estimates from clumped isotope paleothermometry[J]. Paleoceanography, 2015, 30(10): 1305-1317. |
[11] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[12] |
PAGANI M, ZACHOS J C, FREEMAN K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 2005, 309(5734): 600-603.
PMID |
[13] | PEARSON P N, VAN DONGEN B E, NICHOLAS C J, et al. Stable warm tropical climate through the Eocene Epoch[J]. Geology, 2007, 35(3): 211-214. |
[14] | THOMPSON N, SALZMANN U, LÓPEZ-QUIRÓS A, et al. Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene-Oligocene transition[J]. Climate of the Past Discussions, 2022, 18 (2): 209-232. |
[15] | 张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源-汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3): 593-609. |
[16] | GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163. |
[17] | BÖHME M, PRIETO J, SCHNEIDER S, et al. The Cenozoic on-shore basins of Northern Vietnam: biostratigraphy, vertebrate and invertebrate faunas[J]. Journal of Asian Earth Sciences, 2011, 40(2): 672-687. |
[18] | BOARDMAN G S, SECORD R. Stable isotope paleoecology of White River ungulates during the Eocene-Oligocene climate transition in northwestern Nebraska[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 375: 38-49. |
[19] | PROTHERO D R, HEATON T H. Faunal stability during the early Oligocene climatic crash[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127(1/2/3/4): 257-283. |
[20] | SHELDON N D, COSTA E, CABRERA L, et al. Continental climatic and weathering response to the Eocene-Oligocene transition[J]. The Journal of Geology, 2012, 120(2): 227-236. |
[21] | BOZUKOV V, UTESCHER T, IVANOV D. Late Eocene to early Miocene climate and vegetation of Bulgaria[J]. Review of Palaeobotany and Palynology, 2009, 153(3/4): 360-374. |
[22] |
DUNN R E, STRÖMBERG C A E, MADDEN R H, et al. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia[J]. Science, 2015, 347(6219): 258-261.
DOI PMID |
[23] | FAN M, AYYASH S A, TRIPATI A, et al. Terrestrial cooling and changes in hydroclimate in the continental interior of the United States across the Eocene-Oligocene boundary[J]. GSA Bulletin, 2018, 130(7/8): 1073-1084. |
[24] | SHELDON N D. Nonmarine records of climatic change across the Eocene-Oligocene transition[M]. Washington: Geological Society of America, 2009. |
[25] | WILSON D S, POLLARD D, DECONTO R M, et al. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene[J]. Geophysical Research Letters, 2013, 40(16): 4305-4309. |
[26] | HOOKER J J, COLLINSON M E, SILLE N P. Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event[J]. Journal of the Geological Society, 2004, 161(2): 161-172. |
[27] | HREN M T, SHELDON N D, GRIMES S T, et al. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7562-7567. |
[28] | ZANAZZI A, KOHN M J, MACFADDEN B J, et al. Large temperature drop across the Eocene-Oligocene transition in central North America[J]. Nature, 2007, 445(7128): 639-642. |
[29] | COLWYN D A, HREN M T. An abrupt decrease in Southern Hemisphere terrestrial temperature during the Eocene-Oligocene transition[J]. Earth and Planetary Science Letters, 2019, 512: 227-235. |
[30] | LAURETANO V, KENNEDY-ASSER A T, KORASIDIS V A, et al. Eocene to Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2[J]. Nature Geoscience, 2021, 14(9): 659-664. |
[31] |
AO H, DUPONT-NIVET G, ROHLING E J, et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition[J]. Nature Communications, 2020, 11(1): 5249.
DOI PMID |
[32] | SUN J, NI X, BI S, et al. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 2014, 4(1): 7463. |
[33] | MENG J, MCKENNA M C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau[J]. Nature, 1998, 394(6691): 364-367. |
[34] | SUN J, WINDLEY B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 2015, 43(11): 1015-1018. |
[35] | QUAN C, LIU Y S C, UTESCHER T. Eocene monsoon prevalence over China: a paleobotanical perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365: 302-311. |
[36] | LI Y X, JIAO W J, LIU Z H, et al. Terrestrial responses of low-latitude Asia to the Eocene-Oligocene climate transition revealed by integrated chronostratigraphy[J]. Climate of the Past, 2016, 12(2): 255-272. |
[37] | TANG H, CUI H, LI S F, et al. Orbital-paced silicate weathering intensity and climate evolution across the Eocene-Oligocene transition in the southeastern margin of the Tibetan Plateau[J]. Global and Planetary Change, 2024, 234: 104388. |
[38] | BERNER R A, CALDEIRA K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10): 955-956. |
[39] | WALKER J C G, HAYS P B, KASTING J F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. |
[40] | KUTZBACH J E, PRELL W L, RUDDIMAN W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. The Journal of Geology, 1993, 101(2): 177-190. |
[41] | RAYMO M E, RUDDIMAN W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122. |
[42] |
MOLNAR P, TAPPONNIER P. Cenozoic Tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426.
PMID |
[43] | FANG X, YAN M, ZHANG W, et al. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma[J]. Science Bulletin, 2021, 66(22): 2320-2328. |
[44] | WEST A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814. |
[45] | XING Q, MUNDAY D, KLOCKER A, et al. The sensitivity of the Eocene-Oligocene Southern Ocean to the strength and position of wind stress[J]. Climate of the Past, 2022, 18(12): 2669-2693. |
[46] | YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 2008, 120(7/8): 813-846. |
[47] | ZHANG K X, WANG G C, JI J L, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science China Earth Sciences, 2010, 53: 1271-1294. |
[48] | JIA W J, WANG M F, ZHOU C H, et al. Analysis of the spatial association of geographical detector-based landslides and environmental factors in the southeastern Tibetan Plateau, China[J]. PLoS One, 2021, 16(5): e0251776. |
[49] | MYERS N, MITTERMEIER R A, MITTERMEIER C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858. |
[50] | LI S, SPICER R A, SU T, et al. An updated chronostratigraphic framework for the Cenozoic sediments of southeast margin of the Tibetan Plateau: implications for regional tectonics[J]. Global and Planetary Change, 2024, 236: 104436. |
[51] | LI X H, ZHU X X, NIU Y, et al. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China[J]. Journal of Systematics and Evolution, 2014, 52(3): 280-288. |
[52] | SPICER R A, FARNSWORTH A, SU T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story[J]. Plant Diversity, 2020, 42(4): 229-254. |
[53] | LI S, SU T, SPICER R A, et al. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina[J]. Tectonics, 2020, 39(7): e2019TC005974. |
[54] | 云南地矿局. 云南省区域地质志[M]. 北京: 地质出版社, 1990. |
[55] | LINNEMANN U, SU T, KUNZMANN L, et al. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots[J]. Geology, 2018, 46(1): 3-6. |
[56] | 张鹏. 兰州盆地中始新世至早中新世磁性地层与古环境演化[D]. 西安: 中国科学院研究生院(地球环境研究所), 2015. |
[57] |
李兆雨, 李永项, 李文厚, 等. 青藏高原东北部兰州盆地新生代沉积相与古环境演化[J]. 古地理学报, 2023, 25(3): 648-670.
DOI |
[58] | ZHANG C, ZHANG R, HU B, et al. A relatively warm and humid Oligocene climate in the northeastern Tibetan Plateau based on a high-resolution clay mineralogical and geochemical record[J]. Global and Planetary Change, 2023, 227: 104178. |
[59] | XIAO G Q, ABELS H A, YAO Z Q, et al. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity: dominated terrestrial records (Xining Basin, China)[J]. Climate of the Past, 2010, 6(4): 501-513. |
[60] | DUPONT-NIVET G, KRIJGSMAN W, LANGEREIS C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128): 635-638. |
[61] | HOORN C, STRAATHOF J, ABELS H A, et al. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344: 16-38. |
[62] | YE C, YANG Y, FANG X, et al. Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512: 23-32. |
[63] | LI Y, SUN P, ZHANG Q, et al. Middle Eocene Climatic Optimum sensitivity of a continental lake basin from geochemical records of the Fushun Basin, Northeastern China[J]. Ore Geology Reviews, 2023, 161: 105637. |
[64] | ZHANG R, KRAVCHINSKY V A, YUE L. Link between global cooling and mammalian transformation across the Eocene-Oligocene boundary in the continental interior of Asia[J]. International Journal of Earth Sciences, 2012, 101: 2193-2200. |
[65] | WU W, MENG J I N, YE J I E, et al. Propalaeocastor (Rodentia, Mammalia) from the Early Oligocene of Burqin Basin, Xinjiang[J]. American Museum Novitates, 2004, 2004(3461): 1-16. |
[66] | 叶捷, 孟津, 吴文裕, 等. 新疆布尔津盆地晚始新世—早渐新世岩石及生物地层[J]. 古脊椎动物学报, 2005(1): 49-60. |
[67] | NI X, MENG J, WU W, et al. A new Early Oligocene peradectine marsupial (Mammalia) from the Burqin region of Xinjiang, China[J]. Naturwissenschaften, 2007, 94: 237-241. |
[68] | BOSBOOM R E, DUPONT-NIVET G, HOUBEN A J P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398. |
[69] | BOSBOOM R, DUPONT-NIVET G, GROTHE A, et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene[J]. Basin Research, 2014, 26(5): 621-640. |
[70] | SUN J, LIU W, GUO Z, et al. Enhanced aridification across the Eocene/Oligocene transition evidenced by geochemical record in the Tajik Basin, Central Asia[J]. Global and Planetary Change, 2022, 211: 103789. |
[71] | CARRAPA B, DECELLES P G, WANG X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth and Planetary Science Letters, 2015, 424: 168-178. |
[72] | ROWLEY D B, CURRIE B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
[73] | DENG C, ZHU R, VEROSUB K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese loess plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718. |
[74] | SU T, SPICER R A, LI S H, et al. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet[J]. National Science Review, 2019, 6(3): 495-504. |
[75] |
SORREL P, EYMARD I, LELOUP P H, et al. Wet tropical climate in SE Tibet during the Late Eocene[J]. Scientific Reports, 2017, 7(1): 7809.
DOI PMID |
[76] | OPITZ S, RAMISCH A, IJMKER J, et al. Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes[J]. Catena, 2016, 137: 203-218. |
[77] | SINGER A. The paleoclimatic interpretation of clay minerals in soils and weathering profiles[J]. Earth-Science Reviews, 1980, 15(4): 303-326. |
[78] | CRUZ M D R. Clay mineral assemblages in flysch from the Campo de Gibraltar area (Spain)[J]. Clay minerals, 1999, 34(2): 345-364. |
[79] | BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. |
[80] | WITKOWSKI C R, LAURETANO V, FARNSWORTH A, et al. Dynamic environment but no temperature change since the late Paleogene at Lühe Basin (Yunnan, China)[J]. EGUsphere, 2023, 2023: 1-31. |
[81] | ZHAO J, LI S, FARNSWORTH A, et al. The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(7): 1339-1352. |
[82] | XIA G, WU C, MANSOUR A, et al. Eocene-Oligocene glaciation on a high central Tibetan Plateau[J]. Geology, 2023, 51(6): 559-564. |
[83] | TANG H, LI S F, SU T, et al. Early Oligocene vegetation and climate of southwestern China inferred from palynology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109988. |
[84] | WU M, HUANG J, SPICER R A, et al. The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau[J]. Global and Planetary Change, 2022, 214: 103856. |
[85] | NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[86] | VOGT T. Sulitelmafeltets geologi og petrografi[M]. Oslo: Aschehoug & Company, 1927. |
[87] | PARKER A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504. |
[88] | HARNOIS L. The CIW index: a new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3): 319-322. |
[89] | TREMBLIN M, HERMOSO M, MINOLETTI F. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11782-11787. |
[90] | SUN J, ZHANG Z, CAO M, et al. Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109657. |
[91] | ZHAO C, XIONG Z, FARNSWORTH A, et al. The late Eocene rise of SE Tibet formed an Asian ‘Mediterranean’ climate[J]. Global and Planetary Change, 2023, 231: 104313. |
[92] | WANG C, DAI J, ZHAO X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43. |
[93] |
方小敏. 青藏高原隆升阶段性[J]. 科技导报, 2017, 35(6): 42-50.
DOI |
[94] | 刘晓惠, 许强, 丁林. 差异抬升: 青藏高原新生代古高度变化历史[J]. 中国科学: 地球科学, 2017, 47(1): 40-56. |
[95] | DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218. |
[96] |
TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
PMID |
[97] | LEUTERT T J, AUDERSET A, MARTÍNEZ-GARCÍA A, et al. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene[J]. Nature Geoscience, 2020, 13(9): 634-639. |
[98] | ZHANG Y, SUN D, LI Z, et al. Cenozoic record of aeolian sediment accumulation and aridification from Lanzhou, China, driven by Tibetan Plateau uplift and global climate[J]. Global and Planetary Change, 2014, 120: 1-15. |
[99] |
REA D K, LEINEN M, JANECEK T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4688): 721-725.
PMID |
[100] | REA D K, SNOECKX H, JOSEPH L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224. |
[101] | ABELS H A, DUPONT-NIVET G, XIAO G, et al. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 399-412. |
[102] | FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): eaax1697. |
[103] | GE F, SIELMANN F, ZHU X, et al. The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective[J]. Climate Dynamics, 2017, 49: 4201-4215. |
[104] | RAMSTEIN G, FLUTEAU F, BESSE J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627): 788-795. |
[105] | WU F, FANG X, YANG Y, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 684-700. |
[106] | LICHT A, VAN CAPPELLE M, ABELS H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506. |
[107] | WANG C, ZHAO X, LIU Z, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992. |
[108] | SARR A C, DONNADIEU Y, BOLTON C T, et al. Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects[J]. Nature Geoscience, 2022, 15(4): 314-319. |
[109] | SPICER R A, YANG J, HERMAN A B, et al. Asian Eocene monsoons as revealed by leaf architectural signatures[J]. Earth and Planetary Science Letters, 2016, 449: 61-68. |
[110] | DECONTO R M, POLLARD D, WILSON P A, et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2008, 455(7213): 652-656. |
[111] | SU T, FARNSWORTH A, SPICER R A, et al. No high Tibetan plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189. |
[112] | 孙东怀, 王鑫, 李宝锋, 等. 新生代特提斯海演化过程及其内陆干旱化效应研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 135-151. |
[113] | WANG Q, WYMAN D A, XU J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 158-171. |
[114] |
HE S, DING L, XIONG Z, et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet[J]. Science Bulletin, 2022, 67(21): 2245-2258.
DOI PMID |
[115] | LYU H, LU H, WANG Y, et al. East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis[J]. Science China Earth Sciences, 2021, 64: 1285-1304. |
[116] | KOCSIS Á T, SCOTESE C R. Mapping paleocoastlines and continental flooding during the Phanerozoic[J]. Earth-Science Reviews, 2021(213): 1-15. |
[1] | 曹晨晞, 张茂亮, 王立胜, 王学锋, 段武辉, 徐胜. 藏南活动断裂带第四纪CO2释放初探:来自钙华年代学与地球化学的约束[J]. 地学前缘, 2025, 32(3): 334-349. |
[2] | 谢显刚, 赵文斌, 张茂亮, 郭正府, 徐胜. 青藏高原典型时段火山活动碳释放规模及其环境意义[J]. 地学前缘, 2025, 32(3): 350-361. |
[3] | 杨睿涵, 杨业, 曹振平, 徐胜. 大气宇宙成因核素10Be在地球科学研究中的应用:进展与展望[J]. 地学前缘, 2025, 32(3): 392-407. |
[4] | 刘晓惠, 刘一珉, 丁林, 郭晓玉, 黄兴富, 李蕙琳, 高锐. 中拉萨地体当惹雍措锆石微量元素特征及其对地壳厚度演化的指示[J]. 地学前缘, 2025, 32(1): 343-366. |
[5] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[6] | 张梦薇, 高亮, 赵越, 裴军令, 杨振宇, 郭晓倩, 胡新炜. 德雷克海峡打开与构造—古海洋—古气候演变[J]. 地学前缘, 2024, 31(6): 415-435. |
[7] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[8] | 王成善, 高远, 王璞珺, 吴怀春, 吕庆田, 朱永宜, 万晓樵, 邹长春, 黄永建, 高有峰, 席党鹏, 王稳石, 贺怀宇, 冯子辉, 杨光, 邓成龙, 张来明, 王天天, 胡滨, 崔立伟, 彭诚, 余恩晓, 黄何, 杨柳, 毋正轩. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430. |
[9] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[10] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[11] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[12] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[13] | 刘晓宇, 杨文采, 陈召曦, 瞿辰, 于常青. 青藏高原东部地块的属性与演化[J]. 地学前缘, 2023, 30(3): 233-241. |
[14] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[15] | 贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||