地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 262-281.DOI: 10.13745/j.esf.sf.2022.12.20
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之七 • 上一篇 下一篇
收稿日期:
2022-12-04
修回日期:
2022-12-13
出版日期:
2023-05-25
发布日期:
2023-04-27
作者简介:
吴 晨(1988—), 男, 研究员, 博士生导师, 主要从事构造地质学研究。E-mail: wuchen@itpcas.ac.cn
基金资助:
WU Chen1(), CHEN Xuanhua2, DING Lin1
Received:
2022-12-04
Revised:
2022-12-13
Online:
2023-05-25
Published:
2023-04-27
摘要:
祁连造山带位于东特提斯北缘,蛇绿混杂岩带、(超)高压变质岩和弧岩浆岩等广泛发育,是前新生代华北克拉通与柴达木古地块之间多期次俯冲、碰撞和造山形成的复合造山带。现今的祁连山是青藏高原北缘高原隆升与扩展的关键构造带,具有复杂的陆内变形构造和深部结构,记录了新生代高原生长过程中不同阶段的构造变形和盆-山演化历史。本文在区域地质研究资料的综合分析基础上,讨论祁连造山带元古宙变质基底属性、新元古代—古生代古海洋演化和中—新生代构造变形特征,探讨祁连(山)造山带的构造演化过程和陆内变形历史。祁连造山带发育新元古代早期和早古生代两期岩浆弧,分别代表了古祁连洋和(南、北)祁连洋的俯冲-碰撞事件;亲华北的基底属性指示了祁连洋实属陆缘海。新生代青藏高原东北缘发育两阶段构造变形和盆-山演化,在中新世完成了由新生代早期以逆冲断裂活动为主向走滑断裂和逆冲断裂共同作用的转变,随着东昆仑山的快速隆起将古近纪大盆地隔开成两个盆地,即现今的柴达木盆地和可可西里盆地。中新世中晚期以来,青藏高原东北缘的构造格局主要受控于东昆仑和海原两个近乎平行的大型转换挤压构造系统的发育、顺时针旋转和侧向生长。大型走滑断裂系统在造山带内的生长过程与发育机制是陆内变形研究的中心问题,需要进一步的定量化研究。
中图分类号:
吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281.
WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen[J]. Earth Science Frontiers, 2023, 30(3): 262-281.
图1 青藏高原地区特提斯造山系统的构造分带图(a)和北祁连洋俯冲极性的构造模型图(b)(a据文献[21]修改)
Fig.1 (a) Tectonic map of the Tethyan orogenic system (modified after [21]), and (b) end-member models for subduction of the North Qilian ocean
图2 祁连造山带及周缘断裂构造、岩浆分布和构造分区简图(据文献[28]修改) SQLOB—南祁连造山带;CQLB—中祁连地块;NQLOB—北祁连造山带;ATF—阿尔金断裂;KLF—昆仑断裂;NQDF—柴达木盆地北缘断裂;SDNF—党河南山南缘断裂;TDF—土尔根达坂断裂;NZF—北宗务隆山断裂;SQHF—青海南山断裂;SCQLF—中祁连南缘断裂;NCQLF—中祁连北缘断裂;SYNF—野牛沟南缘断裂;CMF—昌马—俄博断裂;NQLF—北祁连北缘断裂;HYF—海原断裂;TJF—天景山断裂;WQF—温泉断裂;RYF—日月山断裂;GHF—共和断裂;LSF—龙首山断裂;JTF—金塔断裂;AYF—阿拉善右旗断裂;YBF—雅布赖断裂;EGF—恩格尔乌苏南缘断裂;SYEF—银额盆地南缘断裂;STOM—肃南—老虎山蛇绿混杂岩带;NQLOM—熬油沟—玉石沟蛇绿混杂岩带;DH-LJOM—党河南山—拉脊山—永靖蛇绿混杂岩带;ZWLOM—宗务隆蛇绿混杂岩带;NQDOM—柴北缘蛇绿混杂岩块。
Fig.2 Sketch map of the Qilian orogen and adjacent areas, showing the regional fault system, magmatism and tectonic division. Modified after [28].
图3 祁连造山带大地电磁测深反演剖面的构造解释(据文献[28]修改) a—浅层反演剖面的构造解释;b—共轭梯度法中-深层反演剖面;c—中-深层反演剖面的构造解释。 断裂名称:NQDF—柴达木盆地北缘断裂;NZF—北宗务隆山断裂;NTJF—天峻盆地北缘断裂;SCQLF—中祁连南缘断裂;NMLF—木里盆地北缘断裂;NCQLF—中祁连北缘断裂;SYNF—野牛沟南缘断裂;CMF-昌马—俄博断裂;NQLF—祁连山北缘断裂;YN—榆木山逆冲推覆构造;NYMF—榆木山北缘断裂;LSF—龙首山断裂;JTF—金塔断裂;SYEF—银额盆地南缘断裂。Gr—花岗岩;HCL—壳内和上地幔低阻(高导)层。
Fig.3 Structural geological explanation of magnetotelluric sounding profile in the Qilian orogen. Modified after [28].
图4 北祁连造山带、中祁连地块和南祁连造山带构造-地层图(据文献[36]修改)
Fig.4 Lithostratigraphy of the North Qilian orogen, Central Qilian block, and South Qilian orogen of northern Tibet. Modified after [36].
图6 青藏高原北缘构造热年代学数据与断裂构造关系图(始新世—渐新世时期(a)和中新世以来(b))(据文献[131,152]修改)
Fig.6 Tectonic thermochronological data and faults in the northern Tibetan Plateau. (a) In the Eocene-Oligocene; (b) since the Miocene. Modified after [131,152].
图7 青藏高原北缘两阶段盆-山演化(a,b)与祁连山地区断裂响应(c,d)模式图(据文献[57,131,134,152]修改)
Fig.7 Two-stage basin-mountain evolution model for the northern Tibetan Plateau. Modified after [57,131,134,152].
图8 东昆仑转换挤压系统的构造模式图(a)和大型走滑断裂系陆内生长模式图(b)(a据文献[57]修改)
Fig.8 (a) Structural model for the Eastern Kunlun transpressional system (modified after [57]), and (b) intracontinental growth model for a large-scale strike-slip fault system
[1] | ŞENGÖR A M, BURKE K. Comments on: why do I not accept plate tectonics?[J]. EOS, Transactions American Geophysical Union, 1979, 60(17): 207. |
[2] | ŞENGÖR A M. The cimmeride orogenic system and the Tectonics of Eurasia[J]. Geological Society of America Special Papers, 1984, 195: 1-74. |
[3] |
ŞENGÖR A M, NATAL’IN B A. Turkic-Type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 263-337.
DOI URL |
[4] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[5] |
STAMPFLI G M, BOREL G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 17-33.
DOI URL |
[6] | HEUBECK C. Assembly of central Asia during the middle and late Paleozoic[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental deformation. Boulder: Geological Society of America, 2001, 194: 1-22. |
[7] | 吴福元, 王建刚, 刘传周, 等. 大洋岛弧的前世今生[J]. 岩石学报, 2019, 35(1): 1-15. |
[8] |
STÖCKLIN J. Northern Iran: Alborz Mountains[J]. Geological Society, London, Special Publications, 1974, 4(1): 213-234.
DOI URL |
[9] | 黄汲清, 陈炳蔚. 中国及邻区特提斯海的演化[M]. 北京: 地质出版社, 1987: 1-9. |
[10] |
METCALFE I. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes[J]. Journal of South American Earth Sciences, 1994, 7: 333-347.
DOI URL |
[11] | MINATO M, HUNAHASHI M. Origin of the Earth’s crust and its evolution[J]. Journal of the Faculty of Science, 1970, 14(4): 515-561. |
[12] | YIN A, NIE S Y. A Phanerozoic palinspastic reconstruction of China and its neighboring regions[M]// YIN A, HARRISON T M. The tectonic evolution of Asia. Cambridge: Cambridge University Press, 1996: 442-485. |
[13] |
JAHN B M, WU F Y, CHEN B. Massive granitiod generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2): 82-92.
DOI URL |
[14] |
WINDLEY B F, ALEXEIEV D, XIAO W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(12): 31-47.
DOI URL |
[15] |
XIAO W J, WINDLEY B F, SUN S, et al. Atale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.
DOI URL |
[16] |
CHEN P, SHI W, LIU Y, et al. Slip rate deficit partitioned by fault-fold system on the active Haiyuan fault zone, northeastern Tibetan Plateau[J]. Journal of Structural Geology, 2022, 155: 104516. https://doi.org/10.1016/j.jsg.2022.104516.
DOI URL |
[17] | 肖序常, 陈国铭, 朱志直. 祁连山古板块构造的一些认识[J]. 地质科技, 1974(3) : 73-78. |
[18] | 肖序常, 陈国铭, 朱志直. 祁连山古蛇绿岩带的地质构造意义[J]. 地质学报, 1978(4): 281-295. |
[19] |
SONG S G, NIU Y L, SU L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401.
DOI URL |
[20] |
XIAO W J, KUSKY T. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: introduction[J]. Gondwana Research, 2009, 16 (2): 167-169.
DOI URL |
[21] |
WU C, YIN A, ZUZA A V, et al. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system[J]. Lithosphere, 2016, 8(3): 254-292.
DOI URL |
[22] | WU C, ZUZA A V, YIN A, et al. Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian Shan of northern Tibet:reconstructing the amalgamation processes and tectonic history of Asia[J]. Lithosphere, 2017, 9(4): 609-636. |
[23] |
ZUZA A V, WU C, REITH R C, et al. Tectonic evolution of the Qilian Shan:an early Paleozoic orogen reactivated in the Cenozoic[J]. Geological Society of America Bulletin, 2018, 130(5/6): 881-925.
DOI URL |
[24] |
FU D, HUANG B, JOHNSON T E, et al. Boninitic blueschists record subduction initiation and subsequent accretion of an arc-forearc in the northeast Proto-Tethys Ocean[J]. Geology, 2021, 50(1): 10-15.
DOI URL |
[25] | 宋述光, 吴珍珠, 杨立明, 等. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 2019, 35(10): 2948-2970. |
[26] |
ZHANG J X, MENG F C, WAN Y S. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints[J]. Journal of Metamorphic Geology, 2007, 25: 285-304.
DOI URL |
[27] | 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531-3554. |
[28] | 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5): 996-1021. |
[29] |
YANG J S, XU Z Q, ZHANG J X, et al. Early Palaeozoic North Qaidam UHP metamorphic belt on the northeastern Tibetan Plateau and a paired subduction model[J]. Terra Nova, 2002, 14(5): 397-404.
DOI URL |
[30] |
SONG S G NIU, Y L, SU L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:the example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129: 59-84.
DOI URL |
[31] | GEHRELS G E, YIN A, WANG X F. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(B9): 2423. |
[32] |
GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30: TC5016. DOI:10.1029/2011TC002868.
DOI |
[33] |
YIN A, MANNING C E, LOVERA O, et al. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China[J]. International Geology Review, 2007, 49(8): 681-716.
DOI URL |
[34] | 刘强, 王冠, 王登科. 北祁连金矿区花岗闪长斑岩年代学及地质意义[J]. 四川地质学报, 2019, 39(1): 15-21. |
[35] |
LI B, ZUZA A V, CHEN X, et al. Pre-cenozoic evolution of the northern Qilian orogen from zircon geochronology:framework for early growth of the northern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110091.
DOI URL |
[36] |
WU C, LI J, ZUZA A V, et al. Proterozoic-Phanerozoic tectonic evolution of the Qilian Shan and Eastern Kunlun Range, northern Tibet[J]. GSA Bulletin, 2022, 134(9/10): 2179-2205.
DOI URL |
[37] | 吴才来, 徐学义, 高前明, 等. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, 2010, 26(4): 1027-1044. |
[38] |
YANG J H, DU Y, CAWOOD P A, et al. From subduction to collision in the northern Tibetan Plateau: evidence from the Early Silurian clastic rocks, northwestern China[J]. The Journal of Geology, 2012, 120: 49-67.
DOI URL |
[39] |
ZHANG PZ, BURCHFIEL B C, MOLNAR P, et al. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China[J]. Tectonics, 1991, 10(6): 1111-1129.
DOI URL |
[40] | 许志琴, 杨经绥, 姜枚. 青藏高原北部的碰撞造山及深部动力学[J]. 地球学报, 2001, 22(1): 5-10. |
[41] | 张培震, 郑德文, 尹功明, 等. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 2006, 26(1): 5-13. |
[42] | 杨树锋, 陈汉林, 程晓敢, 等. 祁连山北缘冲断带的特征与空间变化规律[J]. 地学前缘, 2007, 14(5): 211-221. |
[43] | 葛肖虹, 任收麦, 马立祥, 等. 青藏高原多期次隆升的环境效应[J]. 地学前缘, 2006, 13(6): 118-130. |
[44] | 胡道功, 戚帮申, 张耀玲, 等. 祁连山新生代构造环境演化与隆升过程[M]. 北京: 地质出版社, 2018: 1-210. |
[45] | 李海兵, 杨经绥. 青藏高原北部白垩纪隆升的证据[J]. 地学前缘, 2004, 11(4): 345-359. |
[46] |
栗兵帅, 颜茂都, 张伟林. 柴北缘早新生代旋转变形特征及其构造意义[J]. 地学前缘, 2022, 29(4): 249-264.
DOI |
[47] |
ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research, 1986, 91: 3664-3676.
DOI URL |
[48] |
BURCHFIEL B C, ROYDEN L H. Antler orogeny:a Mediterranean-type orogeny[J]. Geology, 1991, 19(1): 66-69.
DOI URL |
[49] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
PMID |
[50] | WANG W T, ZHENG D, LI C, et al. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau:evidence from low-temperature thermochronology[J]. Tectonics, 2020, 39(4): e2019TC005705. |
[51] |
MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47.
DOI URL |
[52] |
CLARK M K. Continental collision slowing due to viscous mantle lithosphere rather than topography[J]. Nature, 2012, 483: 74-77.
DOI |
[53] |
ZUZA A V, WU C, WANG Z Z, et al. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan orogen[J]. Lithosphere, 2019, 11(2): 209-231.
DOI URL |
[54] |
ZUZA A V, GAVILLOT Y, HAPROFF P J, et al. Kinematic evolution of a continental collision: constraining the Himalayan-Tibetan orogen via bulk strain rates[J]. Tectonophysics, 2020, 797: 228642. DOI:10.1016/j.tecto.2020.228642.
DOI URL |
[55] |
LI B, CHEN X H, ANDREW V Z, et al. Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: constraints from apatite- and zircon-fission track thermochronology[J]. Tectonophysics, 2019, 751: 109-124.
DOI URL |
[56] |
LI B, ZUZA A V, CHEN X H, et al. Cenozoic multi-phase deformation in the Qilian Shan and out-of-sequence development of the northern Tibetan Plateau[J]. Tectonophysics, 2020, 782. DOI:10.1016/j.tecto.2020.228423.
DOI |
[57] |
WU C, ZUZA A V, ZHOU Z G, et al. Mesozoic-Cenozoic evolution of the Eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo-Asian collision[J]. Lithosphere, 2019, 11(4): 524-550.
DOI URL |
[58] |
WU C, ZUZA A V, LI J, et al. Late Mesozoic-Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology[J]. Geological Society of America Bulletin, 2021, 133(11/12): 2393-2417.
DOI URL |
[59] |
周鹏哲, 高锐, 叶卓. 祁连山中部地壳各向异性研究:来自远震接收函数的证据[J]. 地学前缘, 2022, 29(4): 265-277.
DOI |
[60] | GAO R, ZHOU H, GUO X, et al. Deep seismic reflection evidence on deep processes of tectonic construction of the Tibetan Plateau[J]. Earth Science Frontiers, 2021, 28(5): 320-336. |
[61] |
YIN A, RUMELHART P E, BUTLER R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10): 1257-1295.
DOI URL |
[62] | 郭安林, 张国伟, 强娟, 等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 2009, 25(1): 1-12. |
[63] | 潘桂棠, 丁俊, 姚东生, 等. 青藏高原及邻区地质图(1∶1 500 000)及说明书[CM]. 成都: 成都地图出版社, 2004: 1-133. |
[64] | 潘桂棠, 肖庆辉. 中国大地构造图说明书(1∶2 500 000)[CM]. 北京: 地质出版社, 2015: 1-160. |
[65] | 王立全, 潘桂棠, 丁俊, 等. 青藏高原及邻区地质图及说明书(1∶1 500 000)[CM]. 北京: 地质出版社, 2013: 1-288. |
[66] | 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991. |
[67] | 张建新, 宫江华. 阿拉善地块性质和归属的再认识[J]. 岩石学报, 2018, 34(4): 940-962. |
[68] |
LIU C F, WU C, ZHOU Z G, et al. U-Pb detrital zircon geochronology from the basement of the Central Qilian terrane: implications for tectonic evolution of northeastern Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107: 673-686.
DOI URL |
[69] |
YAN Z, AITCHISON J, FU C, et al. Hualong Complex, South Qilian Terrane: U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin[J]. Precambrian Research, 2015, 266: 65-85.
DOI URL |
[70] |
YAN Z, FU C, AITCHISON J C, et al. Retro-foreland basin in the NE Tibet Plateau[J]. Tectonics, 2019, 38: 4229-4248.
DOI URL |
[71] | 吴才来, 杨经绥, WOODEN J, 等. 柴达木山花岗岩锆石SHRIMP定年[J]. 科学通报, 2001, 46(20): 1743-1747. |
[72] | 陈宣华, 党玉琪, 尹安, 等. 柴达木盆地及其周缘山系盆山耦合与构造演化[M]. 北京: 地质出版社, 2010: 1-365. |
[73] | 吴才来, 郜源红, 吴锁平, 等. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007, 23(8): 1861-1875. |
[74] | 孟繁聪, 张建新, 杨经绥. 柴北缘锡铁山早古生代 HP/UHP 变质作用后的构造热事件:花岗岩和片麻岩的同位素与岩石地球化学证据[J]. 岩石学报, 2005, 21(1): 45-56. |
[75] |
FU C L, YAN Z, WANG Z Q, et al. Lajishankou ophiolite complex: implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt[J]. Tectonics, 2018, 37(5): 1321-1346.
DOI URL |
[76] |
CHEN X H, GEHRELS G E, YIN A, et al. Paleozoic and Mesozoic basement magmatisms of Eastern Qaidam Basin, northern Qinghai-Tibet Plateau: LA-ICP-MS zircon U-Pb geochronology and its geological significance[J]. Acta Geologica Sinica (English Edition), 2012, 86(2): 350-369.
DOI URL |
[77] |
彭渊, 马寅生, 刘成林, 等. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义[J]. 地学前缘, 2016, 23(2): 206-221.
DOI |
[78] | 王苏里, 周立发. 宗务隆山角闪辉长岩 LA-ICP-MS 锆石 U-Pb 定年、地球化学特征及其地质意义[J]. 西北大学学报(自然科学版), 2016, 46(5): 716-723. |
[79] | 吴才来, 雷敏, 吴迪, 等. 柴北缘乌兰地区花岗岩锆石 SHRIMP 定年及其成因[J]. 地球学报, 2016, 37(4): 493-516. |
[80] |
YANG J S, XU Z Q, LI H B, et al. Discovery of eclogite at northern margin of Qaidam Basin, NW China[J]. Chinese Science Bulletin, 1998, 43: 1755-1760.
DOI URL |
[81] | 杨经绥, 许志琴, 宋述光, 等. 青海都兰榴辉岩的发现及对中国中央造山带内高压-超高压变质带研究的意义[J]. 地质学报, 2000, 74(2): 156-168. |
[82] | 宋述光, 杨经绥. 柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体: 超高压变质作用的证据[J]. 地质学报, 2001, 75(2): 180-185. |
[83] |
SONG S G, LI S, NIU Y L, et al. Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: a review[J]. Journal of Asian Earth Sciences, 2009, 35(3): 285-297.
DOI URL |
[84] |
ZHANG K J, XIA B, ZHANG Y X, et al. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 2014, 210/211: 278-288.
DOI URL |
[85] |
YU J X, PANG J Z, WANG Y Z, et al. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau[J]. Geosphere, 2019, 15(2): 423-432.
DOI URL |
[86] |
MENOLD C A, MANNING C E, YIN A, et al. Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahigh-pressure eclogites in the North Qaidam metamorphic belt, western China[J]. Journal of Asian Earth Sciences, 2009, 35: 273-284.
DOI URL |
[87] |
MENOLD C A, GROVE M, SIEVERS N E, et al. Argon, oxygen, and boron isotopic evidence documenting 40ArE accumulation in phengite during water-rich high-pressure subduction metasomatism of continental crust[J]. Earth and Planetary Science Letters, 2016, 446(1): 56-67.
DOI URL |
[88] |
宋志杰, 张宏远, 侯迪, 等. 中祁连地块北缘退变榴辉岩的发现及其地质意义[J]. 地学前缘, 2019, 26(2): 233-248.
DOI |
[89] | 杨经绥, 宋述光, 许志琴, 等. 柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物:柯石英[J]. 地质学报, 2001, 75(2): 175-179. |
[90] | 杨经绥, 李海兵. 走滑断裂对超高压变质岩石折返的贡献及青藏高原北部白垩纪隆升之新思考[J]. 地学前缘, 2006, 13(4): 80-90. |
[91] | 张建新, 孟繁聪, 戚学祥. 柴达木盆地北缘大柴旦和锡铁山榴辉岩中石榴子石环带对比及地质意义[J]. 地质通报, 2002, 21(3): 124-129. |
[92] |
SONG S G, ZHANG L F, NIU Y L, et al. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, northern Tibetan Plateau: a record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth and Planetary Science Letters, 2005, 234: 99-118.
DOI URL |
[93] | 夏林圻, 夏祖春, 任有祥, 等. 祁连山及邻区火山作用与成矿[M]. 北京: 地质出版社. 1998: 1-215. |
[94] |
XIA X H, SONG S G. Forming age and tectono-petrogenesis of the Jiugequan ophiolite in the North Qilian Mountain, NW China[J]. Chinese Science Bulletin, 2010, 55: 1899-1907.
DOI URL |
[95] |
XIA X H, SONG S G, NIU Y L. Tholeiite-Boninite terrane in the North Qilian suture zone: implications for subduction initiation and back-arc basin development[J]. Chemical Geology, 2012, 328(11): 259-277.
DOI URL |
[96] | 孟繁聪, 张建新, 郭春满, 等. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约[J]. 岩石矿物学杂志, 2010, 29(5): 453-466. |
[97] | 林宜慧, 张立飞, 季建清, 等. 北祁连山九个泉硬柱石蓝片岩40Ar-39Ar年龄及其地质意义[J]. 科学通报, 2010, 55(17): 385-394. |
[98] | 侯青叶, 赵志丹, 张宏飞, 等. 北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义[J]. 中国科学: 地球科学, 2005, 35(8): 710-719. |
[99] | 史仁灯, 杨经绥, 吴才来, 等. 龙首山推覆构造的发现及其地质意义[J]. 科学通报, 2004, 40(9): 649-657. |
[100] |
ZHANG J X, MENG F C, WAN Y S. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: petrological and U-Pb geochronological constraints[J]. Journal of Metamorphic Geology, 2007, 25: 285-304.
DOI URL |
[101] | 宋述光, 张立飞, NIU Y L, 等. 北祁连山榴辉岩锆石SHRIMP定年及其构造意义[J]. 科学通报, 2004, 49: 592-595. |
[102] |
LIU M J, MOONEY W D, LI S L, et al. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi Terrane to the Ordos Basin[J]. Tectonophysics, 2006, 420: 253-266.
DOI URL |
[103] | 冯益民, 何世平. 祁连山大地构造与造山作用[M]. 北京: 地质出版社, 1996: 1-135. |
[104] | 邱家骧, 曾广策, 朱云海, 等. 北秦岭—南祁连早古生代裂谷造山带: 火山岩与小洋盆蛇绿岩套特征及纬向对比[J]. 高校地质学报, 1998, 4(4): 393-405. |
[105] | 赵虹, 党犇, 王崇礼. 甘肃南祁连党河南山中奥陶世火山岩的地球化学特征[J]. 现代地质, 2004, 18(1): 64-69. |
[106] | 黄增保, 郑建平, 李葆华, 等. 南祁连大道尔吉早古生代弧后盆地型蛇绿岩的年代学、地球化学特征及意义[J]. 大地构造与成矿学, 2016, 40(4): 826-838. |
[107] | ZHANG Y Q, SONG S G, YANG L M, et al. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: accretion of a Cambrian Oceanic Plateau?[J]. Lithos, 2017, 278/279/280/281: 97-110. |
[108] | 王毅智, 陆海莲. 青海天峻南山蛇绿岩的地质特征及其形成环境[J]. 青海国土经略, 2001, 21(1): 29-35. |
[109] | 王绘清, 朱云海, 林启祥, 等. 青海尖扎-同仁地区隆务峡蛇绿岩的形成时代及意义:来自辉长岩锆石LA-ICP-MS U-Pb年龄的证据[J]. 地质通报, 2010, 29(1): 86-92. |
[110] |
KOU X H, ZHANG K X, ZHU Y H, et al. Permian seamount from Xiahe area, Gansu Province, Northwest China: zircon U-Pb age, biostratigraphy and tectonic implication[J]. Journal of Earth Science, 2009, 20(2): 364-380.
DOI URL |
[111] | 张克信, 朱云海, 林启祥, 等. 青海同仁县隆务峡地区首次发现镁铁质-超镁铁质岩带[J]. 地质通报, 2007, 26(6): 661-667. |
[112] | 王洪强, 邵铁全, 唐汉华, 等. 柴北缘布赫特山一带达肯大坂岩群变质岩变形特征、地球化学特征及地质意义[J]. 地质通报, 2016, 35(9): 1488-1496. |
[113] | 张永明, 裴先治, 李佐臣, 等. 青海南山沟后岩浆杂岩体锆石U-Pb 年代学、岩石成因及其地质意义[J]. 大地构造与成矿学, 2017, 41(5): 908-932. |
[114] | 朱小辉, 陈丹玲, 刘良, 等. 柴北缘锡铁山地区镁铁质岩石的时代及地球化学特征[J]. 地质通报, 2012, 31(12): 2079-2089. |
[115] | 朱小辉, 陈丹玲, 刘良, 等. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J]. 岩石学报, 2014, 30(3): 822-834. |
[116] |
ZHANG G B, SONG S G, ZHANG L F, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: evidence from petrology, geochemistry and geochronology[J]. Lithos, 2008, 104: 99-108.
DOI URL |
[117] |
LIU Z J, KLINGER Y, XU, X, et al. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China[J]. Bulletin of the Seismological Society of America, 2007, 97(1B): 14-34.
DOI URL |
[118] |
CLARK M K, FARLEY K A, ZHENG D, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1): 78-88.
DOI URL |
[119] |
ZHENG D W, ZHANG P Z, WAN J L, et al. Rapid exhumation at -8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248: 198-208.
DOI URL |
[120] |
YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin[J]. Geological Society of America Bulletin, 2008, 120(7/8), 813-846.
DOI URL |
[121] |
WANG C S, GAO R, YIN A, et al. A mid-crustal strain-transfer model for continental deformation:a new perspective from high-resolution deep seismic-reflection profiling across NE Tibet[J]. Earth and Planetary Science Letters, 2011, 306: 279-288.
DOI URL |
[122] |
YUAN D Y, GE W P, CHEN Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 2013, 32: 1358-1370.
DOI URL |
[123] |
GAO R, WANG H Y, YIN A, et al. Tectonic development of the northeastern Tibetan Plateau as constrained by high- resolution deep seismic-reflection data[J]. Lithosphere, 2013, 5(6): 555-574.
DOI URL |
[124] |
DUVALL A R, CLARK M K, KIRBY E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 32: 1190-1211.
DOI URL |
[125] | 王伟涛, 张培震, 郑德文, 等. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 2014, 21(4): 266-274. |
[126] |
YE Z, GAO R, LI Q S. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426: 109-117.
DOI URL |
[127] | 郑文俊, 袁道阳, 张培震. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究, 2016, 36(4): 775-788. |
[128] |
MENG K, WANG E, CHU J J, et al. Late Cenozoic river system reorganization and its origin within the Qilian Shan, NE Tibet[J]. Journal of Structural Geology, 2020, 138: 104128. DOI: 10.1016/j.jsg.2020.104128.
DOI URL |
[129] |
WANG Y, CHEN X H, ZHANG Y Y, et al. Superposition of Cretaceous and Cenozoic deformation in northern Tibet: a far-field response to the tectonic evolution of the Tethyan orogenic system[J]. Geological Society of America Bulletin, 2022, 134(1/2): 501-525.
DOI URL |
[130] | 戚学祥, 张建新, 李海兵, 等. 北祁连南缘右行韧性走滑剪切带的同位素年代学及其地质意义[J]. 地学前缘, 2004, 11(4): 469-479. |
[131] | WU C, ZUZA A V, YIN A, et al. Punctuatedorogeny during the sssembly of Asia: tectonostratigraphic evolution of the North China Craton and the Qilian Shan from the Paleoproterozoic to Early Paleozoic[J]. Tectonics, 2021, 40(4): e2020TC006503. |
[132] |
REN J J, XU X W, ZHANG S M, et al. Late Quaternary slip rates and Holocene paleoearthquakes of the eastern Yumu Shan fault, northeast Tibet:implications for kinematic mechanism and seismic hazard[J]. Journal of Asian Earth Sciences, 2019, 176: 42-56.
DOI URL |
[133] |
WANG, C Y, YU S, SUN D, et al. Mesoproterozoic tectonic-thermal events in the Oulongbuluke Block, NW China:constraints on the transition from supercontinent Columbia to Rodinia[J]. Precambrian Research, 2021, 352: 106010.
DOI URL |
[134] |
WU C, LI J, ZUZA A V, et al. Cenozoic cooling history and fluvial terrace development of the western domain of the eastern Kunlun Range, northern Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109971.
DOI URL |
[135] |
WU C, ZUZA A V, CHEN X, et al. Tectonics of the eastern Kunlun Range: Cenozoic reactivation of a Paleozoic-Early Mesozoic Orogen[J]. Tectonics, 2019, 38(5): 1609-1650.
DOI URL |
[136] | 杨经绥, 许志琴, 张建新, 等. 中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨[J]. 岩石学报, 2009, 25(7): 1529-1560. |
[137] | 夏林圻, 李向民, 余吉远, 等. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 2016, 43(4): 1087-1138. |
[138] |
ZUZA A V, WU C, REITH R C, et al. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. Geological Society of America Bulletin, 2017, 130 (5/6): 881-925.
DOI URL |
[139] | 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11. |
[140] | 白建科, 王洪亮, 朱小辉, 等. 北祁连石灰沟奥陶纪中堡群滑塌堆积特征及其古地理环境意义[J]. 中国地质, 2016, 43(3): 977-986. |
[141] | 李冰, 胡道功, 陈宣华, 等. 北祁连缝合带油葫芦沟蛇绿岩中花岗斑岩锆石U-Pb 年龄及地质意义[J]. 现代地质, 2017, 31(5): 883-889. |
[142] |
LI S Z, ZHAO S J, LIU X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75.
DOI URL |
[143] | 黄增保, 郑建平, 李葆华, 等. 中祁连西段野马山岩基年代学、地球化学特征及地质意义[J]. 中国地质, 2015, 42(2): 406-420. |
[144] | 王增振, 陈宣华, 邵兆刚, 等. 甘肃龙首山—合黎山晚志留世—早泥盆世花岗岩类的成因及其对阿拉善地块西南缘早古生代构造演化的约束[J]. 地质学报, 2020, 94(8): 2243-2261. |
[145] | 李猛, 王超, 李荣社, 等. 北祁连肃南地区阴沟群形成时代及沉积源区讨论:碎屑锆石U-Pb 年龄证据[J]. 中国地质, 2015, 42(3): 601-615. |
[146] | 朱小辉, 王洪亮, 杨猛. 祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义[J]. 中国地质, 2016, 43(3): 751-767. |
[147] | 夏林圻, 夏祖春, 任有祥, 等. 北祁连山构造-火山岩浆-成矿动力学[M]. 北京: 中国大地出版社, 2001: 1-33. |
[148] | 刘志武, 王崇礼, 石小虎. 南祁连党河南山花岗岩类特征及其构造环境[J]. 现代地质, 2006, 20(4): 545-554. |
[149] |
TUNG K A, YANG H Y, LIU D Y, et al. The Neoproterozoic granitoids from the Qilian block, NW China:evidence for a link between the Qilian and South China blocks[J]. Precambrian Research, 2013, 235: 163-189.
DOI URL |
[150] |
ZHANG C, BADER T, ZHANG L F, et al. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China:from Grenville-age orogeny to early-Paleozoic ultrahigh-pressure metamorphism[J]. Gondwana Research, 2017, 41: 290-300.
DOI URL |
[151] | 郝更强. 南祁连西段奥陶纪—志留纪山岩构造环境研究及找矿意义[D]. 北京: 中国地质大学(北京), 2016. |
[152] |
WU C, LI J, DING L. Low-temperature thermochronology constraints on the evolution of the Eastern Kunlun Range, northern Tibetan Plateau[J]. Geosphere, 2021, 17(4): 1193-1213.
DOI URL |
[153] | 郭召杰, 张志诚, 曾凡刚. 吐拉盆地侏罗纪巨厚油砂岩和沥青的发现及其意义[J]. 科学通报, 1998, 43(8): 886-888. |
[154] | 戴俊生, 曹代勇. 柴达木盆地构造样式的类型和展布[J]. 西北地质科学, 2000(2): 57-63. |
[155] | 罗金海, 车自成. 中亚与中国西部侏罗纪沉积盆地的成因分析[J]. 西北大学学报(自然科学版), 2001(2): 167-170. |
[156] | CHEN X H, YIN A, GEHRELS G E, et al. Two phases of Mesozoic north-south extension in the eastern Altyn Tagh range, northern Tibetan Plateau[J]. Tectonics, 2003, 22(5): 1053. |
[157] | RITTS B D, BIFFI U. Mesozoic Northeast Qaidam Basin: response to contractional reactivation of the Qilian Shan, and implications for the extent of Mesozoic intracontinental deformation in central Asia[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Boulder: Geological Society of America, 2001, 194: 293-316. |
[158] | 邵浩浩, 陈宣华, 张达, 等. 河西走廊平山湖盆地早白垩世构造变形期次及其碎屑锆石U-Pb年龄约束[J]. 中国地质, 2019, 46(5): 1079-1093. |
[159] | 潘宏勋, 葛肖虹, 刘俊来. 对祁连山北缘榆木山隆起的质疑[J]. 长春科技大学学报, 2000, 30(1): 9-13. |
[160] | ZUZA A V, YIN A. Continental deformation accommodated by non-rigid passive bookshelf faulting: an example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 2016, 677: 227-240. |
[161] | 赵文津, MECHIE J, 冯梅, 等. 祁连山造山作用与岩石圈地幔的特型结构构造[J]. 中国地质, 2014, 41(5): 1411-1423. |
[162] |
YE Z, LI Q S, GAO R, et al. Anisotropic regime across northeastern Tibet and its geodynamic implications[J]. Tectonophysics, 2016, 671: 1-8.
DOI URL |
[163] |
YE Z, GAO R, LU Z, et al. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan Plateau margin: evidence from high-resolution seismic imaging[J]. Earth and Planetary Science Letters, 2021, 574: 117170. DOI: 10.1016/j.epsl.2021.117170.
DOI URL |
[164] |
TAPPONNIER P, PELTZER G L D A Y, LE D, et al. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12), 611-616.
DOI URL |
[165] |
WU C, LIU C, FAN S, et al. Structural analysis and tectonic evolution of the western domain of the Eastern Kunlun Range, Northwest Tibet[J]. GSA Bulletin, 2020, 132(5/6): 1291-1315.
DOI URL |
[166] | LASSERRE C, GAUDEMER Y, TAPPONNIER P, et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China[J]. Journal of Geophysical Research, 2002, 107(B11): ETG4(1-15). https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000JB000060. |
[1] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[2] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[3] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[4] | 段金宝, 潘磊, 石司宇, 姜振学, 李平平, 邹玉涛, 张文睿. 川东涪陵地区15号走滑断裂带几何学、运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68. |
[5] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[6] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[7] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[8] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[9] | 刘晓宇, 杨文采, 陈召曦, 瞿辰, 于常青. 青藏高原东部地块的属性与演化[J]. 地学前缘, 2023, 30(3): 233-241. |
[10] | 毕文军, 张佳伟, 李亚林, 邓玉珍. 西藏中部羌塘地体白垩纪以来隆升剥露过程[J]. 地学前缘, 2023, 30(2): 18-34. |
[11] | 唐宇, 王根厚, 韩芳林, 李典, 梁晓, 冯翼鹏, 张莉, 王卓胜, 韩宁. 西藏加查地区特提斯喜马拉雅带晚三叠世地层重新厘定及构造变形研究[J]. 地学前缘, 2023, 30(2): 35-56. |
[12] | 贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174. |
[13] | 王小军, 宋永, 郑孟林, 郭旭光, 吴海生, 任海姣, 王韬, 常秋生, 何文军, 王霞田, 郭建辰, 霍进杰. 准噶尔西部陆内盆地构造演化与油气聚集[J]. 地学前缘, 2022, 29(6): 188-205. |
[14] | 周琦杰, 刘永江, 王德英, 关庆彬, 王光增, 王宇, 李遵亭, 李三忠. 渤海湾中部中、新生代构造演化与潜山的形成[J]. 地学前缘, 2022, 29(5): 147-160. |
[15] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||