地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 455-467.DOI: 10.13745/j.esf.sf.2021.10.3
收稿日期:
2020-07-23
修回日期:
2021-11-05
出版日期:
2022-07-25
发布日期:
2022-07-28
作者简介:
鹿 帅(1990—),男,博士,讲师,硕士生导师,主要从事水文地球化学、水文地质学等方面的教学与科研工作。E-mail: lushuaij@163.com
基金资助:
LU Shuai1,2,3(), SU Xiaosi4, FENG Xiaoyu5, SUN Chao6
Received:
2020-07-23
Revised:
2021-11-05
Online:
2022-07-25
Published:
2022-07-28
摘要:
沈阳黄家水源地是我国北方地区典型的傍河地下水水源地,近岸带地下水中铁(Fe)、锰(Mn)、砷(As)含量严重超标。为查明地下水中As的来源与影响因素,对研究区河水、地下水以及土壤样品进行采集与测试,分析了水样常规指标与碳硫稳定同位素、土样中典型矿物、砷的含量及赋存形态。结果表明,研究区河水中As含量很低,而地下水中As含量普遍超标。河水入渗初期,氧化性河水使部分含As矿物发生氧化而释放As;随着河水入渗,地下水向还原环境转变,含As的Fe/Mn矿物发生还原性溶解,地下水中As含量逐渐升高。研究区典型矿物有黄铁矿、菱铁矿、软锰矿、赤铁矿、针铁矿、菱锰矿等,通过可交换态砷解吸、有机质结合态砷氧化、铁锰氧化物结合态砷还原性溶解等,介质中的As释放至地下水中。地下水中As含量与酸碱度(pH)、氧化还原电位(Eh)呈一定负相关,与溶解有机碳(DOC)、
中图分类号:
鹿帅, 苏小四, 冯晓语, 孙超. 河水入渗过程中近岸带地下水中砷的形成与影响因素研究[J]. 地学前缘, 2022, 29(4): 455-467.
LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration[J]. Earth Science Frontiers, 2022, 29(4): 455-467.
井号 | 井深/m | 过滤器深度/m | 止水深度/m | |
---|---|---|---|---|
顶部 | 底部 | |||
HB1-2\HB2-2\HB3-2\HB4-2 | 6.0 | 4.0~<5.0 | 3.0~<4.0 | 5.0~<6.0 |
HB1-3\HB2-3\HB3-3\HB4-3 | 7.0 | 5.0~<6.0 | 4.0~<5.0 | 6.0~<7.0 |
HB1-4\HB2-4\HB3-4\HB4-4 | 8.0 | 6.0~<7.0 | 5.0~<6.0 | 7.0~<8.0 |
HB1-5\HB2-5\HB3-5\HB4-5 | 9.0 | 7.0~<8.0 | 6.0~<7.0 | 8.0~<9.0 |
HB1-6\HB2-6\HB3-6\HB4-6 | 10.0 | 8.0~<9.0 | 7.0~<8.0 | 9.0~<10.0 |
HB3-7\HB4-7 | 11.0 | 9.0~10.0 | 8.0~9.0 | 10.0~11.0 |
表1 监测井相关参数
Table 1 Monitoring well related parameters
井号 | 井深/m | 过滤器深度/m | 止水深度/m | |
---|---|---|---|---|
顶部 | 底部 | |||
HB1-2\HB2-2\HB3-2\HB4-2 | 6.0 | 4.0~<5.0 | 3.0~<4.0 | 5.0~<6.0 |
HB1-3\HB2-3\HB3-3\HB4-3 | 7.0 | 5.0~<6.0 | 4.0~<5.0 | 6.0~<7.0 |
HB1-4\HB2-4\HB3-4\HB4-4 | 8.0 | 6.0~<7.0 | 5.0~<6.0 | 7.0~<8.0 |
HB1-5\HB2-5\HB3-5\HB4-5 | 9.0 | 7.0~<8.0 | 6.0~<7.0 | 8.0~<9.0 |
HB1-6\HB2-6\HB3-6\HB4-6 | 10.0 | 8.0~<9.0 | 7.0~<8.0 | 9.0~<10.0 |
HB3-7\HB4-7 | 11.0 | 9.0~10.0 | 8.0~9.0 | 10.0~11.0 |
图2 河水入渗过程中pH值、Eh值、DO浓度变化图 其中地下水取样深度为5.0~6.0 m。
Fig.2 Diagram of pH, Eh, and DO concentration during river water infiltration (The sampling depth of groundwater is 5.0-6.0 m)
图3 河水入渗过程中DOC、 HCO 3 -、Mn2+、Fe2+、 SO 4 2 -、As浓度变化图 其中地下水取样深度为5.0~6.0 m。
Fig.3 Diagram of DOC, HCO 3 -, Mn2+, Fe2+, SO 4 2 -, As concentration during river water infiltration (The sampling depth of groundwater is 5.0-6.0 m)
图4 近岸带水化学指标垂向变化图 地下水取样位置为距离河岸6.5 m处。
Fig.4 Vertical variation diagram of hydrochemical index in nearshore zone (The sampling location of groundwater is 6.5 m away from the riverbank)
图8 介质中有效态砷含量和F1-As/EFC-As、F3-As/EFC-As、F4-As/EFC-As、As/TAs比值
Fig.8 Effective arsenic content and F1-As/EFC-As, F3-As/EFC-As, F4-As/EFC-As, As/TAs percentages in the medium
[1] | DIEM S, CIRPKA O A, SCHIRMER M. Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach[J]. Journal of Hydrology, 2013, 505(22): 352-363. |
[2] | GANDY C J, SMITH J W N, JARVIS A P. Attenuation of mining-derived pollutants in the hyporheic zone: a review[J]. Science of the Total Environment, 2007, 373(2/3): 435-446. |
[3] | HUBBS S A. Riverbank filtration hydrology[M]. Dordrecht: Springer Science & Business Media, 2007. |
[4] | HUNTSCHA S, RODRIGUEZ VELOSA D M, SCHROTH M H, et al. Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests[J]. Environmental Science and Technology, 2013, 47(20): 11512-11521. |
[5] | STUTE M, ZHENG Y, SCHLOSSER P, et al. Hydrological control of As concentrations in Bangladesh groundwater[J]. Water Resources Research, 2007, 43(9): 2363-2367. |
[6] | TUFENKJI N, RYAN J N, ELIMELECH M. The promise of bank filtration[J]. Environmental Science and Technology, 2002, 36(21): 422A-428A. |
[7] | 吴耀国, 王超, 王惠民. 河岸渗滤作用脱氮机理及其特点的试验[J]. 城市环境与城市生态, 2003, 16 (6): 298-300. |
[8] | ALLEY W M, HEALY R W, LABAUGH J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5575): 1985-1990. |
[9] | HARVEY J W, FULLER C C. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance[J]. Water Resources Research, 1998, 34(4): 623-636. |
[10] | POLOMČIĆ D, HAJDIN B, STEVANOVIĆ Z. et al. Groundwater management by riverbank filtration and an infiltration channel: the case of Obrenovac, Serbia[J]. Hydrogeology Journal, 2013, 21(7): 1519-1530. |
[11] | PROMMA K, ZHENG C, ASNACHINDA P. Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly[J]. Hydrogeology Journal, 2007, 15(3): 495-513. |
[12] | SOPHOCLEOUS M. Interactions between groundwater and surface water: the state of the science[J]. Hydrogeology Journal, 2002, 10(1): 52-67. |
[13] | 付松波, 陈志. 我国地方性砷中毒基础研究工作进展[J]. 中国地方病学杂志, 2006, 25(5): 585-587. |
[14] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[15] | ABDUL K S M, JAYASINGHE S S, CHANDANA E P, et al. Arsenic and human health effects: a review[J]. Environmental Toxicology and Pharmacology, 2015, 40(3): 828-846. |
[16] | FENDORF S, MICHAEL H A, GEEN A V. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127. |
[17] | GUO H, WEN D, LIU Z, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41(1): 196-217. |
[18] | SMITH A H, LOPIPERO P A, BATES M N, et al. Arsenic epidemiology and drinking water standards[J]. Science, 2002, 296(5576): 2145-2146. |
[19] | 郭琦. 银川盆地北部浅层地下水水文地球化学特征及砷的富集机理[D]. 北京: 中国地质大学(北京), 2014. |
[20] | 郭欣欣. 江汉平原浅层含水层系统中砷释放与迁移过程研究[D]. 武汉: 中国地质大学, 2014. |
[21] | SMEDLEY P L, KINNIBURGH D G. A review of the source, behavior and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. |
[22] | 苏春利, WIN hlaing, 王焰新, 等. 大同盆地砷中毒病区沉积物中砷的吸附行为和影响因素分析[J]. 地质科技情报, 2009, 28(3): 120-126. |
[23] | 熊峰, 甘义群, 段艳华. 江汉平原地下水中氮素与砷迁移富集的相关性研究[J]. 安全与环境工程, 2015, 22(2): 39-43. |
[24] | 余倩, 谢先军, 马瑞, 等. 地下水系统中砷迁移富集过程的水文地球化学模拟[J]. 地质科技情报, 2013, 32(6): 116-122. |
[25] | SRACEK O, BHATTACHARYA P, JACKS G, et al. Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments[J]. Applied Geochemistry, 2004, 19(2): 169-180. |
[26] | ZHENG Y, STUTE M, GEEN A V, et al. Redox control of arsenic mobilization in Bangladesh groundwater[J]. Applied Geochemistry, 2004, 19(2): 201-214. |
[27] | HARVEY C F, SWARTZ C H, BADRUZZAMAN A B, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002, 298(5598): 1602-1606. |
[28] | HARVEY C F, ASHFAQUE K N, YU W, et al. Groundwater dynamics and arsenic contamination in Bangladesh[J]. Chemical Geology, 2006, 228(1/2/3): 112-136. |
[29] | KLUMP S, KIPFER R, CIRPKA O A, et al. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium[J]. Environmental Science and Technology, 2006, 40(1): 243-250. |
[30] | BENNER S G, POLIZZOTTO M L, KOCAR B D, et al. Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia[J]. Applied Geochemistry, 2008, 23(11): 3072-3087. |
[31] | LAWSON M, BALLENTINE C J, POLYA D A, et al. The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release[J]. Mineralogical Magazine, 2008, 72(1): 441-444. |
[32] | POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Nature, 2008, 454(7203): 505-508. |
[33] | SU X, LU S, YUAN W, et al. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China[J]. Hydrogeology Journal, 2018, 26(5): 1573-1589. |
[34] | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
[35] | SHARIF M U, DAVIS R K, STEELE K F, et al. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas[J]. Journal of Contaminant Hydrology, 2008, 99(1/2/3/4): 49-67. |
[36] | 甘义群, 王焰新, 段艳华, 等. 江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014, 21(4): 37-49. |
[37] | 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. |
[38] | 罗艳丽, 李晶, 蒋平安, 等. 新疆奎屯原生高砷地下水的分布、类型及成因分析[J]. 环境科学学报, 2017, 37(8): 2897-2903. |
[39] | APPELO C A J, VAN DER WEIDEN M J J, TOURNASSAT C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science and Technology, 2002, 36(14): 3096-3103. |
[40] | 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. |
[41] | Guo H, Li Y, Zhao K, et al. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1847-1854. |
[42] | NICOLLI H B, BUNDSCHUH J, GARCÍA J W, et al. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina)[J]. Water Research, 2010, 44(19): 5589-5604. |
[43] | VINSON D S, MCINTOSH J C, DWYER G S, et al. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)[J]. Applied Geochemistry, 2011, 26(8): 1364-1376. |
[44] | 倪萍. 河套盆地含水层沉积物赋存态砷及对地下水砷富集的影响[D]. 北京: 中国地质大学(北京), 2016. |
[45] | 何薪, 马腾, 王焰新, 等. 内蒙古河套平原高砷地下水赋存环境特征[J]. 中国地质, 2010, 37(3): 781-788. |
[46] | 张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 2010, 37(3): 551-562. |
[47] | GUO H, LIU Z, DING S, et al. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao Basin, Inner Mongolia[J]. Environmental Pollution, 2015, 203: 50-59. |
[48] | PEDERSEN H D, POSTMA D, JAKOBSEN R. Release of arsenic associated with the reduction and transformation of iron oxides[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4116-4129. |
[49] | 王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780. |
[50] | 杨洁, 林年丰, 卞建民, 等. 内蒙河套平原砷中毒病区砷的环境地球化学研究[J]. 水文地质工程地质, 1996, 23(1): 49-54. |
[51] | 周殷竹, 郭华明, 逯海. 高砷地下水中溶解性有机碳和无机碳稳定同位素特征[J]. 现代地质, 2015, 29(2): 252-259. |
[52] | WELCH A H, LICO M S. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada[J]. Applied Geochemistry, 1998, 13(4): 521-539. |
[53] | 沈照理, 郭华明, 徐刚, 等. 地下水化学异常与地方病[J]. 自然杂志, 2010, 32(2): 83-89. |
[54] | 严怡君, 谢先军, 肖紫怡, 等. 灌溉对非饱和带中砷迁移转化过程的影响[J]. 地质科技情报, 2018, 37(5): 206-214. |
[55] | MCARTHUR J M, BANERJEE D M, HUDSON-EDWARDS K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications[J]. Applied Geochemistry, 2004, 19(8): 1255-1293. |
[56] | RADU T, SUBACZ J L, PHILLIPPI J M, et al. Effects of dissolved carbonate on arsenic adsorption and mobility[J]. Environmental Science and Technology, 2005, 39(20): 7875-7882. |
[57] | XIE X, ELLIS A, WANG Y, et al. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China[J]. Science of the Total Environment, 2009, 407(12): 3823-3835. |
[58] | XIE X, WANG Y, ELLIS A, et al. Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2013, 498: 103-112. |
[1] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[2] | 付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380. |
[3] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[4] | 梁慧芝, 郭朝晖, 张云霞, 徐锐. 含砷尾矿中砷铊矿相特征及其释放机制[J]. 地学前缘, 2024, 31(2): 20-30. |
[5] | 谌宏伟, 杨瑶, 黄荷, 周慧, 彭向训, 于莎莎, 喻娓厚, 李正最, 王赵国. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究[J]. 地学前缘, 2024, 31(2): 423-434. |
[6] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[7] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
[8] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
[9] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[10] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[11] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[12] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
[13] | 张玉婷, 段丽琴, 宋金明, 张乃星, 尹美玲, 李学刚, 袁华茂. 长江口沉积物-水界面砷的迁移转化机制与微生物调控分析[J]. 地学前缘, 2022, 29(4): 144-155. |
[14] | 郭巧娜, 赵岳, 周志芳, 林锦, 戴云峰, 李孟军. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479. |
[15] | 王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||