地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 300-309.DOI: 10.13745/j.esf.sf.2021.9.54
收稿日期:
2021-06-22
修回日期:
2021-07-07
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
刘晓东
作者简介:
孙 辉(1985—),男,助理研究员,主要从事气候和环境变化数值模拟研究工作。E-mail: sunhui@ieecas.cn
基金资助:
SUN Hui1,2(), LIU Xiaodong1,3,*(
)
Received:
2021-06-22
Revised:
2021-07-07
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Xiaodong
摘要:
青藏高原隆升作为新生代的重大地质事件对亚洲乃至全球气候环境变化产生了深远的影响,因而高原隆升的气候环境效应一直是备受关注的重要科学问题。在过去近半个世纪中,国内外学者利用气候数值模式开展了大量高原地形气候效应的数值模拟研究,这些研究结果极大地提升了对地形抬升影响气候的物理机制以及高原隆升对古气候演化驱动作用的认识。本文简要回顾了过去有关青藏高原隆升气候效应数值模拟研究的进展,并按照高原隆升模拟研究发展的3个阶段总结了目前取得的主要研究成果。从数值模拟结果看,新生代以来青藏高原在隆升、生长和北移过程中其动力和热力作用对东亚季风的形成、南亚季风的演化、内陆干旱化的发展以及亚洲季风-干旱环境格局的变迁都具有深远的影响。青藏高原及其周边不同区域地形隆升的气候效应不同,青藏高原隆升的气候效应与大陆漂移背景下海陆分布和古地理格局的变化密切相关。南亚热带季风的建立是由大陆漂移的位置和热带辐合带季节性移动共同决定的,而东亚季风的建立则主要取决于青藏高原的隆升和北移。亚洲副热带干旱区的存在取决于大陆的位置和行星尺度副热带高压的控制,而亚洲内陆中纬度干旱区的形成则是青藏高原隆升的结果。本文最后简要梳理了高原隆升气候效应数值模拟研究目前存在的问题和未来可能的改进。
中图分类号:
孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309.
SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances[J]. Earth Science Frontiers, 2022, 29(5): 300-309.
图1 青藏高原及周边部分区域隆升试验中地形变化区域及其气候效应(引自文献[13⇓⇓-16,18,35⇓⇓⇓⇓⇓⇓⇓-43])
Fig.1 Distribution of modified mountains in different uplift experiments and their effects on climate. Adapted from [13⇓⇓-16,18,35⇓⇓⇓⇓⇓⇓⇓-43].
图2 新生代亚洲季风区(绿色)和干旱区(黄色)分布的演化(据文献[20]修改) 图中5个地质时期(60,40,25,10,0 Ma)季风区和干旱区范围由古气候模拟结果确定。白色和蓝色区分别表示陆地和海洋;灰色廓线表示1 500 m地形等高线。
Fig.2 Evolution of Cenozoic Asian monsoon (green) and arid (yellow) regions. Modified after [20].
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[2] | RUDDIMAN W F. Tectonic uplift and climate change[M]. Boston: Springer US, 1997. |
[3] | 刘晓东, DONG B W. 青藏高原隆升对亚洲季风-干旱环境演化的影响[J]. 科学通报, 2013, 58(28/29): 2906-2919. |
[4] |
KASAHARA A, SASAMORI T, WASHINGTON W M. Simulation experiments with a 12-layer stratospheric global circulation model. I. Dynamical effect of the Earth's orography and thermal influence of continentality[J]. Journal of the Atmospheric Sciences, 1973, 30(7): 1229-1251.
DOI URL |
[5] |
MANABE S, TERPSTRA T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of the Atmospheric Sciences, 1974, 31(1): 3-42.
DOI URL |
[6] |
HAHN D G, MANABE S. The role of mountains in the South Asian monsoon circulation[J]. Journal of the Atmospheric Sciences, 1975, 32(8): 1515-1541.
DOI URL |
[7] |
KUTZBACH J E, GUETTER P J, RUDDIMAN W F, et al. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: numerical experiments[J]. Journal of Geophysical Research Atmospheres, 1989, 94(D15): 18393.
DOI URL |
[8] |
RUDDIMAN W F, KUTZBACH J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West[J]. Journal of Geophysical Research Atmospheres, 1989, 94(D15): 18409.
DOI URL |
[9] |
KUTZBACH J E, PRELL W L, RUDDIMAN W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. The Journal of Geology, 1993, 101(2): 177-190.
DOI URL |
[10] | 钱永甫, 颜宏, 王谦谦, 等. 行星大气中地形效应的数值研究[M]. 北京: 科学出版社, 1988: 1-217. |
[11] | 刘晓东, 李力, 安芷生. 青藏高原隆升与欧亚内陆及北非的干旱化[J]. 第四纪研究, 2001, 21(2): 114-122. |
[12] |
LIU X D, YIN Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 223-245.
DOI URL |
[13] | 张冉, 姜大膀, 刘晓东, 等. 喜马拉雅-青藏高原不同子区域隆升对亚洲夏季气候演变影响的数值模拟[J]. 科学通报, 2012, 57(25): 2403-2412. |
[14] |
TANG H, MICHEELS A, ERONEN J T, et al. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments[J]. Climate Dynamics, 2013, 40(5/6): 1531-1549.
DOI URL |
[15] |
SHI Z G, SHA Y Y, LIU X D. Effect of Yunnan-Guizhou topography at the southeastern Tibetan Plateau on the Indian monsoon[J]. Journal of Climate, 2017, 30(4): 1259-1272.
DOI URL |
[16] |
SUN H, LIU X D. Impacts of the uplift of four mountain ranges on the arid climate and dust cycle of inland Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 167-179.
DOI URL |
[17] |
SHA Y Y, REN X, SHI Z G, et al. Influence of the Tibetan Plateau and its northern margins on the mid-latitude westerly jet over central Asia in summer[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109611.
DOI URL |
[18] |
LIU X D, SUN H, MIAO Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14.
DOI URL |
[19] |
LIU X D, DONG B D, YIN Z Y, et al. Continental drift and plateau uplift control origination and evolution of Asian and Australian monsoons[J]. Scientific Reports, 2017, 7: 40344.
DOI URL |
[20] | 刘晓东, DONG B W, YIN Z Y, et al. 大陆漂移、高原隆升与新生代亚-非-澳洲季风区和干旱区演化[J]. 中国科学:地球科学, 2019, 49(7): 1059-1081. |
[21] |
CHARNEY J G, ELIASSEN A. A numerical method for predicting the perturbations of the middle latitude westerlies[J]. Tellus, 1949, 1(2): 38-54.
DOI URL |
[22] |
BOLIN B. On the influence of the Earth's orography on the general character of the westerlies[J]. Tellus, 1950, 2(3): 184-195.
DOI URL |
[23] |
SUTCLIFFE R C. The quasi-geostrophic advective wave in a baroclinic zonal current[J]. Quarterly Journal of the Royal Meteorological Society, 1951, 77(332): 226-234.
DOI URL |
[24] |
MANABE S, BROCCOLI A J. Mountains and arid climates of middle latitudes[J]. Science, 1990, 247(4939): 192-195.
DOI URL |
[25] |
BROCCOLI A J, MANABE S. The effects of orography on midlatitude northern hemisphere dry climates[J]. Journal of Climate, 1992, 5(11): 1181-1201.
DOI URL |
[26] | 钟大赉, 丁林. 东喜马拉雅构造结变形与运动学研究取得重要进展[J]. 中国科学基金, 1996, 10(1): 52-53. |
[27] |
LIU X D, GUO Q C, GUO Z T, et al. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift?[J]. National Science Review, 2015, 2(4): 403-416.
DOI URL |
[28] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
DOI URL |
[29] | 刘晓惠, 许强, 丁林. 差异抬升: 青藏高原新生代古高度变化历史[J]. 中国科学: 地球科学, 2017, 47(1): 40-56. |
[30] | 方小敏. 青藏高原隆升阶段性[J]. 科技导报, 2017, 35(6): 42-50. |
[31] | SPICER R A, SU T, VALDES P J, et al. Why ‘The uplift of the Tibetan Plateau' is a myth[J]. National Science Review, 2021, 8(1): nwaa091. |
[32] |
WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43.
DOI URL |
[33] |
MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 77-102.
DOI URL |
[34] |
LI J J, FANG X M, SONG C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
DOI URL |
[35] |
BOOS W R, KUANG Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 2010, 463: 218-222.
DOI URL |
[36] |
WU G, LIU Y, HE B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, 2: 404.
DOI URL |
[37] |
CHEN G S, LIU Z, KUTZBACH J E. Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon[J]. Climate of the Past, 2014, 10(3): 1269-1275.
DOI URL |
[38] |
YU E T, ZHANG R, JIANG D B, et al. High-resolution simulation of Asian monsoon response to regional uplift of the Tibetan Plateau with regional climate model nested with global climate model[J]. Global and Planetary Change, 2018, 169: 34-47.
DOI URL |
[39] |
SUN H, LIU X D. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J]. Climate Dynamics, 2021, 56(7/8): 2339-2358.
DOI URL |
[40] | 张冉, 刘晓东. 上新世以来构造隆升对亚洲夏季风气候变化的影响[J]. 地球物理学报, 2010, 53(12): 2817-2828. |
[41] |
SHA Y Y, SHI Z G, LIU X D, et al. Role of the Tian Shan mountains and Pamir plateau in increasing spatiotemporal differentiation of precipitation over interior Asia[J]. Journal of Climate, 2018, 31(19): 8141-8162.
DOI URL |
[42] |
BALDWIN J, VECCHI G. Influence of the Tian Shan on arid extratropical Asia[J]. Journal of Climate, 2016, 29(16): 5741-5762.
DOI URL |
[43] |
SHA Y Y, SHI Z G, LIU X D, et al. Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon[J]. Journal of Geophysical Research Atmospheres, 2015, 120(10): 4764-4782.
DOI URL |
[44] |
BOOS W R, KUANG Z. Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J]. Scientific Reports, 2013, 3: 1192.
DOI URL |
[45] | LI S F, VALDES P J, FARNSWORTH A, et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia[J]. Science Advances, 2021, 7(5): eabc774. |
[46] |
SHI Z G, LIU X D, AN Z S, et al. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change[J]. Climate Dynamics, 2011, 37(11/12): 2289-2301.
DOI URL |
[47] |
SHI Z G, LIU X D, LIU Y M, et al. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean[J]. Climate Dynamics, 2015, 44(11/12): 3067-3076.
DOI URL |
[48] | MOLNAR P, STOCK J M. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3): TC3001. |
[49] |
SCOTESE C R. A continental drift flipbook[J]. The Journal of Geology, 2004, 112(6): 729-741.
DOI URL |
[50] |
ZHANG Z, FLATØY F, WANG H J, et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 24-35.
DOI URL |
[51] |
ROE G H, DING Q H, BATTISTI D S, et al. A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma[J]. Journal of Geophysical Research Atmospheres, 2016, 121(10): 5453-5470.
DOI URL |
[52] |
LI X Y, ZHANG R, ZHANG Z S, et al. What enhanced the aridity in Eocene Asian inland: global cooling or early Tibetan Plateau uplift?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 6-14.
DOI URL |
[53] |
HUBER M, GOLDNER A. Eocene monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 3-23.
DOI URL |
[54] |
LICHT A, VAN CAPPELLE M, ABELS H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513: 501-506.
DOI URL |
[55] |
TARDIF D, FLUTEAU F, DONNADIEU Y, et al. The origin of Asian monsoons: a modelling perspective[J]. Climate of the Past, 2020, 16(3): 847-865.
DOI URL |
[56] |
BAATSEN M, VON DER HEYDT A S, HUBER M, et al. The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5[J]. Climate of the Past, 2020, 16(6): 2573-2597.
DOI URL |
[57] |
CHEN J, ZHAO P, WANG C, et al. Modeling east Asian climate and impacts of atmospheric CO2 concentration during the late Cretaceous (66 Ma)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 190-201.
DOI URL |
[58] |
FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): eaax1697.
DOI URL |
[59] |
SHUKLA A, MEHROTRA R C, SPICER R A, et al. Cool equatorial terrestrial temperatures and the South Asian monsoon in the early Eocene: evidence from the Gurha Mine, Rajasthan India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 412: 187-198.
DOI URL |
[60] |
SUN X J, WANG P X. How old is the Asian monsoon system? Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
DOI URL |
[61] |
GUO Z T, SUN B, ZHANG Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174.
DOI URL |
[62] |
ZHANG R, JIANG D B, RAMSTEIN G, et al. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: a modeling study[J]. Earth and Planetary Science Letters, 2018, 484: 295-308.
DOI URL |
[63] |
ZHU C G, MENG J, HU Y Y, et al. East-central Asian climate evolved with the northward migration of the high proto-Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(14): 8397-8406.
DOI URL |
[64] |
ROWLEY D B, GARZIONE C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508.
DOI URL |
[65] |
DING L, XU Q, YUE Y H, et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
DOI URL |
[66] |
BOTSYUN S P, SEPULCHRE P, DONNADIEU Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436.
DOI URL |
[67] | 邓涛, 吴飞翔, 王世骐, 等. 古近纪/新近纪之交青藏高原陆地生态系统的重大转折[J]. 科学通报, 2019, 64(27): 2894-2906. |
[68] | SU T, FARNSWORTH A, SPICER R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav218. |
[69] |
BESSE J, COURTILLOT V, POZZI J P, et al. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture[J]. Nature, 1984, 311: 621-626.
DOI URL |
[70] | LIPPERT P C, VAN HINSBERGEN D J J, DUPONT-NIVET G. Early Cretaceous to present latitude of the central proto-Tibetan Plateau:a paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia[M]// Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Boulder: Geological Society of America, 2014. |
[71] |
XIE G, LI J F, WANG S Q, et al. Bridging the knowledge gap on the evolution of the Asian monsoon during 26-16 Ma[J]. The Innovation, 2021, 2(2): 100110.
DOI URL |
[72] |
SCHMITTNER A, SILVA T A M, FRAEDRICH K, et al. Effects of mountains and ice sheets on global ocean circulation[J]. Journal of Climate, 2011, 24(11): 2814-2829.
DOI URL |
[73] |
YANG H J, WEN Q. Investigating the role of the Tibetan Plateau in the formation of Atlantic meridional overturning circulation[J]. Journal of Climate, 2020, 33(9): 3585-3601.
DOI URL |
[74] |
SU B H, JIANG D B, ZHANG R, et al. Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau[J]. Climate of the Past, 2018, 14(6): 751-762.
DOI URL |
[1] | 梁文翔, 骆震, 陈伏龙, 王统霞, 安杰, 龙爱华, 何朝飞. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[2] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[3] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[4] | 王鹏寿, 许民, 韩海东, 李振中, 宋轩宇, 周卫永. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446. |
[5] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
[6] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
[7] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[8] | 宋轩宇, 许民, 康世昌, 孙立平. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469. |
[9] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
[10] | 何朝飞, 骆成彦, 陈伏龙, 龙爱华, 唐豪. 基于CMIP6多模式的和田河流域未来气候变化预估[J]. 地学前缘, 2023, 30(3): 515-528. |
[11] | 孙炜毅, 刘健, 严蜜, 宁亮. 全新世亚洲季风百年-千年尺度变化的模拟研究进展[J]. 地学前缘, 2022, 29(5): 342-354. |
[12] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[13] | 胡钊彬, 尉建功, 谢志远, 张伙带, 钟广法. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24. |
[14] | 胡栟铫, 龙飞江, 韩喜彬, 张泳聪, 胡良明, 向波, 葛倩, 边叶萍. 中全新世以来南极宇航员海的古生产力演变[J]. 地学前缘, 2022, 29(4): 113-122. |
[15] | 龚承林, 刘力, 邵大力, 郭荣涛, 朱一杰, 齐昆. 晚中新世以来孟加拉-尼科巴扇跷跷板式沉积转换及其源-汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||