地学前缘 ›› 2024, Vol. 31 ›› Issue (5): 263-287.DOI: 10.13745/j.esf.sf.2024.6.27
李云涛1,2(), 丁文龙1,2,*(
), 韩俊3, 黄诚3, 王来源3, 孟庆修3
收稿日期:
2023-11-15
修回日期:
2024-05-22
出版日期:
2024-09-25
发布日期:
2024-10-11
通信作者:
* 丁文龙(1965—),男,教授,博士生导师,石油地质学专业,长期从事“石油构造分析与控油气作用、非常规油气储层裂缝形成机制与定量表征及工程甜点评价”方面的教学与科研工作。E-mail: dingwenlong2006@126.com作者简介:
李云涛(1996—),男,博士研究生,主要从事走滑断裂发育特征与形成机制、储层裂缝识别与多参数分布预测等方面的研究工作。E-mail: liyuntao1230@126.com
基金资助:
LI Yuntao1,2(), DING Wenlong1,2,*(
), HAN Jun3, HUANG Cheng3, WANG Laiyuan3, MENG Qingxiu3
Received:
2023-11-15
Revised:
2024-05-22
Online:
2024-09-25
Published:
2024-10-11
摘要:
构造裂缝是碳酸盐岩的主要储集空间之一,能为致密灰岩提供油气运移的良好通道和储集空间。构造裂缝的发育受构造位置、岩性、地层厚度、温度、围压和构造破裂等多种因素的影响,其中区域构造应力场的局部构造应力导致的构造破裂是控制构造裂缝发育的主导因素。针对碳酸盐岩储层的特点与裂缝发育特征,采用在单井动态岩石力学参数标定下,基于三维地震数据体的岩石力学参数反演功能获取非均质岩石力学模型,以提升应力场模拟中模型力学参数的真实性和准确性;引入自适应边界条件约束方法,以自动获取模拟结果与实测结果误差最小时的最优边界条件,从而显著提升应力场模拟的精度与可靠性。并在此基础上,通过储层张破裂率、剪破裂率、综合破裂率、水平两向应力差、应力非均质系数和断裂面滑动趋势系数等参数,定量表征了SHB16号断裂带及邻区的储层裂缝发育特征与活动性。储层裂缝的发育特征与断裂的活动关系密切,故定性或定量研究了水平两向应力差、距断裂的距离和断裂的垂向活动强度等参数对储层裂缝发育特征的控制作用,用斯皮尔曼等级相关系数定量研究变量之间的相关性。在明确储层裂缝发育的控制因素的基础上,构建奥陶系碳酸盐岩储层规模储集体发育指标,将奥陶系碳酸盐岩储层划分为从最优至最差的I~IV类储集体,并明确了走滑断裂的变形方式和规模储集体发育程度的相关性,进一步建立了不同类型储集体中钻井奥陶系碳酸盐岩储集体发育的地质模式。该地质模式不仅提升了基于应力场模拟的裂缝发育特征及多参数分布定量预测的准确性和可靠性,而且对碳酸盐岩储层裂缝发育的控制因素的定性或定量研究、规模储集体发育指标的构建以及单井储集体发育的地质模式的建立、对碳酸盐岩储集体的勘探与开发进程的加快,具有重要的参考价值。
中图分类号:
李云涛, 丁文龙, 韩俊, 黄诚, 王来源, 孟庆修. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287.
LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors[J]. Earth Science Frontiers, 2024, 31(5): 263-287.
图1 塔里木盆地构造单元(a)、顺北地区及邻区走滑断裂系统(b)及地层格架(c)(b的位置见a;b据文献[4,5,11,26]补充修改;c据文献[4]补充修改)
Fig.1 (a) Tectonic units of the Tarim Basin, (b) strike-slip fault system in Shunbei and surrounding areas (modified after [4,5,11,26]); see a for location), and (c) stratigraphic framework (adapted from [4]).
图2 SHB16号断裂带在 T 7 4界面的展布特征和断裂带周缘的垂向主应力分布(a)以及与断裂带走向垂直的横剖面1~4的地层-断裂综合解释(b-e) 剖面1~4分别为b-e,位置见a,a的位置见图1b中绿色虚线框。
Fig.2 Characteristics of SHB16 fault zone development. (a) Fault zone distribution at T 7 4 interface and vertical stress distribution in the study area. (b-e) Stratigraphic-strctural interpretation of cross sections 1-4 perpendicular to the strike of the fault zone (locations see a).
图3 顺北地区X4井奥陶系灰色泥晶灰岩高角度裂缝发育特征(a-d,观察的深度分别为6 932、6 934.88、6 936.91和6 937.12 m)和X5奥陶系灰色泥晶灰岩中-低角度裂缝发育特征(e-h,观察的深度分别为6 460.58、6 462.14、6 463.26和6 464.72 m)
Fig.3 Characteristics of Ordovician carbonates in Shunbei. (a-d) High-angle fracture developments in Ordovician gray mud-crystal limestone of well X4, at depths of 6932 m, 6934.88 m, 6936.91 m, and 6937.12 m, respectively. (e-h) Medium-low angle fracture developments in Ordovician gray mud-crystal limestone of well X5, at depths of 6460.58 m, 6462.14 m, 6463.26 m, and 6464.72 m, respectively.
图4 X4井(a)、X6井(b)、X5井(c)和X7井(d)中奥陶统一间房组的动态岩石力学参数测井计算结果 钻井的位置见图2a。
Fig.4 Calculated dynamic rock mechanical parameters based on well logs in the Middle Ordovician Yijianfang Formation in wells X4 (a), X6 (b), X5 (c) and X7 (d). See Fig.2a for well locations.
图5 顺北地区加里东中期水平最大主应力方位的玫瑰图 (a)、X4井中奥陶统一间房组3个样本的声速各向异性分布(b)、从阵列声波测井获取的X6井的现今水平最大主应力方位的玫瑰图(c)、从井眼崩落获取的X5井的现今水平最大主应力方位的玫瑰图(d)、X2井奥陶系6 079.6~6 085.2 m成像测井(e)和钻井诱导缝走向的玫瑰图(f)及倾角的频率统计(g) 钻井的位置见图2a。
Fig.5 Characteristics of middle Galedonia and current stresses in Shunbei area.(a) Rose diagram of horizontal maximum principal stress azimuths in the middle Galedonian. (b) Sound velocity anisotropy of three samples from the Ordovician Yijianfang Formation of well X4. (c) Rose diagram of current horizontal maximum principal stress azimuths in well X6, obtained from array acoustic logging. (d) Rose diagram of current horizontal maximum principal stress azimuths in well X5, obtained from borehole collapse. (e) Imaging log of the Ordovician in well X2, with depths between 6079.6-6085.2 m. (f, g) Rose diagram of fracture orientation and histogram of dip angle of drilling induced fractures.
岩心编号 | 测试方位角/(°) | 直径/mm | 走时/μs | 波速/(m·s-1) | 磁偏角/(°) | 最小波速与标志线的夹角/(°) | 最大主应力方向 |
---|---|---|---|---|---|---|---|
No.1 | 150 | 65.52 | 11.89 | 5 512 | 141.5 | 185 | NE43.9° |
No.2 | 150 | 65.58 | 11.98 | 5 475 | 316.9 | 185 | NE58.1° |
No.3 | 105 | 64.78 | 11.81 | 5 486 | 289.3 | 145 | NE35.7° |
表1 X4井奥陶系碳酸盐岩岩心古地磁与声波各向异性测量结果
Table 1 Results of paleomagnetic and acoustic anisotropy experiments for Ordovician carbonate rock cores from well X4
岩心编号 | 测试方位角/(°) | 直径/mm | 走时/μs | 波速/(m·s-1) | 磁偏角/(°) | 最小波速与标志线的夹角/(°) | 最大主应力方向 |
---|---|---|---|---|---|---|---|
No.1 | 150 | 65.52 | 11.89 | 5 512 | 141.5 | 185 | NE43.9° |
No.2 | 150 | 65.58 | 11.98 | 5 475 | 316.9 | 185 | NE58.1° |
No.3 | 105 | 64.78 | 11.81 | 5 486 | 289.3 | 145 | NE35.7° |
图6 X4井中奥陶统一间房组的声发射测试样品(a)、声发射实验采样示意图(b)和基于声发射初始压力的古应力测量曲线(c-f)
Fig.6 Acoustic emission test. (a) Samples from the Middle Ordovician Yijianfang Formation in well well X4. (b) Acoustic emission sampling. (c-f) Paleostress measurement curves based on initial pressure.
样品编号 | 深度/m | 围压/MPa | 抗压强度/MPa | 泊松比 | 杨氏模量/GPa | 内聚力/MPa | 内摩擦角/(°) |
---|---|---|---|---|---|---|---|
1 | 7 470.15~7 470.21 | 65 | — | 0.21 | 39.88 | — | — |
2 | 7 470.15~7 470.21 | 75 | — | 0.26 | 42.93 | ||
3 | 7 470.15~7 470.21 | 85 | — | 0.22 | 37.13 | ||
4 | 7 560.23~7 560.38 | 65 | — | 0.23 | 34.7 | 38 | 26.3 |
5 | 7 560.23~7 560.38 | 75 | — | 0.22 | 36.5 | ||
6 | 7 560.23~7 560.38 | 85 | — | 0.22 | 36.6 | ||
7 | 7 652.00~7 653.73 | 0 | 70.16 | 0.204 | 36.83 | — | — |
8 | 7 652.00~7 653.73 | 0 | 75.74 | 0.226 | 43.43 | ||
9 | 7 656.46~7 656.57 | 30 | 279.06 | 0.242 | 44.65 | ||
10 | 7 656.46~7 656.57 | 30 | 274.83 | 0.273 | 46.24 | ||
11 | 7 656.46~7 656.57 | 30 | 249.73 | 0.235 | 42.63 | ||
12 | 7 656.38~7 656.46 | 0 | 72.14 | 0.252 | 37.68 | 17.6 | 41.6 |
13 | 7 656.38~7 656.46 | 60 | 310.22 | 0.338 | 60.89 | ||
14 | 7 656.38~7 656.46 | 30 | 267.40 | 0.314 | 56.86 |
表2 顺北地区奥陶系岩石力学参数表
Table 2 Mechanical parameters for Ordovician rocks in Shunbei
样品编号 | 深度/m | 围压/MPa | 抗压强度/MPa | 泊松比 | 杨氏模量/GPa | 内聚力/MPa | 内摩擦角/(°) |
---|---|---|---|---|---|---|---|
1 | 7 470.15~7 470.21 | 65 | — | 0.21 | 39.88 | — | — |
2 | 7 470.15~7 470.21 | 75 | — | 0.26 | 42.93 | ||
3 | 7 470.15~7 470.21 | 85 | — | 0.22 | 37.13 | ||
4 | 7 560.23~7 560.38 | 65 | — | 0.23 | 34.7 | 38 | 26.3 |
5 | 7 560.23~7 560.38 | 75 | — | 0.22 | 36.5 | ||
6 | 7 560.23~7 560.38 | 85 | — | 0.22 | 36.6 | ||
7 | 7 652.00~7 653.73 | 0 | 70.16 | 0.204 | 36.83 | — | — |
8 | 7 652.00~7 653.73 | 0 | 75.74 | 0.226 | 43.43 | ||
9 | 7 656.46~7 656.57 | 30 | 279.06 | 0.242 | 44.65 | ||
10 | 7 656.46~7 656.57 | 30 | 274.83 | 0.273 | 46.24 | ||
11 | 7 656.46~7 656.57 | 30 | 249.73 | 0.235 | 42.63 | ||
12 | 7 656.38~7 656.46 | 0 | 72.14 | 0.252 | 37.68 | 17.6 | 41.6 |
13 | 7 656.38~7 656.46 | 60 | 310.22 | 0.338 | 60.89 | ||
14 | 7 656.38~7 656.46 | 30 | 267.40 | 0.314 | 56.86 |
图7 SHB16号断裂带及邻区 T 7 4界面现今静态杨氏模量(a)与静态泊松比(b) 位置见图1b中绿色虚线框。
Fig.7 Current static Young’s modulus (a) and static Poisson's ratio (b) at the T 7 4 interface in the study area.
图8 SHB16号断裂带及邻区中奥陶统一间房组加里东中期应力场模拟的地质力学模型(a)与数学模型(b)以及现今应力场模拟的地质力学模型(c)与数学模型(d)
Fig.8 Geomechanical and mathematical models for the simulation of stress field in Middle Ordovician Yijianfang Formation in the study area. (a, b) Middle Galedonian stress field. (c, d) Current stress field.
图9 基于自适应边界条件约束方法确定应力场模拟边界条件的工作流程
Fig.9 Workflow for determining boundary conditions for stress field simulation based on self-adaptive boundary condition constraint methods
图10 为现今应力场模拟的数学模型施加不同应力载荷时在X4井处获取的水平最大主应力模拟值(a)和水平最大主应力模拟值与实测值的误差(b)
Fig.10 Current stress field simulation using the mathematical model. (a) Simulated values of horizontal maximum principal stress obtained at well X4 under different stress loads. (b) Discrepancy between the simulated and measured values.
图11 SHB16断裂带及邻区中奥陶统一间房组加里东中期水平最大主应力分布(a)、水平最小主应力分布(b)、水平两向应力差分布(c)、应力非均质系数分布(d)和水平最大主应力方位角分布(e) 位置见图1b中绿色虚线框。
Fig.11 Charateristics of middle Galedonian stress field in the Middle Ordovician Yijianfang Formationin the study area. (a) Distribution of horizontal maximum principal stress. (b) Horizontal minimum principal stress. (c) Horizontal stress difference. (d) Stress difference coefficient. (e) Azimuthal distribution of horizontal maximum principal stress
图12 SHB16断裂带及邻区中奥陶统一间房组现今水平最大主应力分布(a)、水平最小主应力分布(b)、水平两向应力差分布(c)、应力非均质系数分布(d)和水平最大主应力方位角分布(e) 位置见图1b中绿色虚线框。
Fig.12 Charateristics of current stress field in the study area
图13 SHB16号断裂带及邻区中奥陶统一间房组归一化后的张破裂率(a)、剪破裂率(b)和综合破裂率(c),位置见图1b中绿色虚线框
Fig.13 Rupture rates in the study area after normalization. (a) Tensive rupture rate. (b) Shear rupture rate. (c) Comprehensive rupture rate.
图14 SHB16断裂带中不同规模和走向的断裂的编号(a)和断裂的滑动趋势系数(b-j) a的位置见图1b中绿色虚线框。
Fig.14 Faults numbering (a) and sliding trend coefficients (b-j) for faults of different scales and orientations in the SHB16 fault zone
图15 SHB16号断裂带根据应力性质的分段(a)及不同段内归一化的综合破裂率(b) a的位置见图1b中绿色虚线框。
Fig.15 Segmentation of the SHB16 fault zone according to stress type (a) and comprehensive rupture rate normalized within different segments (b)
图16 走滑断裂带垂向变形幅度和变形带宽度的计算方法示意图(a和b分别代表正构造起伏和负构造起伏)、用来读取SHB16号断裂带中不同位置的主干断裂垂向活动强度的剖面位置(c)及主干断裂垂向活动强度沿断裂带走向的分布(d)(a和b据文献[10]补充修改) c的位置见图1b中绿色虚线框。
Fig.16 Method to calculate the vertical deformation amplitude and width of deformation zones in a strike-slip fault zone. (a, b) Representation of positive and negative structural reliefs. (c) Sections used to obtain fault activity intensity in the vertical direction in the principal displacement zone. (c) Distribution of fault activity intensities along the strike of the fault zone. A and b modified after [10].
图17 SHB16号断裂带及邻区中奥陶统一间房组现今归一化后的综合破裂率与距主干断裂的距离的关系(a)和与水平两向应力差的关系(b)
Fig.17 Normalized current comprehensive rupture rate in the study area. (a) As a function of distance from the main fault. (b) As a function of horizontal stress difference.
图18 SHB16号断裂带及邻区中奥陶统一间房组现今规模储集体发育指数(a)及X4井与X5井的中奥陶统一间房组储集体发育的地质模式(b) Є—寒武系;O1—下奥陶统;O1-2y—中下奥陶统鹰山组;O2yj—中奥陶统一间房组;O3—上奥陶统;S-C1—志留系至下石炭统。 a的位置见图1b中绿色虚线框。
Fig.18 Current reservoir development in the study area. (a) Rreservior development indexes for sizable reservoirs. (b) Geologic pattern of reservoir development in the Middle Ordovician Yijianfang Formation in wells X4 and X5. Є—Cambrian; O1—Lower Ordovician; O1-2y—Middle and Lower Ordovician Yingshan Formation; O2yj—Middle Ordovician Yijianfang Formation; O3—Upper Ordovician; S-C1—Silurian to Lower Carboniferous
储集体发育级别 | I级 | II级 | III级 | IV级 |
储集体发育指数 | >3.8 | >3.4~3.8 | 2.5~3.4 | <2.5 |
表3 SHB16号断裂带及邻区奥陶系碳酸盐岩规模储集体分级标准
Table 3 Grading criteria for sizable Ordovician carbonates reservoirs in the study area
储集体发育级别 | I级 | II级 | III级 | IV级 |
储集体发育指数 | >3.8 | >3.4~3.8 | 2.5~3.4 | <2.5 |
分段 | I类储集体 占比 | II类储集体 占比 | III类储集体 占比 | 储集体综合 评价级别 |
---|---|---|---|---|
①张扭段 | 0% | 12% | 88% | 差 |
②压扭段 | 12% | 58% | 30% | 中 |
③张扭段 | 20% | 60% | 20% | 中 |
④压扭段 | 20% | 60% | 20% | 中 |
⑤张扭段 | 50% | 10% | 40% | 优 |
⑥压扭段 | 0% | 80% | 20% | 差 |
平移段 | 20% | 30% | 50% | 差 |
表4 SHB16号断裂带不同段内储集体级别综合评价表
Table 4 Comprehensive evaluation of reservoir quality levels within different segments of the SHB16 fault zone
分段 | I类储集体 占比 | II类储集体 占比 | III类储集体 占比 | 储集体综合 评价级别 |
---|---|---|---|---|
①张扭段 | 0% | 12% | 88% | 差 |
②压扭段 | 12% | 58% | 30% | 中 |
③张扭段 | 20% | 60% | 20% | 中 |
④压扭段 | 20% | 60% | 20% | 中 |
⑤张扭段 | 50% | 10% | 40% | 优 |
⑥压扭段 | 0% | 80% | 20% | 差 |
平移段 | 20% | 30% | 50% | 差 |
变形方式 | 综合评价为 优的数量 | 综合评价为 中等的数量 | 综合评价为 差的数量 |
---|---|---|---|
张扭变形 | 1 | 1 | 1 |
压扭变形 | 0 | 2 | 1 |
简单剪切变形 | 0 | 0 | 1 |
表5 SHB16号断裂带不同变形方式对应的储集体级别综合评价表
Table 5 Comprehensive evaluation of reservoir levels corresponding to different deformation patterns in the SHB16 fault zone
变形方式 | 综合评价为 优的数量 | 综合评价为 中等的数量 | 综合评价为 差的数量 |
---|---|---|---|
张扭变形 | 1 | 1 | 1 |
压扭变形 | 0 | 2 | 1 |
简单剪切变形 | 0 | 0 | 1 |
[1] | 张鹏, 侯贵廷, 潘文庆, 等. 新疆柯坪地区碳酸盐岩对构造裂缝发育的影响[J]. 北京大学学报(自然科学版), 2011, 47(5): 831-836. |
[2] | DING W L, FAN T L, YU B S, et al. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 62-70. |
[3] | 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. |
[4] | DENG S, LI H L, ZHANG Z P, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
[5] | HAN X Y, DENG S, TANG L J, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: a study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427. |
[6] |
郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238.
DOI |
[7] |
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787.
DOI |
[8] |
段金宝, 潘磊, 石司宇, 等. 川东涪陵地区15号走滑断裂带几何学、 运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68.
DOI |
[9] |
曾韬, 凡睿, 夏文谦, 等. 四川盆地东部走滑断裂识别与特征分析及形成演化: 以涪陵地区为例[J]. 地学前缘, 2023, 30(3): 366-385.
DOI |
[10] | LI Y T, DING W L, ZENG T, et al. Structural geometry and kinematics of a strike-slip fault zone in an intracontinental thrust system: a case study of the No. 15 fault zone in the Fuling Area, eastern Sichuan Basin, Southwest China[J]. Journal of Asian Earth Sciences, 2023, 242: 105512. |
[11] | 张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-963, 1055. |
[12] | 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138. |
[13] | LIU J S, DING W L, GU Y, et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology, 2018, 246: 222-232. |
[14] | 朱圣举, 赵向原, 张皎生, 等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版), 2016, 46(4): 573-578. |
[15] | 戴俊生, 刘敬寿, 杨海盟, 等. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 1-9. |
[16] | 周新桂, 张林炎, 黄臣军. 华庆探区长63储层破裂压力及裂缝开启压力估测与开发建议[J]. 中南大学学报(自然科学版), 2013, 44(7): 2812-2818. |
[17] | 刘敬寿. 铜城断裂带天33断块阜二段储层裂缝定量描述[D]. 东营: 中国石油大学(华东), 2016. |
[18] |
邬光辉, 李建军, 卢玉红. 塔中Ⅰ号断裂带奥陶系灰岩裂缝特征探讨[J]. 石油学报, 1999, 20(4): 19-23.
DOI |
[19] | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
[20] | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
[21] |
HAN L J. Characteristics of Ordovician limestone fractures in the northern Tarim Basin and their controlling effects on karst reservoirs[J]. Acta Petrolei Sinica, 2010, 31(6): 933-940.
DOI |
[22] | BARBIER M, HAMON Y, CALLOT J P, et al. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: the Madison Formation (Sheep Mountain, Wyoming, USA)[J]. Marine and Petroleum Geology, 2012, 29(1): 50-67. |
[23] |
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
DOI |
[24] | LIU J S, DING W L, YANG H M, et al. Quantitative multiparameter prediction of fractured tight sandstone reservoirs: a case study of the Yanchang Formation of the Ordos Basin, central China[J]. SPE Journal, 2021, 26(5): 3342-3373. |
[25] | LIU H, ZUO Y J, RODRIGUEZ-DONO A, et al. Study on multi-period palaeotectonic stress fields simulation and fractures distribution prediction in Lannigou gold mine, Guizhou[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 92. |
[26] | YUAN J Y, NENG X C, ZHU J W, et al. Features and effects of basement faults on deposition in the Tarim Basin[J]. Earth Science Reviews the International Geological Journal Bridging the Gap Between Research Articles and Textbooks, 2015, 145: 43-55. |
[27] | LI Z, QIU N S, CHANG J, et al. Precambrian evolution of the Tarim Block and its tectonic affinity to other major continental blocks in China: new clues from U-Pb geochronology and Lu-Hf isotopes of detrital zircons[J]. Precambrian Research, 2015, 270: 1-21. |
[28] | XU Z Q, HE B Z, ZHANG C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162. |
[29] | SUN Q Q, FAN T L, GAO Z Q, et al. New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin, China[J]. Journal of Structural Geology, 2021, 150: 104400. |
[30] | TENG C Y, CAI Z X, HAO F, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: a case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159. |
[31] | 李本亮, 管树巍, 李传新, 等. 塔里木盆地塔中低凸起古构造演化与变形特征[J]. 地质论评, 2009, 55(4): 521-530. |
[32] | GAO J, LONG L L, KLEMD R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238. |
[33] | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、 形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
[34] |
邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520.
DOI |
[35] | LI C X, WANG X F, LI B L, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58. |
[36] | YU J B. Using cylindrical surface-based curvature change rate to detect faults and fractures[J]. Geophysics, 2014, 79(5): O1-O9. |
[37] | 张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663. |
[38] | 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934. |
[39] | LI Y J, ZHANG Q, ZHANG G Y, et al. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): effects of the collisions on the southern margin of the Eurasian Plate[J]. Journal of Asian Earth Sciences, 2016, 132: 40-57. |
[40] | SOBEL E R, DUMITRU T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5043-5063. |
[41] | WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128. |
[42] | ZOBACK M D, PESKA P. In-situ stress and rock strength in the GBRN/DOE pathfinder well, South Eugene Island, Gulf of Mexico[J]. Journal of Petroleum Technology, 1995, 47(7): 582-585. |
[43] |
陆诗阔, 王迪, 李玉坤, 等. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850.
DOI |
[44] | 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. |
[45] | 李培军, 陈红汉, 唐大卿, 等. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J]. 地球科学, 2017, 42(1): 93-104. |
[46] | LIU J S, ZHANG G J, BAI J P, et al. Quantitative prediction of the drilling azimuth of horizontal wells in fractured tight sandstone based on reservoir geomechanics in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2022, 136: 105439. |
[47] | LIU J S, DING W L, WANG R Y, et al. Methodology for quantitative prediction of fracture sealing with a case study of the Lower Cambrian Niutitang Formation in the Cen’gong Block in South China[J]. Journal of Petroleum Science and Engineering, 2018, 160: 565-581. |
[48] | RAJABI M, TINGAY M, KING R, et al. Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations[J]. Basin Research, 2017, 29: 622-640. |
[49] | YAGHOUBI A A, ZEINALI M. Determination of magnitude and orientation of the in situ stress from borehole breakout and effect of pore pressure on borehole stability: case study in Cheshmeh Khush oil field of Iran[J]. Journal of Petroleum Science and Engineering, 2009, 67(3/4): 116-126. |
[50] | TINGAY M R P, MORLEY C K, HILLIS R R, et al. Present-day stress orientation in Thailand’s basins[J]. Journal of Structural Geology, 2010, 32(2): 235-248. |
[51] | JIU K, DING W L, HUANG W H, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, East China[J]. Journal of Petroleum Science and Engineering, 2013, 110: 119-131. |
[52] | LIU J S, DING W L, WANG R Y, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: a case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong Block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310. |
[53] | HOLCOMB D J. Using acoustic emissions to determine in situ stress: problems and promise[J]. Geomechanics, 1983, 57: 11-21. |
[54] | ISHIDA T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15(5/6): 283-295. |
[55] | ZHOU J, JIN Y, CHEN M. Experimental investigation of hydraulic fracturing in random naturally fractured blocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1193-1199. |
[56] | WEN Q Z, WANG S T, DUAN X F, et al. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 70-80. |
[57] | DAHI TALEGHANI A, GONZALEZ M, SHOJAEI A. Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations[J]. Computers and Geotechnics, 2016, 71: 361-368. |
[58] | FATAHI H, HOSSAIN M M, SARMADIVALEH M. Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 409-424. |
[59] | LIU J S, DING W L, YANG H M, et al. 3D geomechanical modeling and numerical simulation of in situ stress fields in shale reservoirs: a case study of the lower Cambrian Niutitang Formation in the Cen’gong Block, South China[J]. Tectonophysics, 2017, 712: 663-683. |
[60] | GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198. |
[61] | HANDIN J. On the Coulomb-Mohr failure criterion[J]. Journal of Geophysical Research, 1969, 74(22): 5343-5348. |
[62] | PEARSON E S, SNOW B A S. Tests for rank correlation coefficients[J]. Biometrika, 1962, 49(1/2): 185-191. |
[63] | PIANTADOSI J, HOWLETT P, BOLAND J. Matching the grade correlation coefficient using a copula with maximum disorder[J]. Journal of Industrial and Management Optimization, 2007, 3(2): 305-312. |
[64] | MARITZ J S. Distribution-free statistical methods[M]. London: Chapman and Hall, 1981. |
[65] | MYERS J L, WELL A D, LORCH R F. Research design and statistical analysis[M]. New York: Routledge, 2013. |
[1] | 朱秀香, 曹自成, 隆辉, 曾溅辉, 黄诚, 陈绪云. 塔里木盆地顺北地区走滑断裂带压扭段和张扭段油气成藏实验模拟及成藏特征研究[J]. 地学前缘, 2023, 30(6): 289-304. |
[2] | 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262. |
[3] | 丁文龙, 曾维特, 王濡岳, 久凯, 王哲, 孙雅雄, 王兴华. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||