地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 381-391.DOI: 10.13745/j.esf.sf.2023.2.69
杨冰1(), 孟童1, 郭华明2, 连国玺1, 陈帅瑶1, 杨曦3
收稿日期:
2022-11-28
修回日期:
2023-01-13
出版日期:
2024-05-25
发布日期:
2024-05-25
作者简介:
杨冰(1988—),男,博士研究生,高级工程师,水文地质学专业,主要研究方向为地下水污染修复。E-mail: yangb58@163.com
基金资助:
YANG Bing1(), MENG Tong1, GUO Huaming2, LIAN Guoxi1, CHEN Shuaiyao1, YANG Xi3
Received:
2022-11-28
Revised:
2023-01-13
Online:
2024-05-25
Published:
2024-05-25
摘要:
地浸铀矿山地下水U污染问题是国际社会广泛关注的环境地质问题,准确预测地浸铀矿山采区外围地下水中U的运移范围对辐射风险评估至关重要。本文以我国某酸法地浸铀矿山为研究对象,利用数值模拟方法定量模拟和预测了不同生产时间地下水中U的运移范围。数值模拟结果表明,地浸生产会明显改变采区流场形态,形成指向采区内部的水力梯度,生产井的抽注是改变流场形态的主控因素。在流场模拟的基础上,建立了不考虑吸附作用的地下水U运移模型与基于Kd值的U阻滞运移模型。根据采区内生产井及采区外围不同距离处监测井地下水pH情况,对阻滞运移模型中的Kd进行了分区赋值。对比两个模型的模拟结果可以发现,当考虑含水介质对地下水中U的吸附阻滞作用后,模拟结果能够跟现场监测数据更好拟合,表明地浸采区外围地下水中U的运移范围受含水介质的吸附阻滞作用明显;这种情况下,U在地下水中的运移距离缩短了53%,运移范围缩小了41%;阻滞运移模型预测的投产5年后采区外围地下水中U迁移距离为50 m。该结果与现场监测结果基本一致,证明数值模拟手段可以为地浸铀矿山地下水U分布范围预测提供科学依据。
中图分类号:
杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391.
YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine[J]. Earth Science Frontiers, 2024, 31(3): 381-391.
序号 | 参数及其单位 | 数值 |
---|---|---|
1 | 渗透系数,m/d | 5.76 |
2 | 垂直各向异性系数 | 10 |
3 | 孔隙度,% | 30 |
4 | 纵向弥散度,m | 2 |
5 | 横向弥散度,m | 20 |
6 | 弹性释水率,m-1 | 10-5 |
表1 主要输入参数一览表
Table 1 Main input parameters
序号 | 参数及其单位 | 数值 |
---|---|---|
1 | 渗透系数,m/d | 5.76 |
2 | 垂直各向异性系数 | 10 |
3 | 孔隙度,% | 30 |
4 | 纵向弥散度,m | 2 |
5 | 横向弥散度,m | 20 |
6 | 弹性释水率,m-1 | 10-5 |
井编号 | 井类型 | 位置 | pH |
---|---|---|---|
KC9502 | 抽液井 | 采区内 | 1.19 |
6034-1 | 监测井 | 采区边界外10 m | 2.15 |
6034-2 | 监测井 | 采区边界外30 m | 7.38 |
6034-3 | 监测井 | 采区边界外50 m | 7.45 |
6034-4 | 监测井 | 采区边界外100 m | 7.35 |
6034-5 | 监测井 | 采区边界外150 m | 7.27 |
表2 不同井位地下水pH
Table 2 The pH value of groundwater in different wells
井编号 | 井类型 | 位置 | pH |
---|---|---|---|
KC9502 | 抽液井 | 采区内 | 1.19 |
6034-1 | 监测井 | 采区边界外10 m | 2.15 |
6034-2 | 监测井 | 采区边界外30 m | 7.38 |
6034-3 | 监测井 | 采区边界外50 m | 7.45 |
6034-4 | 监测井 | 采区边界外100 m | 7.35 |
6034-5 | 监测井 | 采区边界外150 m | 7.27 |
序 号 | 观测/拟合日期 | (Xobs)max | (Xobs)min | n | 误差/ % | 备注 | |
---|---|---|---|---|---|---|---|
1 | 2018-11-06 | 940.65 | 938.51 | 0.32 | 15.15 | 模型 识别 | |
2 | 2019-05-10 | 940.84 | 938.77 | 0.33 | 15.95 | ||
3 | 2019-07-21 | 941.51 | 938.00 | 21 | 0.47 | 13.48 | |
4 | 2019-11-17 | 941.37 | 939.15 | 0.46 | 20.60 | 模型 验证 |
表3 拟合结果
Table 3 The fitted parameters
序 号 | 观测/拟合日期 | (Xobs)max | (Xobs)min | n | 误差/ % | 备注 | |
---|---|---|---|---|---|---|---|
1 | 2018-11-06 | 940.65 | 938.51 | 0.32 | 15.15 | 模型 识别 | |
2 | 2019-05-10 | 940.84 | 938.77 | 0.33 | 15.95 | ||
3 | 2019-07-21 | 941.51 | 938.00 | 21 | 0.47 | 13.48 | |
4 | 2019-11-17 | 941.37 | 939.15 | 0.46 | 20.60 | 模型 验证 |
观测/拟合日期 | 平均绝对 误差范围 | 观测井 个数 | 各误差范围观测井 个数占总数的比例/% |
---|---|---|---|
2018-11-06 | <0.5 m | 18 | 85.71 |
0.5~1 m | 3 | 14.29 | |
0 m | 0 | 0 | |
2019-05-10 | <0.5 m | 18 | 85.71 |
0.5~1 m | 3 | 14.29 | |
0 m | 0 | 0 | |
2019-07-21 | <0.5 m | 15 | 71.43 |
0.5~1 m | 6 | 28.57 | |
0 m | 0 | 0 | |
2019-11-17 | <0.5 m | 13 | 61.91 |
0.5~1 m | 7 | 33.33 | |
0 m | 1 | 4.76 |
表4 绝对平均误差拟合分布
Table 4 The fitting distribution of absolute mean errors
观测/拟合日期 | 平均绝对 误差范围 | 观测井 个数 | 各误差范围观测井 个数占总数的比例/% |
---|---|---|---|
2018-11-06 | <0.5 m | 18 | 85.71 |
0.5~1 m | 3 | 14.29 | |
0 m | 0 | 0 | |
2019-05-10 | <0.5 m | 18 | 85.71 |
0.5~1 m | 3 | 14.29 | |
0 m | 0 | 0 | |
2019-07-21 | <0.5 m | 15 | 71.43 |
0.5~1 m | 6 | 28.57 | |
0 m | 0 | 0 | |
2019-11-17 | <0.5 m | 13 | 61.91 |
0.5~1 m | 7 | 33.33 | |
0 m | 1 | 4.76 |
图7 2018—2019年监测井水头拟合情况 A—2018年11月;B—2019年5月;C—2019年7月;D—2019年11月。
Fig.7 The fitting of waterhead in monitoring wells in 2018-2019 (A—in November 2018; B—in May 2019; C—in July 2019; D—in November 2019)
图14 不考虑吸附阻滞时模拟期末C8采区地下水U浓度分布
Fig.14 The distribution of U concentrations in C8 mining area groundwater at the end of the simulation period when the adsorbent retardation was not considered
图15 考虑吸附阻滞时模拟期末C8采区地下水U浓度分布
Fig.15 The distribution of U concentrations in C8 mining area groundwater at the end of the simulation period when the adsorbent retardation was considered
[1] | 张金带, 李子颖, 苏学斌, 等. 核能矿产资源发展战略研究[J]. 中国工程科学, 2019, 21(1): 113-118. |
[2] |
BRINER W. The toxicity of depleted uranium[J]. International Journal of Environmental Research and Public Health, 2010, 7(1): 303-313.
DOI PMID |
[3] |
CORLIN L, ROCK T, CORDOVA J, et al. Health effects and environmental justice concerns of exposure to uranium in drinking water[J]. Current Environmental Health Reports, 2016, 3(4): 434-442.
DOI PMID |
[4] |
FAA A, GEROSA C, FANNI D, et al. Depleted uranium and human health[J]. Current Medicinal Chemistry, 2018, 25(1): 49-64.
DOI PMID |
[5] | LAGNEAU V, REGNAULT O, DESCOSTES M. Industrial deployment of reactive transport simulation: an application to uranium in situ recovery[J]. Reviews in Mineralogy and Geochemistry, 2019, 85(1): 499-528. |
[6] | 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展[J]. 地学前缘, 2014, 21(4): 158-167. |
[7] | 薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报, 2010, 16(1): 1-6. |
[8] | 黄群英. 某砂岩铀矿酸法地浸溶质运移与酸化进程分析[J]. 有色金属(冶炼部分), 2015(6): 50-54. |
[9] | 张学礼, 徐乐昌. 地浸采铀地下水污染防治措施探讨[J]. 中国人口资源与环境, 2015, 25(增刊2): 360-364. |
[10] | POST V, VASSOLO S, TIBERGHIEN C, et al. Weathering and evaporation controls on dissolved uranium concentrations in groundwater: a case study from northern Burundi[J]. Science of the Total Environment, 2017, 607/608: 281-293. |
[11] | COUTELOT F M, SEAMAN J C, BAKER M. Uranium(VI) adsorption and surface complexation modeling onto vadose sediments from the Savannah River Site[J]. Environmental Earth Sciences, 2018, 77(4): 148. |
[12] | WANG Z M, ZACHARA J M, BOILY J F, et al. Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: a fluorescence spectroscopy study[J]. Geochimica et Cosmochimica Acta, 2011, 75(10): 2965-2979. |
[13] | JOHNSON R H, TUTU H. Predictive reactive transport modeling at a proposed uranium in situ recovery site with a general data collection guide[J]. Mine Water and the Environment, 2016, 35(3): 369-380. |
[14] | BEN SIMON R, THIRY M, SCHMITT J M, et al. Kinetic reactive transport modelling of column tests for uranium in Situ Recovery (ISR) mining[J]. Applied Geochemistry, 2014, 51: 116-129. |
[15] | CHENG T, BARNETT M O, RODEN E E, et al. Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications[J]. Environmental Science & Technology, 2006, 40(10): 3243-3247. |
[16] | 靳强. UVI、Th(IV)、Eu(III)/Am(III)在北山花岗岩和高庙子膨润土上的吸附作用: 温度和腐殖质的效应[D]. 兰州: 兰州大学, 2017. |
[17] | DITTRICH T M, REIMUS P W. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling[J]. Journal of Contaminant Hydrology, 2015, 175/176: 44-59. |
[18] | ZHU C. A case against Kd-based transport models: natural attenuation at a mill tailings site[J]. Computers & Geosciences, 2003, 29(3): 351-359. |
[19] | MILLER A W, RODRIGUEZ D R, HONEYMAN B D. Upscaling sorption/desorption processes in reactive transport models to describe metal/radionuclide transport: a critical review[J]. Environmental Science & Technology, 2010, 44(21): 7996-8007. |
[20] | 易树平, 马海毅, 郑春苗. 放射性废物处置研究进展[J]. 地球学报, 2011, 32(5): 592-600. |
[21] | PAYNE T E, BRENDLER V, OCHS M, et al. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal[J]. Environmental Modelling & Software, 2013, 42: 143-156. |
[22] | 段青梅. 西辽河平原三维地质建模及地下水数值模拟研究[D]. 北京: 中国地质大学(北京), 2006. |
[23] | ERÖSS A, CSONDOR K, IZSÁK B, et al. Uranium in groundwater: the importance of hydraulic regime and groundwater flow system’s understanding[J]. Journal of Environmental Radioactivity, 2018, 195: 90-96. |
[24] | CURTIS G P, DAVIS J A, NAFTZ D L. Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions[J]. Water Resources Research, 2006, 42(4): 336-338. |
[25] | DAVIS J A, MEECE D E, KOHLER M, et al. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3621-3641. |
[26] | 霍传英, 朱瑾, 魏文慧, 等. 乌鲁木齐河流域北部平原地下水流模拟[J]. 水文地质工程地质, 2009, 36(3): 8-15. |
[27] | 邵景力, 赵宗壮, 崔亚莉, 等. 华北平原地下水流模拟及地下水资源评价[J]. 资源科学, 2009, 31(3): 361-367. |
[28] | 徐映雪, 邵景力, 崔亚莉, 等. 银川平原地下水流模拟与地下水资源评价[J]. 水文地质工程地质, 2015, 42(3): 7-12. |
[29] | 陈昌亮, 肖长来, 赵琳琳, 等. GMS在团结镇地下水流数值模拟中的应用[J]. 节水灌溉, 2014(8): 34-37. |
[30] | 李玲. 华北平原大型区域地下水流数值模型的构建与应用[D]. 北京: 中国地质大学(北京), 2013. |
[31] | BHARGAVA S K, RAM R, POWNCEBY M, et al. A review of acid leaching of uraninite[J]. Hydrometallurgy, 2015, 151: 10-24. |
[32] | KAKSONEN A H, LAKANIEMI A M, TUOVINEN O H. Acid and ferric sulfate bioleaching of uranium ores: a review[J]. Journal of Cleaner Production, 2020, 264: 121586. |
[33] | DE BOISSEZON H, LEVY L, JAKYMIW C, et al. Modeling uranium and 226Ra mobility during and after an acidic in situ recovery test (Dulaan Uul, Mongolia)[J]. Journal of Contaminant Hydrology, 2020, 235: 103711. |
[1] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[2] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
[3] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
[4] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
[5] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
[6] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[7] | 刘咏, 张琪, 钱家忠, 吴盾, 张文永. 基于图像法的多孔介质双分子反应溶质运移模拟[J]. 地学前缘, 2022, 29(3): 248-255. |
[8] | 沈晓芳, 万玉玉, 王利刚, 苏小四, 董维红. 基于多相流数值模拟的某石油污染场地地下水中VOCs自然衰减过程识别及能力评估[J]. 地学前缘, 2021, 28(5): 90-103. |
[9] | 安文通, 陈建平, 朱鹏飞. 基于成矿过程数值模拟的隐伏矿双向预测研究[J]. 地学前缘, 2021, 28(3): 97-111. |
[10] | 肖凡, 王恺其. 德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用:从力-热-流三场耦合数值模拟结果分析[J]. 地学前缘, 2021, 28(3): 190-207. |
[11] | 张华添, 李江海, 陶春辉. 西南印度洋中脊斜向扩张分段特征及构造成因探讨[J]. 地学前缘, 2021, 28(2): 271-283. |
[12] | 王殿举, 李江海, 李一赫. 下地壳流变学性质对南大西洋两岸盆地结构不对称性的控制[J]. 地学前缘, 2020, 27(3): 254-261. |
[13] | 孔彦龙, 黄永辉, 郑天元, 陆仁超, 潘晟, 邵亥冰, 庞忠和. 地热能可持续开发利用的数值模拟软件OpenGeoSys:原理与应用[J]. 地学前缘, 2020, 27(1): 170-177. |
[14] | 高志鹏,郭华明,屈吉鸿. 卫河流域河流地下水流系统氮素运移的数值模拟[J]. 地学前缘, 2018, 25(3): 273-284. |
[15] | 何丽娟,许鹤华,刘琼颖. 前陆盆地构造热演化:以龙门山前陆盆地为例[J]. 地学前缘, 2017, 24(3): 127-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||