地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 229-244.DOI: 10.13745/j.esf.sf.2022.9.7
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之八 • 上一篇 下一篇
夏敦胜1(), 杨军怀1,*(
), 王树源1, 刘鑫1, 陈梓炫1, 赵来1, 牛潇毅1, 金明1, 高福元2, 凌智永3, 王飞1, 李再军1, 王鑫1, 贾佳4, 杨胜利1
收稿日期:
2022-08-05
修回日期:
2022-09-20
出版日期:
2023-07-25
发布日期:
2023-07-07
通信作者:
*杨军怀(1994—),男,博士研究生,主要从事青藏高原风成沉积与气候变化研究。E-mail: yangjh19@lzu.edu.cn
作者简介:
夏敦胜(1971—),男,教授,博士生导师,主要从事环境磁学与第四纪环境变化研究。E-mail: dsxia@lzu.edu.cn
基金资助:
XIA Dunsheng1(), YANG Junhuai1,*(
), WANG Shuyuan1, LIU Xin1, CHEN Zixuan1, ZHAO Lai1, NIU Xiaoyi1, JIN Ming1, GAO Fuyuan2, LING Zhiyong3, WANG Fei1, LI Zaijun1, WANG Xin1, JIA Jia4, YANG Shengli1
Received:
2022-08-05
Revised:
2022-09-20
Online:
2023-07-25
Published:
2023-07-07
摘要:
青藏高原南部雅鲁藏布江(雅江)流域位于印度板块和欧亚板块碰撞产生的缝合带,是地球系统科学研究的热点地区。该区域中更新世以来的风成沉积物不仅是揭示青藏高原气候变化与大气环流演化的重要窗口,而且有助于深入认识构造、气候及地表景观之间的内在联系,然而我们对于该区域风成沉积物的空间格局、沉积模式及其环境效应至今仍然缺乏系统的认识。本文在大量野外考察和已有研究结果基础上,结合典型沉积物样品的综合分析,对雅江流域风成沉积体系进行了梳理,绘制了《雅江风成沉积空间分布图》,包括1幅序图和6幅区域分布图,其中风沙和黄土沉积呈斑块状分布,二者通常相伴而生。黄土与沙丘、河流砂等松散沉积物之间存在密切的物质联系,区域内的风成沉积以自循环过程为主,记录了区域气候的空间差异。河谷沉积物在接受有限的远源粉尘输入的同时,在高空西风的作用下向全球贡献粉尘物质。中更新世以来的粉尘活动受控于构造运动和全球气候变化的耦合,而全新世粉尘活动受河谷环境影响表现较为复杂,区域气候变化受中纬度西风和印度夏季风的协同作用影响。
中图分类号:
夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244.
XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact[J]. Earth Science Frontiers, 2023, 30(4): 229-244.
图1 研究区地理位置、采样点、近地表风场及主要大气环流 (a)青藏高原南部雅鲁藏布江流域及采样位置。现代夏季风边界线引自文献[55]。(b)雅鲁藏布江流域近地表风场(箭头指示合成输沙势方向),数据引自文献[42]。(c,d)1948—2016年青藏高原及其周边地区夏季和冬季平均降水量及600 hPa(接近高原面平均海拔)风场。降水量和风场数据来源于全球降水气候学中心和美国国家环境预测中心/美国国家大气研究中心再分析资料。
Fig.1 The Yarlung Zangbo River (YZR) basin region, southern Tibetan Plateau. (a) Geological location of the study area and distribution of sampling sites along the river. (b) Near-surface wind field (adapted from [42]). (c, d) Main atmospheric circulation patterns (data adapted from international databases the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR Reanalysis 1) and precipitation data are from the Global Precipitation Climatology Centre (GPCC)).
图2 雅鲁藏布江流域风成沉积分布序图及分布面积 (雅江干流河床宽度和海拔数据来源于文献[56]) 字母a-f为区域风成沉积分布图索引。
Fig.2 Atlas of aeolian sediments in the YZR basin. Top: overview distribution map shows the spatial distribution of aeolian/loess deposits in the basin and indicate the location of 6 mapping regions indexed a-f. Middle: aeolian/loess deposition areas in regions a-f. Bottom: variation of streambed width across regions a-f.
图3 雅鲁藏布江流域区域风成沉积分布图
Fig.3 High-resolution regional distribution maps of aeolian deposits in the YZR basin. Profile TB10 in c adapted from [21]; profiles TB1,7,8, Cha’er, LCP, RKZ, Lhainxiang and Dazhuka in d adapted from [21,23,57⇓⇓-60]; profiles QUX1, 2, JIN2, CHI1, DRE18, STA1, MOG1, GYA3, MOG4, LS, Jiangtang, SNP and SRP in e adapted from [23,27,58,61]; profiles LXP, YJP1 and Zeyi in f adapted from [23,62].
图5 雅鲁藏布江流域沉积物物源对比 (a)雅江河谷典型黄土-风沙剖面[30]与潜在源区沉积物[20]及中国黄土高原黄土[68]的物源对比;(b)雅江河谷典型黄土-风沙剖面沉积物的粒度端员分离结果[29];(c)雅江河谷降尘样品的粒度频率分布曲线[66]及沙丘沉积物的粒度端员分离结果。灰色虚线为63 μm分界线。
Fig.5 Sediment provenance analysis revealing close provenance relation between loess and nearby loose sediments. (a) Discrimination diagram. (b, c) Sediment grain size distribution.
图6 雅江中上游地区年平均降水、年平均气温及表土和沉积剖面理化性质的空间变化
Fig.6 Multiple plots of mean annual precipitation/temperature and physicochemical proxies for surface soil/aeolian sediment samples collected cross the basin from west to east to show sedimentary response to climate change in the YZR basin
[1] |
QIU J. The Third Pole[J]. Nature, 2008, 454(7203): 393-396.
DOI |
[2] |
LING Z Y, YANG S L, XIA D S, et al. Source of the aeolian sediments in the Yarlung Tsangpo valley and its potential dust contribution to adjacent oceans[J]. Earth Surface Processes and Landforms, 2022, 47(7): 1860-1871.
DOI URL |
[3] |
DONG Z B, HU G Y, QIAN G Q, et al. High-altitude aeolian research on the Tibetan Plateau[J]. Reviews of Geophysics, 2017, 55(6): 864-901.
DOI URL |
[4] |
AN Z S, COLMAN S M, ZHOU W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2: 619.
DOI PMID |
[5] |
CHEN F H, ZHANG J F, LIU J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 106444.
DOI URL |
[6] |
VEH G, KORUP Q, WALZ A. Hazard from Himalayan glacier lake outburst floods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2): 907-912.
DOI PMID |
[7] | YAO T D, XUE Y K, CHEN D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 432-444. |
[8] | HUANG X M, MIAO X D, CHANG Q F, et al. Tibetan dust accumulation linked to ecological and landscape response to global climate change[J]. Geophysical Research Letters, 2022, 49: e2021G-e96615G. |
[9] |
LING Z Y, YANG X Y, WANG Y X, et al. OSL chronology of Liena archeological site in the Yarlung Tsangpo valley throws new light on human occupation of the Tibetan Plateau[J]. The Holocene, 2020, 30(7): 1043-1052.
DOI URL |
[10] | 潘保田, 李吉均. 青藏高原:全球气候变化的驱动机与放大器: Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报, 1996, 32(1): 108-115. |
[11] | 靳鹤龄, 董光荣, 刘玉璋, 等. 0.8 Ma BP以来西藏雅鲁藏布江中游地区沙地演化和气候变化[J]. 中国沙漠, 1998, 18(2): 97-104. |
[12] |
DONG Z W, BRAHNEY J, KANG S C, et al. Aeolian dust transport, cycle and influences in high-elevation cryosphere of the Tibetan Plateau region: new evidences from alpine snow and ice[J]. Earth-Science Reviews, 2020, 211: 103408.
DOI URL |
[13] |
LI Y, KANG S C, ZHANG X L, et al. Black carbon and dust in the Third Pole glaciers: revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation[J]. Science of The Total Environment, 2021, 789: 147746.
DOI URL |
[14] |
FANG X M, HAN Y X, MA J H, et al. Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa[J]. Chinese Science Bulletin, 2004, 49(9): 953-960.
DOI URL |
[15] | 董治宝. 青藏高原风沙地貌图集[CM]. 西安: 西安地图出版社, 2017. |
[16] | 李森, 王跃, 哈斯, 等. 雅鲁藏布江河谷风沙地貌分类与发育问题[J]. 中国沙漠, 1997, 17(4): 342-350. |
[17] | 杨逸畴. 雅鲁藏布江河谷风沙地貌的初步观察[J]. 中国沙漠, 1984, 4(3): 16-19. |
[18] |
HUYAN Y Y, YAO W S, XIE X J, et al. Provenance, source weathering, and tectonics of the Yarlung Zangbo River overbank sediments in Tibetan Plateau, China, using major, trace, and rare earth elements[J]. Geological Journal, 2022, 57(1): 37-51.
DOI URL |
[19] |
LING Z Y, LI J S, JIN J H, et al. Geochemical characteristics and provenance of aeolian sediments in the Yarlung Tsangpo valley, southern Tibetan Plateau[J]. Environmental Earth Sciences, 2021, 80: 623.
DOI |
[20] |
DU S S, WU Y Q, TAN L H, et al. Geochemical characteristics of fine and coarse fractions of sediments in the Yarlung Zangbo River Basin (southern Tibet, China)[J]. Environmental Earth Sciences, 2018, 77: 337.
DOI |
[21] |
SUN J M, LI S H, MUHS D R, et al. Loess sedimentation in Tibet: provenance, processes, and link with Quaternary glaciations[J]. Quaternary Science Reviews, 2007, 26(17-18): 2265-2280.
DOI URL |
[22] | PÉWÉ T L, LIU T S, SLATT R M, et al. Origin and character of loess like silt in the southern Qinghai-Xizang (Tibet) Plateau, China[M]. US Geological Survey Professional Paper, 1995. |
[23] |
LING Z Y, YANG S L, WANG X, et al. Spatial-temporal differentiation of eolian sediments in the Yarlung Tsangpo catchment, Tibetan Plateau, and response to global climate change since the Last Glaciation[J]. Geomorphology, 2020, 357: 107104.
DOI URL |
[24] |
凌智永, 靳建辉, 吴铎, 等. MIS 3以来雅鲁藏布江流域风成沉积及环境意义[J]. 地理学报, 2019, 74(11): 2385-2400.
DOI |
[25] |
STAUCH G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau[J]. Earth-Science Reviews, 2015, 150: 393-408.
DOI URL |
[26] |
KAISER K, LAI Z, SCHNEIDER B, et al. Late Pleistocene genesis of the middle Yarlung Zhangbo Valley, southern Tibet (China), as deduced by sedimentological and luminescence data[J]. Quaternary Geochronology, 2010, 5: 200-204.
DOI URL |
[27] |
LAI Z P, KAISER K, BRUCKNER H. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history[J]. Quaternary Research, 2009, 72(3): 421-430.
DOI URL |
[28] |
KAISER K, LAI Z P, SCHNEIDER B. Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene aeolian sediments in the Lhasa area, southern Tibet (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4): 329-342.
DOI URL |
[29] |
GAO F Y, YANG J H, WANG S Y, et al. Variation of the winter mid-latitude Westerlies in the Northern Hemisphere during the Holocene revealed by aeolian deposits in the southern Tibetan Plateau[J]. Quaternary Research, 2022, 107: 104-112.
DOI URL |
[30] |
YANG J H, XIA D S, GAO F Y, et al. Holocene moisture evolution and its response to atmospheric circulation recorded by aeolian deposits in the southern Tibetan Plateau[J]. Quaternary Science Reviews, 2021, 270: 107169.
DOI URL |
[31] |
LI T Y, WU Y Q, DU S S, et al. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications[J]. Aeolian Research, 2016, 20: 169-175.
DOI URL |
[32] |
PAN M H, WU Y Q, ZHENG Y H, et al. Holocene aeolian activity in the Dinggye area (southern Tibet, China)[J]. Aeolian Research, 2014, 12: 19-27.
DOI URL |
[33] | LEHMKUHL F, KLINGE M, REES-JONES J, et al. Late Quaternary aeolian sedimentation in central and south-eastern Tibet[J]. Quaternary International, 2000, 68(1): 117-132. |
[34] |
KLINGE M, LEHMKUHL F. Holocene aeolian mantles and inter-bedded paleosols on the southern Tibetan Plateau[J]. Quaternary International, 2015, 372: 33-44.
DOI URL |
[35] |
TONG Y B, ZHANG Z Y, LI J F, et al. New insights into the collision process of India and Eurasia: evidence from the syntectonic-sedimentation-induced inclinational divergence of Cretaceous paleomagnetic data of the Lhasa Terrane[J]. Earth-Science Reviews, 2019, 190: 570-588.
DOI URL |
[36] | 祝嵩. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院, 2012. |
[37] | 吴珍汉, 吴中海, 胡道功, 等. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社, 2009. |
[38] |
ZHU L P, LÜ X M, WANG J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015, 5: 13318.
DOI PMID |
[39] | 中国科学院青藏高原综合科学考察队. 西藏植被[M]. 北京: 科学出版社, 1988. |
[40] | 中国科学院青藏高原综合科学考察队. 西藏土壤[M]. 北京: 科学出版社, 1985. |
[41] |
ZHANG Z C, ZHANG Y, MA P F, et al. Aeolian sediment transport rates in the middle reaches of the Yarlung Zangbo River, Tibet Plateau[J]. Science of the Total Environment, 2022, 826: 154238.
DOI URL |
[42] |
YANG J H, XIA D S, WANG S Y, et al. Near-surface wind environment in the Yarlung Zangbo River basin, southern Tibetan Plateau[J]. Journal of Arid Land, 2020, 12(6): 917-936.
DOI |
[43] | XU C, MA Y M, MA J H, et al. Spring dust mass flux over the Tibetan Plateau during 2007-19 and connections with North Atlantic SST variability[J]. Journal of Climate, 2020, 33: 22. |
[44] |
马鹏飞, 张正偲, 论珠群培, 等. 雅鲁藏布江曲水-泽当段风沙活动动力条件分析与风沙灾害防治建议[J]. 中国沙漠, 2021, 41(1): 10-18.
DOI |
[45] |
杨军怀, 夏敦胜, 高福元, 等. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
DOI |
[46] | 丁明军. 青藏高原及周边地区气温和降水格点数据 (1998—2017)[DB/OL]. (2022-2-18) [2022-2-01]. 国家青藏高原科学数据中心. https://doi.org/10.11888/Meteoro.tpdc.270239. |
[47] | 夏敦胜, 杨胜利, 杨军怀, 等. 雅鲁藏布江中上游地表粉尘空间特征与演化[M]. 北京: 科学出版社, 2023. |
[48] |
LIU Q S, DENG C L, TORRENT J, et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3/4): 368-385.
DOI URL |
[49] | EVANS M, HELLER F. Environmental magnetism: principles and applications of enviromagnetics[M]. Amsterdam: Academic Press, 2003. |
[50] |
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
DOI |
[51] |
FOLK R L, WARD W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
DOI URL |
[52] |
PATERSON G A, HESLOP D. New methods for unmixing sediment grain size data[J]. Geochemistry Geophysics Geosystems, 2015, 16(12): 4494-4506.
DOI URL |
[53] |
VANDENBERGHE J. Grain size of fine-grained windblown sediment: a powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121: 18-30.
DOI URL |
[54] |
SUN D H, BLOEMENDAL J, REA D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. Catena, 2004, 55(3): 325-340.
DOI URL |
[55] |
CHEN F H, CHEN J H, HUANG W, et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
DOI URL |
[56] | WANG B N, GONG J F, ZUZA A V, et al. Aeolian sand dunes alongside the Yarlung River in southern Tibet: a provenance perspective[J]. Geological Journal, 2021, 5(56): 2625-2636. |
[57] |
ZHENG Y H, WU Y Q, LI S, et al. Grain-size characteristics of sediments formed since 8600 yr BP in middle reaches of Yarlung Zangbo River in Tibet and their paleoenvironmental significance[J]. Chinese Geographical Science, 2009, 19(2): 113-119.
DOI URL |
[58] |
吴海峰, 鹿化煜, 张瀚之, 等. 雅鲁藏布江中游12 ka BP前后的黄土堆积及其气候意义[J]. 中国沙漠, 2016, 36(3): 616-622.
DOI |
[59] |
HU H P, FENG J L, CHEN F. Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: implications for terrace genesis and outburst flooding[J]. Quaternary Science Reviews, 2018, 192: 135-148.
DOI URL |
[60] | 路晶芳, 向树元, 江尚松, 等. 西藏日喀则末次冰期风成黄土粒度分析及其意义[J]. 干旱区资源与环境, 2008, 22(5): 80-85. |
[61] | 郑影华. 青藏高原典型区全新世风沙活动对气候变化的响应: 以藏南雅鲁藏布江中游宽谷区和青海共和盆地为例[D]. 北京: 北京师范大学, 2009. |
[62] |
LIU W M, LAI Z P, HU K H, et al. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau[J]. Geomorphology, 2015, 246: 370-376.
DOI URL |
[63] | 刘连友, 刘志民, 张甲珅, 等. 雅鲁藏布江江当宽谷地区沙源物质与现代沙漠化过程[J]. 中国沙漠, 1997, 17(4): 377-382. |
[64] |
LEHMKUHL F, NETT J J, PÖTTER S, et al. Loess landscapes of Europe-mapping, geomorphology, and zonal differentiation[J]. Earth-Science Reviews, 2021, 215: 103496.
DOI URL |
[65] | 田伟东, 杨军怀, 王树源, 等. 雅鲁藏布江河谷沙丘沉积物粒度特征及其环境指示[J]. 干旱区资源与环境, 2022, 36(1): 128-134. |
[66] | 凌智永. 雅鲁藏布江流域晚第四纪黄土沉积与环境演变[D]. 兰州: 兰州大学, 2022. |
[67] |
GAO F Y, YANG J H, XIA D S, et al. Linking moisture and near-surface wind with winter temperature to reveal the Holocene climate evolution in arid Xinjiang region of China[J]. Geoscience Frontiers, 2022, 13(6): 101433.
DOI URL |
[68] |
HAO Q Z, GUO Z T, QIAO Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29(23-24): 3317-3326.
DOI URL |
[69] |
昝金波, 宁文晓, 杨胜利, 等. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
DOI |
[70] | 杨逸畴, 高登义, 李渤生. 雅鲁藏布江下游河谷水汽通道初探[J]. 中国科学(B辑), 1987(8): 893-902. |
[71] |
王萍, 王慧颖, 胡钢, 等. 雅鲁藏布江流域古堰塞湖群的发育及其地质意义初探[J]. 地学前缘, 2021, 28(2): 35-45.
DOI |
[72] |
HOU J Z, D’ANDREA W J, WANG M D, et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene[J]. Quaternary Science Reviews, 2017, 163: 84-94.
DOI URL |
[73] |
SCHIEMANN R, LÜTHI D, SCHÄR C. Seasonality and interannual variability of the Westerly jet in the Tibetan Plateau region[J]. Journal of Climate, 2009, 22(11): 2940-2957.
DOI URL |
[74] |
KUMAR O, RAMANATHAN A L, BAKKE J, et al. Role of Indian Summer Monsoon and Westerlies on glacier variability in the Himalaya and East Africa during Late Quaternary: review and new data[J]. Earth-Science Reviews, 2021, 212: 103431.
DOI URL |
[75] | CUI A N, LU H Y, LIU X Q, et al. Tibetan Plateau precipitation modulated by the periodically coupled Westerlies and Asian monsoon[J]. Geophysical Research Letters, 2021, 48: e2020G-e91543G. |
[76] |
SUN Z, YUAN K, HOU X H, et al. Centennial-scale interplay between the Indian Summer Monsoon and the Westerlies revealed from Ngamring Co, southern Tibetan Plateau[J]. The Holocene, 2020, 30(8): 1163-1173.
DOI URL |
[77] |
TIAN L D, YAO T D, WHITE J W, et al. Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess[J]. Chinese Science Bulletin, 2005, 50(10): 1026-1030.
DOI URL |
[78] |
HU G, WANG P, LI D H, et al. Landscape change and its influence on human activities in Lhasa basin of central Tibetan Plateau since the last deglacial[J]. Quaternary International, 2020, 536: 1-12.
DOI URL |
[79] |
WANG M D, HOU J Z, DUAN Y W, et al. Internal feedbacks forced Middle Holocene cooling on the Qinghai-Tibetan Plateau[J]. Boreas, 2021, 50(4): 1116-1130.
DOI URL |
[80] |
LI X M, WANG M D, ZHANG Y Z, et al. Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co[J]. Quaternary Research, 2017, 87: 455-467.
DOI URL |
[81] |
CHEUNG M C, ZONG Y Q, ZHENG Z, et al. Holocene temperature and precipitation variability on the central Tibetan Plateau revealed by multiple palaeo-climatic proxy records from an alpine wetland sequence[J]. The Holocene, 2017, 27(11): 1669-1681.
DOI URL |
[82] | LIU Z Y, ZHU J, ROSENTHAL Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): E3501-E3505. |
[83] |
ZHANG C, ZHAO C, YU S Y, et al. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau[J]. Earth-Science Reviews, 2022, 226: 103927.
DOI URL |
[84] |
HOU J Z, LI C G, LEE S. The temperature record of the Holocene: progress and controversies[J]. Science Bulletin, 2019, 64(9): 565-566.
DOI PMID |
[85] | 王树源, 范义姣, 杨军怀, 等. 雅鲁藏布江中上游地区表土碳同位素变化及其影响因素初探[J]. 冰川冻土, 2022, 44(2): 1-10. |
[86] |
WANG S Y, XIA D S, FAN Y J, et al. Variation of surface soil δ13Corg in the upper and middle reaches of the Yarlung Zangbo river basin, southern Tibetan Plateau, and its climatic implications[J]. Sedimentary Geology, 2022, 434: 106135.
DOI URL |
[87] | HUANG R, ZHU H F, LIANG E Y, et al. High-elevation shrub-ring δ18O on the northern slope of the central Himalayas records summer (May-July) temperatures[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 542: 230-239. |
[1] | 刘池洋, 赵俊峰, 马艳萍, 王建强, 熊林芳, 陈建军, 毛光周, 张东东, 邓煜. 富烃凹陷特征及其形成研究现状与问题[J]. 地学前缘, 20140101, 21(1): 75-88. |
[2] | 梁文翔, 骆震, 陈伏龙, 王统霞, 安杰, 龙爱华, 何朝飞. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[3] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[4] | 孟庆修, 曹自成, 丁文龙, 杨德彬, 马海陇, 刁新东, 王明, 韩鹏远, 王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律[J]. 地学前缘, 2024, 31(5): 247-262. |
[5] | 李云涛, 丁文龙, 韩俊, 黄诚, 王来源, 孟庆修. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[6] | 巩磊, 秦欣楠, 高帅, 付晓飞, 宿晓岑, 王杰. 变质岩潜山多尺度裂缝发育特征及裂缝网络结构模式:以渤中Z变质岩潜山为例[J]. 地学前缘, 2024, 31(5): 332-343. |
[7] | 张七道, 李德宗, 李致伟, 王东晖, 于一帆, 朱星强, 蔡泉宇, 李明. 黔西北普底地区富锂黏土岩地球化学特征及成因[J]. 地学前缘, 2024, 31(4): 258-280. |
[8] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[9] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[10] | 付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380. |
[11] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[12] | 丁昌峰, 周志高, 王玉荣, 张桃林, 王兴祥. 基于生态安全的我国土壤镉环境基准研究[J]. 地学前缘, 2024, 31(2): 130-136. |
[13] | 张竞元, 王学东, 梁力川, 段桂兰. 我国典型土壤中Co对生物的毒害及其阈值推导[J]. 地学前缘, 2024, 31(2): 137-146. |
[14] | 王鹏寿, 许民, 韩海东, 李振中, 宋轩宇, 周卫永. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446. |
[15] | 蒿梦秋月, 刘大庆, 闫振飞, 冯承莲. 基于生态风险的土壤短链氯化石蜡环境基准研究[J]. 地学前缘, 2024, 31(2): 54-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||