地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 450-461.DOI: 10.13745/j.esf.sf.2024.5.30

• 非主题来稿选登 • 上一篇    下一篇

基于CMIP6多模式集合的内陆河径流模拟及预估

梁文翔1,2(), 骆震3, 陈伏龙1,2,*(), 王统霞1,2, 安杰1,2, 龙爱华1,4, 何朝飞1,2   

  1. 1.石河子大学 水利建筑工程学院, 新疆 石河子 832000
    2.寒旱区生态水利工程兵团重点实验室, 新疆 石河子 832000
    3.新疆兵团勘测设计院集团股份有限公司, 陕西 西安 710000
    4.中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038
  • 收稿日期:2023-12-22 修回日期:2024-04-02 出版日期:2024-11-25 发布日期:2024-11-25
  • 通信作者: 陈伏龙
  • 作者简介:梁文翔(2000—),男,硕士研究生,主要从事水文学及水资源问题研究。E-mail: 2350059350@qq.com
  • 基金资助:
    国家自然科学基金项目(52169005);新疆兵团科技创新人才计划项目(2023CB008-08);南疆重点产业创新发展支撑计划项目(2022DB024);2023年新疆维吾尔自治区研究生创新计划项目

Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble

LIANG Wenxiang1,2(), LUO Zhen3, CHEN Fulong1,2,*(), WANG Tongxia1,2, AN Jie1,2, LONG Aihua1,4, HE Chaofei1,2   

  1. 1. School of Hydraulic Engineering, Shihezi University, Shihezi 832000, China
    2. Key Laboratory of Ecological Hydraulic Engineering Corps in Cold and Arid Areas, Shihezi 832000, China
    3. Xinjiang Corps Survey and Design Institute Group Co., Ltd., Xi’an 710000, China
    4. State Key Laboratory of Basin Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2023-12-22 Revised:2024-04-02 Online:2024-11-25 Published:2024-11-25
  • Contact: CHEN Fulong

摘要:

随着全球气候变化和人类活动的影响,以冰川融雪为主要补给来源的内陆河径流序列发生了明显变化,预测未来气候变化下内陆河流域径流变化对区域水灾害防治和水资源合理利用具有重大意义。构建分解—模拟—优化—重构模型与多模式集合平均(MME)的8种GCMs数据耦合,预测分析玛纳斯河流域2024—2030年在不同气候情景下的径流响应特征。结果表明:Model.VLE模型在径流模拟阶段R2>0.86且TPE<0.28,其模拟误差最小、稳定性最优;历史时期GCMs数据经过空间降尺度、偏差矫正和Model.VLE模型耦合的径流模拟效果最优,能够为径流预测提供可靠结果;玛纳斯河流域未来(2024—2030年)径流来水偏丰较历史时期(2000—2014年)有显著增加趋势,未来年径流变化与未来气温和降水相关,3种气候情景下未来(2024—2030年)径流无显著差异。

关键词: 径流预测, CMIP6模式, 气候变化, 内陆河, 偏差校正

Abstract:

The runoff series of inland rivers with glacier melt as the main supply source has changed significantly with the influence of global climate change and human activities. Predicting the runoff change of inland river basins under future climate change is of great significance for regional water disaster prevention and rational utilization of water resources. A decomposing, simulation-optimization-reconstruction model was constructed and coupled with eight kinds of GCMs data from the multi-model ensemble Average (MME) to predict and analyze the runoff response characteristics in the Manas River Basin under different climate scenarios from 2024 to 2030. The results show that R2>0.86 and TPE<0.28 in the runoff simulation stage of the Model.VLE Model has the smallest simulation error and the best stability. The runoff simulation effect of GCMs data through spatial downscaling, deviation correction, and Model.VLE Model coupling is the best in the historical period, which can provide reliable results for runoff prediction. Compared with the historical period (2000—2014), the runoff water abundance in the Manas River Basin in the future (2024—2030) has a significant increase trend, and the future annual runoff change is related to the future temperature and precipitation, and there is no significant difference in the future runoff under the three climate scenarios (2024—2030).

Key words: runoff forecast, CMIP6 mode, climate change, Inland river, deviation correction

中图分类号: