地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 371-380.DOI: 10.13745/j.esf.sf.2023.2.40
付宇1(), 曹文庚2,*(
), 张春菊3, 翟文华1, 任宇2, 南天2, 李泽岩2
收稿日期:
2022-10-28
修回日期:
2022-12-27
出版日期:
2024-05-25
发布日期:
2024-05-25
通信作者:
*曹文庚(1985—),男,博士,副研究员,从事水文地质和水文地球化学方面的研究工作。E-mail: 作者简介:
付宇(1986—),女,博士,讲师,从事地质信息化工作。E-mail: 378048306@qq.com
基金资助:
FU Yu1(), CAO Wengeng2,*(
), ZHANG Chunju3, ZHAI Wenhua1, REN Yu2, NAN Tian2, LI Zeyan2
Received:
2022-10-28
Revised:
2022-12-27
Online:
2024-05-25
Published:
2024-05-25
摘要:
河套盆地浅层地下水砷污染严重超标,其潜在的高砷风险对当地居民健康造成严重威胁。当前宏观尺度的高砷地下水风险分布认识仍显不足。本研究以605个浅层地下水样数据以及沉积环境、气候、人类活动、土壤理化特征、水文地质条件等环境因子为数据源,构建了以随机森林(RF)、极端梯度提升(XGBoost)、支持向量机(SVM)为基学习器,线性判别分析(LDA)为元学习器的高砷地下水Stacking集成学习模型,预测了研究区地下水砷风险分布,并对影响该地区地下水砷风险分布的关键环境因子进行识别。研究表明:研究区地下水砷浓度超标(>10 μg/L)率为49.59%,多集中在改道形成的古河道影响带和黄河决口扇;构建的Stacking集成模型比单一模型中性能最优的RF模型具有更高的可靠性,ROC曲线下的面积(AUC)和准确率分别提高了1.1%和3.2%;高风险区面积达到5 257 km2,占研究区总面积的38.44%;沉积环境是影响高砷地下水风险分布的关键环境因素,对模型准确性贡献度高达25.06%。研究结果能够为地下水砷风险分布制图提供方法及参考,对地区饮水安全和人类健康具有重要意义。
中图分类号:
付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380.
FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization[J]. Earth Science Frontiers, 2024, 31(3): 371-380.
类别 | 变量 | 描述 |
---|---|---|
气候 | 气温 | 年均温度(℃) |
降水 | 年降雨量(mm) | |
蒸散(ET) | 平均真实蒸散量(mm) | |
人类活动 | 排灌渠影响 | 单位为m |
水位埋深 | ||
水力梯度 | ||
沉积环境 | Q3-4地层厚度 | 全新世(Q4)和晚更新世(Q3) 地层的厚度 单位为m |
地面标高(DEM) | ||
黏土层 | ||
黏沙比 | ||
水文地质条件 | 富水性 | 单位为L/s |
土壤理化特征 | 浅层和深层土壤 理化特征 | 包括土砂分数、土淤泥分数、土黏土分数、土壤有机碳含量、土壤pH值 |
其他 | 坡度 | 单位为(°) |
土地利用 | 耕地、建筑物、林地、草地、水系 | |
植被指数(NDVI) | 归一化植被指数 |
表1 模型预测变量
Table 1 Model prediction variables
类别 | 变量 | 描述 |
---|---|---|
气候 | 气温 | 年均温度(℃) |
降水 | 年降雨量(mm) | |
蒸散(ET) | 平均真实蒸散量(mm) | |
人类活动 | 排灌渠影响 | 单位为m |
水位埋深 | ||
水力梯度 | ||
沉积环境 | Q3-4地层厚度 | 全新世(Q4)和晚更新世(Q3) 地层的厚度 单位为m |
地面标高(DEM) | ||
黏土层 | ||
黏沙比 | ||
水文地质条件 | 富水性 | 单位为L/s |
土壤理化特征 | 浅层和深层土壤 理化特征 | 包括土砂分数、土淤泥分数、土黏土分数、土壤有机碳含量、土壤pH值 |
其他 | 坡度 | 单位为(°) |
土地利用 | 耕地、建筑物、林地、草地、水系 | |
植被指数(NDVI) | 归一化植被指数 |
样品数 | 最小值/ (μg·L-1) | 最大值/ (μg·L-1) | 平均值/ (μg·L-1) | 中值/ (μg·L-1) | 标准差/ (μg·L-1) | 变异系数 |
---|---|---|---|---|---|---|
605 | <0.05 | 916.70 | 54.74 | 9.43 | 108.66 | 1.98 |
表2 地下水砷浓度描述性统计特征
Table 2 Descriptive statistical characteristics of arsenic content in groundwater
样品数 | 最小值/ (μg·L-1) | 最大值/ (μg·L-1) | 平均值/ (μg·L-1) | 中值/ (μg·L-1) | 标准差/ (μg·L-1) | 变异系数 |
---|---|---|---|---|---|---|
605 | <0.05 | 916.70 | 54.74 | 9.43 | 108.66 | 1.98 |
模型性能指标 | 模型各指标的性能度量 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | ET | TreeBag | XGBoost | AdaBoost | GBDT | SVM | LDA | LR | KNN | MLP | ||
AUC | 0.770 | 0.759 | 0.752 | 0.694 | 0.691 | 0.685 | 0.720 | 0.647 | 0.632 | 0.603 | 0.570 | |
Accuracy | 0.698 | 0.680 | 0.687 | 0.632 | 0.632 | 0.629 | 0.577 | 0.604 | 0.599 | 0.582 | 0.549 | |
Precision | 0.678 | 0.657 | 0.727 | 0.591 | 0.670 | 0.608 | 0.537 | 0.604 | 0.578 | 0.591 | 0.597 | |
Recall | 0.701 | 0.703 | 0.609 | 0.747 | 0.622 | 0.654 | 0.828 | 0.630 | 0.598 | 0.591 | 0.421 | |
F1 | 0.690 | 0.685 | 0.663 | 0.660 | 0.646 | 0.656 | 0.650 | 0.617 | 0.588 | 0.591 | 0.494 | |
kappa | 0.401 | 0.440 | 0.375 | 0.270 | 0.264 | 0.289 | 0.162 | 0.208 | 0.197 | 0.164 | 0.109 |
表3 候选基学习器的性能度量
Table 3 Performance metrics for candidate base learners
模型性能指标 | 模型各指标的性能度量 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | ET | TreeBag | XGBoost | AdaBoost | GBDT | SVM | LDA | LR | KNN | MLP | ||
AUC | 0.770 | 0.759 | 0.752 | 0.694 | 0.691 | 0.685 | 0.720 | 0.647 | 0.632 | 0.603 | 0.570 | |
Accuracy | 0.698 | 0.680 | 0.687 | 0.632 | 0.632 | 0.629 | 0.577 | 0.604 | 0.599 | 0.582 | 0.549 | |
Precision | 0.678 | 0.657 | 0.727 | 0.591 | 0.670 | 0.608 | 0.537 | 0.604 | 0.578 | 0.591 | 0.597 | |
Recall | 0.701 | 0.703 | 0.609 | 0.747 | 0.622 | 0.654 | 0.828 | 0.630 | 0.598 | 0.591 | 0.421 | |
F1 | 0.690 | 0.685 | 0.663 | 0.660 | 0.646 | 0.656 | 0.650 | 0.617 | 0.588 | 0.591 | 0.494 | |
kappa | 0.401 | 0.440 | 0.375 | 0.270 | 0.264 | 0.289 | 0.162 | 0.208 | 0.197 | 0.164 | 0.109 |
模型 | 综合评价得分 | 排名 |
---|---|---|
RF | 0.640 | 1 |
ET | 0.639 | 2 |
TreeBag | 0.624 | 3 |
XGBoost | 0.571 | 4 |
AdaBoost | 0.568 | 5 |
GBDT | 0.565 | 6 |
SVM | 0.539 | 7 |
LDA | 0.528 | 8 |
LR | 0.510 | 9 |
KNN | 0.497 | 10 |
MLP | 0.443 | 11 |
表4 候选基学习器熵权综合得分排名
Table 4 Entropy weighted composite score ranking of candidate base learners
模型 | 综合评价得分 | 排名 |
---|---|---|
RF | 0.640 | 1 |
ET | 0.639 | 2 |
TreeBag | 0.624 | 3 |
XGBoost | 0.571 | 4 |
AdaBoost | 0.568 | 5 |
GBDT | 0.565 | 6 |
SVM | 0.539 | 7 |
LDA | 0.528 | 8 |
LR | 0.510 | 9 |
KNN | 0.497 | 10 |
MLP | 0.443 | 11 |
图4 高砷风险分布图 (a)—地下水砷浓度超过10 μg/L的概率,使用RF算法建模;(c)—地下水砷浓度超过10 μg/L的概率,使用Stacking集成学习算法建模;b,d—分别为Stacking和RF模型以0.5为概率阈值计算的高风险区。
Fig.4 High arsenic hazard maps
模型 | AUC | Accuracy | Precision | Recall | Specificity |
---|---|---|---|---|---|
Stacking | 0.781 | 0.720 | 0.678 | 0.793 | 0.697 |
RF | 0.770 | 0.698 | 0.678 | 0.701 | 0.695 |
表5 Stacking与RF性能度量对比
Table 5 Comparison of Stacking and RF performance measures
模型 | AUC | Accuracy | Precision | Recall | Specificity |
---|---|---|---|---|---|
Stacking | 0.781 | 0.720 | 0.678 | 0.793 | 0.697 |
RF | 0.770 | 0.698 | 0.678 | 0.701 | 0.695 |
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI PMID |
[2] | WORLD HEALTH ORGANIZATION. Guidelines for Drinking-water Quality[S]. 4th ed. Geneva: World Health Organization, 2011. |
[3] |
OREMLAND R S, STOLZ J F. The ecology of arsenic[J]. Science, 2003, 300(5621): 939-944.
DOI PMID |
[4] | JIA Y F, GUO H M, JIANG Y X, et al. Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia[J]. Journal of Hydrology, 2014, 518(Part C): 410-420. |
[5] | SMEDLEY P L, KINNIBURGH D. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. |
[6] | 曹文庚, 董秋瑶, 谭俊, 等. 河套盆地晚更新世以来黄河改道对高砷地下水分布的控制机制[J]. 南水北调与水利科技, 2021, 19(1): 140-150. |
[7] | 金银龙, 梁超轲, 何公理, 等. 中国地方性砷中毒分布调查(总报告)[J]. 卫生研究, 2003, 32(6): 519-540. |
[8] | SMEDLEY P L, ZHANG M, ZHANG G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia[J]. Applied Geochemistry, 2003, 18(9): 1453-1477. |
[9] | 郭华明, 唐小惠, 杨素珍, 等. 土著微生物作用下含水层沉积物砷的释放与转化[J]. 现代地质, 2009, 23(1): 86-93. |
[10] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[11] | CAO W G, GUO H M, ZHANG Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. The Science of the Total Environment, 2018, 613/614: 958-968. |
[12] | GUO H M, LI X M, XIU W, et al. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P. R. China[J]. Journal of Hydrology, 2019, 571: 448-459. |
[13] | 张庆卜. 国家级地下水位监测数据分析研究: 以民勤盆地为例[D]. 北京: 中国地质大学(北京), 2020. |
[14] | CHOWDHURY M, ALOUANI A, HOSSAIN F. Comparison of ordinary Kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(1): 1-7. |
[15] | LIN Y P, CHENG B Y, CHU H J, et al. Assessing how heavy metal pollution and human activity are related by using logistic regression and Kriging methods[J]. Geoderma, 2011, 163(3/4): 275-282. |
[16] | AHN J S, CHO Y C. Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application[J]. Environmental Earth Sciences, 2013, 68(7): 2123-2132. |
[17] | WINKEL L, BERG M, AMINI M, et al. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters[J]. Nature Geoscience, 2008, 1(8): 536-542. |
[18] | TAN Z, YANG Q, ZHENG Y. Machine learning models of groundwater arsenic spatial distribution in Bangladesh: influence of Holocene sediment depositional history[J]. Environmental Science & Technology, 2020, 54(15): 9454-9463. |
[19] | TWARAKAVI N K C, MISRA D, BANDOPADHYAY S. Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data[J]. Natural Resources Research, 2006, 15(1): 15-26. |
[20] |
CHO K H, STHIANNOPKAO S, PACHEPSKY Y A, et al. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network[J]. Water Research, 2011, 45(17): 5535-5544.
DOI PMID |
[21] | LOMBARD M A, BRYAN M S, JONES D K, et al. Machine learning models of arsenic in private wells throughout the conterminous United States as a tool for exposure assessment in human health studies[J]. Environmental Science & Technology, 2021, 55(8): 5012-5023. |
[22] | FU Y, CAO W G, PAN D, et al. Changes of groundwater arsenic risk in different seasons in Hetao Basin based on machine learning model[J]. The Science of the Total Environment, 2022, 817: 153058. |
[23] | CAO H L, XIE X J, WANG Y X, et al. The interactive natural drivers of global geogenic arsenic contamination of groundwater[J]. Journal of Hydrology, 2021, 597: 126214. |
[24] | BUI D T, KHOSRAVI K, TIEFENBACHER J, et al. Improving prediction of water quality indices using novel hybrid machine-learning algorithms[J]. The Science of the Total Environment, 2020, 721: 137612. |
[25] | MALLICK J, TALUKDAR S, ALSUBIH M, et al. Integration of statistical models and ensemble machine learning algorithms (MLAs) for developing the novel hybrid groundwater potentiality models: a case study of semi-arid watershed in Saudi Arabia[J]. Geocarto International, 2022, 37(22): 6442-6473. |
[26] | CHEN Y, CHEN W, CHANDRA PAL S, et al. Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential[J]. Geocarto International, 2022, 37(19): 5564-5584. |
[27] | WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. |
[28] | CHATZIMPARMPAS A, MARTINS R M, KUCHER K, et al. StackGenVis: alignment of data, algorithms, and models for stacking ensemble learning using performance metrics[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1547-1557. |
[29] | LEDEZMA A, ALER R, SANCHIS A, et al. GA-stacking: evolutionary stacked generalization[J]. Intelligent Data Analysis, 2010, 14(1): 89-119. |
[30] | SUN W, TREVOR B A. stacking ensemble learning framework for annual river ice breakup dates[J]. Journal of Hydrology, 2018, 561: 636-650. |
[31] | HU X D, ZHANG H, MEI H B, et al. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China[J]. Applied Sciences, 2020, 10(11): 4016. |
[32] | TAGHIZADEH R, SCHMIDT K, CHAKAN A A, et al. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space[J]. Remote Sensing, 2020, 12(7): 1095. |
[33] | GU J Y, LIU S G, ZHOU Z Z, et al. A stacking ensemble learning model for monthly rainfall prediction in the Taihu Basin, China[J]. Water, 2022, 14(3): 492. |
[34] | GUO H M, ZHANG Y, XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2012, 27(11): 2187-2196. |
[35] | 高存荣. 河套平原地下水砷污染机理的探讨[J]. 中国地质灾害与防治学报, 1999(2): 25-32. |
[36] | RAPHAËL B, VINCENT C, ERIC R, et al. A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers[J]. Water, Air, & Soil Pollution, 2016, 227(9): 296. |
[37] | CHARLET L, POLYA D A. Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster[J]. Elements, 2006, 2(2): 91-96. |
[38] | PODGORSKI J E, EQANI S, KHANAM T, et al. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley[J]. Science Advances, 2017, 3(8): e1700935. |
[39] | NGUYEN P T, HA D H, NGUYEN H D, et al. Improvement of credal decision trees using ensemble frameworks for groundwater potential modeling[J]. Sustainability, 2020, 12(7): 2622. |
[40] | GHOBADI A, CHERAGHI M, SOBHANARDAKANI S, et al. Groundwater quality modeling using a novel hybrid data-intelligence model based on gray wolf optimization algorithm and multi-layer perceptron artificial neural network: a case study in Asadabad Plain, Hamedan, Iran[J]. Environmental Science and Pollution Research, 2022, 29(6): 8716-8730. |
[41] | OSMAN A I A, AHMED A N, HUANG Y F, et al. Past, present and perspective methodology for groundwater modeling-based machine learning approaches[J]. Archives of Computational Methods in Engineering, 2022, 29(6): 3843-3859. |
[42] | ALI E B, ABDESLAM T, YOUSSEF B. Groundwater quality forecasting using machine learning algorithms for irrigation purposes[J]. Agricultural Water Management, 2021, 245: 106625. |
[43] | SINGHA S, PASUPULETI S, SINGHA S S, et al. Prediction of groundwater quality using efficient machine learning technique[J]. Chemosphere, 2021, 276: 130265. |
[44] | NASIR N, KANSAL A, ALSHALTONE O, et al. Water quality classification using machine learning algorithms[J]. Journal of Water Process Engineering, 2022, 48: 102920. |
[45] | MOSAVI A, SAJEDI HOSSEINI F, CHOUBIN B, et al. Ensemble boosting and bagging based machine learning models for groundwater potential prediction[J]. Water Resources Management, 2021, 35(1): 23-37. |
[46] | NAGHIBI S A, AHMADI K, DANESHI A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping[J]. Water Resources Management, 2017, 31(9): 2761-2775. |
[47] | HAMMED M M, ALOMAR M K, KHALEEL F, et al. An extra tree regression model for discharge coefficient prediction: novel, practical applications in the hydraulic sector and future research directions[J]. Mathematical Problems in Engineering, 2021, 2021(1): 1-19. |
[48] | HUSEN S, KHAMITKAR S, BHALCHANDRA P, et al. Modeling groundwater spring potential of selected geographical area using machine learning algorithms[M]//Applied computer vision and image processing. Singapore: Springer, 2020: 424-432. |
[49] | HUANG X, GAO L, CROSBIE R S, et al. Groundwater recharge prediction using linear regression, multi-layer perception network, and deep learning[J]. Water, 2019, 11(9): 1879. |
[50] |
MAIR A, EL-KADI A I. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA[J]. Journal of Contaminant Hydrology, 2013, 153: 1-23.
DOI PMID |
[51] | WILSON S R, CLOSE M E, ABRAHAM P. Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification[J]. Journal of Hydrology, 2018, 556: 611-624. |
[52] | MALLIKARJUNA B, SATHISH K, VENKATA KRISHNA P, et al. The effective SVM-based binary prediction of ground water table[J]. Evolutionary Intelligence, 2021, 14(2): 779-787. |
[53] | ZHAO J C, JI G X, TIAN Y, et al. Environmental vulnerability assessment for mainland China based on entropy method[J]. Ecological Indicators, 2018, 91: 410-422. |
[54] | 周志华, 王珏. 机器学习及其应用[M]. 北京: 清华大学出版社, 2007: 63-72. |
[55] | GUO H M, TANG X H, YANG S Z, et al. Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubations[J]. Applied Geochemistry, 2008, 23(12): 3267-3277. |
[56] | VAN GEENA A, ZHENG Y, GOODBRED Jr S, et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin[J]. Environmental Science & Technology, 2008, 42(7): 2283-2288. |
[57] | 付宇, 曹文庚, 张娟娟. 基于随机森林建模预测河套盆地高砷地下水风险分布[J]. 岩矿测试, 2021, 40(6): 860-870. |
[58] |
郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75.
DOI |
[1] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[2] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[3] | 谌宏伟, 杨瑶, 黄荷, 周慧, 彭向训, 于莎莎, 喻娓厚, 李正最, 王赵国. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究[J]. 地学前缘, 2024, 31(2): 423-434. |
[4] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[5] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
[6] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
[7] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[8] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[9] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[10] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
[11] | 鹿帅, 苏小四, 冯晓语, 孙超. 河水入渗过程中近岸带地下水中砷的形成与影响因素研究[J]. 地学前缘, 2022, 29(4): 455-467. |
[12] | 郭巧娜, 赵岳, 周志芳, 林锦, 戴云峰, 李孟军. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479. |
[13] | 王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10. |
[14] | 文冬光, 宋健, 刁玉杰, 张林友, 张福存, 张森琦, 叶成明, 朱庆俊, 史彦新, 金显鹏, 贾小丰, 李胜涛, 刘东林, 王新峰, 杨骊, 马鑫, 吴海东, 赵学亮, 郝文杰. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24. |
[15] | 邢世平, 郭华明, 吴萍, 胡学达, 赵振, 袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘, 2022, 29(3): 115-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||