地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 505-514.DOI: 10.13745/j.esf.sf.2022.9.3
收稿日期:
2022-06-30
修回日期:
2022-08-19
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
*郭华明(1975—),男,教授,主要从事水文地质学方面的教学与科研工作。E-mail: 作者简介:
王 振(1990—),男,博士,讲师,主要从事水文地球化学方面的教学与研究工作。E-mail: wzhen@ecut.edu.cn
基金资助:
WANG Zhen1(), GUO Huaming2,*(
), LIU Haiyan1, XING Shiping2
Received:
2022-06-30
Revised:
2022-08-19
Online:
2023-05-25
Published:
2023-04-27
摘要:
高氟地下水是我国乃至国际社会面临的最严重的环境地质问题之一。尽管众多的研究学者已对高氟地下水形成机理开展了广泛的研究,但高氟地下水中稀土元素的分异特征和迁移规律能否指示地下水中氟的富集过程尚不完全清楚。本研究聚焦高氟地下水广泛分布的贵德盆地,通过野外调查取样、室内测试和综合分析以及水文地球化学模拟相结合的技术手段,探究了含水层中氟和稀土元素的分布特征和迁移规律。研究发现贵德盆地地下水中氟的平均浓度为2.67 mg·L-1,75%的地下水样品中氟浓度高于1.5 mg·L-1,且沿地下水流程呈现出上升趋势。PHREEQC计算结果表明,地下水中氟主要以自由态F-的形式存在(浓度99.5%)。XRD 和SEM-EDS的结果表明含水层沉积物中的主要矿物为石英(含量52.9%~56.5%)和斜长石(含量19.8%~21.8%),且斜长石已发生化学风化作用。贵德盆地地下水中稀土元素浓度较低(0.052~0.267 μg·L-1),且主要以LnCO3+和Ln(CO3)2-无机络合形态存在(含量>99%,Ln代表稀土元素)。地下水稀土元素北美页岩归一化模式表现为轻稀土元素相对于重稀土元素富集,且具有轻微的Ce负异常和显著的Eu正异常特征。地下水中氟和稀土元素的迁移均受到含水层中铁氧化物矿物的还原性溶解和长石类矿物的非全等水解过程的影响,且地下水中稀土元素的富集过程在一定程度上可以指示地下水中氟的富集过程。研究成果拓展了稀土元素在高氟地下水研究中的应用,可以为识别和揭示高氟地下水的分布和富集机理提供依据。
中图分类号:
王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514.
WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications[J]. Earth Science Frontiers, 2023, 30(3): 505-514.
图1 研究区位置及采样点分布图和AB水文地质剖面图
Fig.1 Location of the study area, distribution of sampling points in the study area, and hydrogeological profile along line AB
水样 编号 | pH | Eh/ mV | ρB/(mg·L-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | NH4-N | F- | Cl- | K+ | Ca2+ | Na+ | Mg2+ | ||||||
4 | 8.38 | 110 | 290 | 0.15 | 221 | 0.77 | 35.6 | 0.00 | 60.6 | 0.99 | 23.3 | 91.8 | 3.83 |
5 | 8.60 | 145 | 572 | 0.04 | 92.6 | 3.15 | 225 | 0.67 | 124 | 2.28 | 14.3 | 196 | 0.07 |
6 | 8.79 | 142 | 375 | 0.11 | 166 | 2.23 | 81.4 | 0.24 | 79.6 | 1.47 | 5.44 | 140 | 0.17 |
8 | 8.55 | 147 | 639 | 0.21 | 185 | 3.59 | 218 | 0.42 | 106 | 2.37 | 8.90 | 236 | 0.33 |
9 | 8.81 | 99 | 520 | 0.42 | 299 | 4.08 | 125 | 0.35 | 68.6 | 2.12 | 4.51 | 212 | 1.11 |
10 | 8.60 | 99 | 730 | 0.32 | 312 | 3.62 | 230 | 0.32 | 91.5 | 3.14 | 7.83 | 280 | 5.08 |
12 | 9.07 | 116 | 325 | 0.05 | 117 | 1.85 | 81.4 | 0.32 | 77.4 | 1.13 | 5.86 | 114 | 0.17 |
13 | 8.97 | 113 | 365 | 0.05 | 112 | 1.84 | 101 | 0.84 | 90.8 | 1.08 | 8.65 | 124 | 0.22 |
19 | 8.74 | 123 | 482 | 0.08 | 134 | 2.83 | 155 | 0.35 | 98.6 | 1.69 | 9.27 | 176 | 0.30 |
20 | 8.70 | 152 | 475 | 0.09 | 166 | 3.47 | 127 | 0.23 | 78.1 | 1.39 | 7.66 | 175 | 0.19 |
21 | 8.90 | 146 | 538 | 0.012 | 115 | 2.18 | 145 | 0.57 | 140 | 1.56 | 8.87 | 191 | 0.42 |
23 | 8.99 | 195 | 435 | 0.08 | 115 | 1.32 | 105 | 0.26 | 137 | 1.15 | 7.85 | 144 | 0.26 |
24 | 8.95 | 97 | 510 | 0.12 | 107 | 2.07 | 135 | 0.32 | 145 | 1.41 | 8.02 | 174 | 0.40 |
25 | 8.80 | 143 | 492 | 0.15 | 156 | 1.90 | 112 | 0.22 | 139 | 1.55 | 6.62 | 175 | 0.31 |
32 | 8.87 | 131 | 540 | 0.36 | 388 | 5.67 | 90.3 | 0.05 | 104 | 1.88 | 3.44 | 225 | 0.55 |
34 | 8.82 | 141 | 572 | 0.34 | 305 | 4.84 | 98.1 | 0.38 | 104 | 1.78 | 3.76 | 226 | 0.64 |
35 | 8.70 | 86 | 623 | 0.585 | 373 | 5.02 | 121 | 0.40 | 90.4 | 1.93 | 3.97 | 243 | 1.48 |
41 | 9.08 | 150 | 365 | 0.25 | 217 | 1.39 | 46.0 | 0.06 | 86.5 | 1.05 | 3.05 | 127 | 0.32 |
43 | 8.84 | 29 | 328 | 0.25 | 188 | 0.86 | 43.8 | 0.47 | 78.7 | 1.13 | 5.87 | 114 | 0.52 |
44 | 8.70 | 100 | 315 | — | 171 | 0.66 | 44.2 | 0.44 | 73.9 | 1.21 | 11.0 | 105 | 1.66 |
表1 研究区地下水样品的水化学组分总表
Table 1 Summary table of hydrochemical composition of groundwater samples in the study area
水样 编号 | pH | Eh/ mV | ρB/(mg·L-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | NH4-N | F- | Cl- | K+ | Ca2+ | Na+ | Mg2+ | ||||||
4 | 8.38 | 110 | 290 | 0.15 | 221 | 0.77 | 35.6 | 0.00 | 60.6 | 0.99 | 23.3 | 91.8 | 3.83 |
5 | 8.60 | 145 | 572 | 0.04 | 92.6 | 3.15 | 225 | 0.67 | 124 | 2.28 | 14.3 | 196 | 0.07 |
6 | 8.79 | 142 | 375 | 0.11 | 166 | 2.23 | 81.4 | 0.24 | 79.6 | 1.47 | 5.44 | 140 | 0.17 |
8 | 8.55 | 147 | 639 | 0.21 | 185 | 3.59 | 218 | 0.42 | 106 | 2.37 | 8.90 | 236 | 0.33 |
9 | 8.81 | 99 | 520 | 0.42 | 299 | 4.08 | 125 | 0.35 | 68.6 | 2.12 | 4.51 | 212 | 1.11 |
10 | 8.60 | 99 | 730 | 0.32 | 312 | 3.62 | 230 | 0.32 | 91.5 | 3.14 | 7.83 | 280 | 5.08 |
12 | 9.07 | 116 | 325 | 0.05 | 117 | 1.85 | 81.4 | 0.32 | 77.4 | 1.13 | 5.86 | 114 | 0.17 |
13 | 8.97 | 113 | 365 | 0.05 | 112 | 1.84 | 101 | 0.84 | 90.8 | 1.08 | 8.65 | 124 | 0.22 |
19 | 8.74 | 123 | 482 | 0.08 | 134 | 2.83 | 155 | 0.35 | 98.6 | 1.69 | 9.27 | 176 | 0.30 |
20 | 8.70 | 152 | 475 | 0.09 | 166 | 3.47 | 127 | 0.23 | 78.1 | 1.39 | 7.66 | 175 | 0.19 |
21 | 8.90 | 146 | 538 | 0.012 | 115 | 2.18 | 145 | 0.57 | 140 | 1.56 | 8.87 | 191 | 0.42 |
23 | 8.99 | 195 | 435 | 0.08 | 115 | 1.32 | 105 | 0.26 | 137 | 1.15 | 7.85 | 144 | 0.26 |
24 | 8.95 | 97 | 510 | 0.12 | 107 | 2.07 | 135 | 0.32 | 145 | 1.41 | 8.02 | 174 | 0.40 |
25 | 8.80 | 143 | 492 | 0.15 | 156 | 1.90 | 112 | 0.22 | 139 | 1.55 | 6.62 | 175 | 0.31 |
32 | 8.87 | 131 | 540 | 0.36 | 388 | 5.67 | 90.3 | 0.05 | 104 | 1.88 | 3.44 | 225 | 0.55 |
34 | 8.82 | 141 | 572 | 0.34 | 305 | 4.84 | 98.1 | 0.38 | 104 | 1.78 | 3.76 | 226 | 0.64 |
35 | 8.70 | 86 | 623 | 0.585 | 373 | 5.02 | 121 | 0.40 | 90.4 | 1.93 | 3.97 | 243 | 1.48 |
41 | 9.08 | 150 | 365 | 0.25 | 217 | 1.39 | 46.0 | 0.06 | 86.5 | 1.05 | 3.05 | 127 | 0.32 |
43 | 8.84 | 29 | 328 | 0.25 | 188 | 0.86 | 43.8 | 0.47 | 78.7 | 1.13 | 5.87 | 114 | 0.52 |
44 | 8.70 | 100 | 315 | — | 171 | 0.66 | 44.2 | 0.44 | 73.9 | 1.21 | 11.0 | 105 | 1.66 |
图3 水化学成分和不同形态氟沿流程的变化
Fig.3 Variation trends of ∑REE and water-quality parameters along the flow path (top panel) and percentage variations of different forms of fluoride along the flow path and with pH (bottom panel)
图4 光学显微镜下18.8 m、104 m和362 m深度含水层沉积物的主要矿物组成照片(a,b,c)及362 m深度沉积物的SEM-EDS图(d) Pl、Qtz、Ab和Hm分别表示斜长石、石英、钠长石、赤铁矿。图d中,cps表示每秒的计数,cps/keV和cps/eV分别表示每千电子伏特和每电子伏特下能谱仪每秒所收集到的反射粒子数。
Fig.4 Main minerals identified in aquifer sediments at depths of (a) 18.8 m, (b) 104 m and (c) 362 m under optical microscope, and (d) SEM-EDS analysis results on sediment at depth of 362 m. Pl, Qtz, Ab and Hm represent plagioclase, quartz, albitite and hematite, respectively.
统计量 | ρB/(ng·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
最小值 | 6 | 9 | 1.21 | 4.5 | 1.18 | 2.11 | 2.09 | 0.18 | 0.98 | 0.21 | 0.76 | 0.07 | 0.56 | 0.00 | |
最大值 | 50 | 92 | 20.7 | 88.7 | 14.3 | 30.5 | 13.1 | 1.52 | 6.87 | 1.47 | 3.62 | 0.73 | 3.48 | 0.68 | |
平均值 | 22 | 39 | 6.84 | 26.2 | 4.74 | 10.6 | 5.37 | 0.58 | 3.03 | 0.65 | 1.83 | 0.28 | 1.57 | 0.18 | |
标准差 | 12 | 21 | 4.44 | 19.0 | 3.11 | 6.59 | 2.85 | 0.36 | 1.88 | 0.30 | 0.82 | 0.19 | 0.75 | 0.15 |
表2 贵德盆地地下水中稀土元素浓度
Table 2 Descriptive statistics of raw data on REE contents in groundwater of the Guide Basin
统计量 | ρB/(ng·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
最小值 | 6 | 9 | 1.21 | 4.5 | 1.18 | 2.11 | 2.09 | 0.18 | 0.98 | 0.21 | 0.76 | 0.07 | 0.56 | 0.00 | |
最大值 | 50 | 92 | 20.7 | 88.7 | 14.3 | 30.5 | 13.1 | 1.52 | 6.87 | 1.47 | 3.62 | 0.73 | 3.48 | 0.68 | |
平均值 | 22 | 39 | 6.84 | 26.2 | 4.74 | 10.6 | 5.37 | 0.58 | 3.03 | 0.65 | 1.83 | 0.28 | 1.57 | 0.18 | |
标准差 | 12 | 21 | 4.44 | 19.0 | 3.11 | 6.59 | 2.85 | 0.36 | 1.88 | 0.30 | 0.82 | 0.19 | 0.75 | 0.15 |
图5 不同水化学成分的相关关系图 a—∑REE浓度与Eh关系图;b—∑REE浓度与Fe浓度关系图;c—∑REE浓度与pH关系图;d— H C O 3 -浓度与NH4-N浓度关系图。
Fig.5 Scatter plots showing correlation between (a) ∑REE and Eh, (b) ∑REE and Fe, (c) ∑REE and pH, and (d) NH4-N and HCO3-
图8 不同水化学成分的相关关系图 a—∑REE浓度与Na+浓度关系图;b—Sr/Ca与HCO3-浓度关系图;c—Na/Ca与F-浓度关系图;d—∑REE浓度与F-浓度关系图。
Fig.8 Scatter plots showing correlation between (a) ∑REE and Na+, (b) Sr/Ca and HCO3-, (c) Na/Ca and F-, and (d) ∑REE and F-
[1] |
AYOOB S, GUPTA A K. Fluoride in drinking water: a review on the status and stress effects[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487.
DOI URL |
[2] |
SU C L, WANG Y X, XIE X J, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, northern China[J]. Journal of Geochemical Exploration, 2013, 135: 79-92.
DOI URL |
[3] |
吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.
DOI |
[4] |
CHOWDHURY A, ADAK M K, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J]. Journal of Hydrology, 2019, 574: 333-359.
DOI URL |
[5] |
WANG Y X, SHVARTSEV S L, SU C L. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China[J]. Applied Geochemistry, 2009, 24(4): 641-649.
DOI URL |
[6] |
CURRELL M, CARTWRIGHT I, RAVEGGI M, et al. Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China[J]. Applied Geochemistry, 2011, 26(4): 540-552.
DOI URL |
[7] | 国家卫生健康委员会. 2019年中国卫生健康统计年鉴[M]. 北京: 北京协和医科大学出版社, 2019. |
[8] |
梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41.
DOI |
[9] |
YANG K F, FAN H R, SANTOSH M, et al. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements[J]. Ore Geology Reviews, 2011, 40(1): 122-131.
DOI URL |
[10] |
QUINN K A, BYRNE R H, SCHIJF J. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of solution complexation with carbonate[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4151-4165.
DOI URL |
[11] |
DECRÉE S, POURRET O, BAELE J M. Rare earth element fractionation in heterogenite (CoOOH): implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo)[J]. Journal of Geochemical Exploration, 2015, 159: 290-301.
DOI URL |
[12] |
刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144.
DOI |
[13] | 郑天亮, 邓娅敏, 鲁宗杰, 等. 江汉平原浅层含砷地下水稀土元素特征及其指示意义[J]. 地球科学, 2017, 42(5): 693-706. |
[14] |
GUO H M, ZHANG B, WANG G C, et al. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia[J]. Chemical Geology, 2010, 270(1/2/3/4): 117-125.
DOI URL |
[15] | 石维栋, 郭建强, 张森琦, 等. 贵德盆地高氟、高砷地下热水分布及水化学特征[J]. 水文地质工程地质, 2010, 37(2): 36-41. |
[16] |
WANG Z, GUO H M, XING S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372.
DOI URL |
[17] |
邢世平, 郭华明, 吴萍, 等. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘, 2022, 29(3): 115-128.
DOI |
[18] |
YAN M D, VAN DER VOO R, TAUXE L, et al. Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error[J]. Geophysical Journal International, 2005, 163(3): 944-948.
DOI URL |
[19] |
ZHANG X B, GUO Q H, LIU M L, et al. Hydrogeochemical processes occurring in the hydrothermal systems of the Gonghe-Guide Basin, northwestern China: critical insights from a principal components analysis (PCA)[J]. Environmental Earth Sciences, 2016, 75(16): 1186-1203.
DOI URL |
[20] |
WANG Z, GUO H M, XIU W, et al. High arsenic groundwater in the Guide Basin, northwestern China: distribution and genesis mechanisms[J]. Science of the Total Environment, 2018, 640/641: 194-206.
DOI URL |
[21] | XIE X J, WANG Y X, LI J X, et al. Characteristics and implications of rare earth elements in high arsenic groundwater from the Datong Basin[J]. Earth Science: Journal of China University Geosciences, 2012, 37(2): 381-390. |
[22] |
TANG J W, JOHANNESSON K H. Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA[J]. Chemical Geology, 2006, 225(1/2): 156-171.
DOI URL |
[23] |
NOACKC W, DZOMBAK D A, KARAMALIDIS A K. Rare earth element distributions and trends in natural waters with a focus on groundwater[J]. Environmental Science and Technology, 2014, 48(8): 4317-4326.
DOI PMID |
[24] |
JANSSEN R P T, VERWEIJ W. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands[J]. Water Research, 2003, 37(6): 1320-1350.
PMID |
[25] |
LEYBOURNE M I, PETER J M, LAYTON-MATTHEWS D, et al. Mobility and fractionation of rare earth elements during supergene weathering and gossan formation and chemical modification of massive sulfide gossan[J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1097-1112.
DOI URL |
[26] |
RÖNNBACK P, ÅSTRÖM M, GUSTAFSSON J P. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, eastern Sweden[J]. Applied Geochemistry, 2008, 23(7): 1862-1880.
DOI URL |
[27] |
TANG J W, JOHANNESSON K H. Ligand extraction of rare earth elements from aquifer sediments: implications for rare earth element complexation with organic matter in natural waters[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6690-6705.
DOI URL |
[28] |
JOHANNESSON K H, TANG J W, DANIELS J M, et al. Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA[J]. Chemical Geology, 2004, 209(3/4): 271-294.
DOI URL |
[29] |
LIU H Y, POURRET O, GUO H M, et al. Rare earth elements sorption to iron oxyhydroxide: model development and application to groundwater[J]. Applied Geochemistry, 2017, 87: 158-166.
DOI URL |
[30] |
BAU M, KOSCHINSKY A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47.
DOI URL |
[31] |
LAVEUF C, CORNU S. A review on the potentiality of rare earth elements to trace pedogenetic processes[J]. Geoderma, 2009, 154(1/2): 1-12.
DOI URL |
[32] |
YAN Z C, LIU G J, SUN R Y, et al. Geochemistry of rare earth elements in groundwater from the Taiyuan Formation limestone aquifer in the Wolonghu coal mine, Anhui Province, China[J]. Journal of Geochemical Exploration, 2013, 135: 54-62.
DOI URL |
[33] |
BRIOSCHI L, STEINMANN M, LUCOT E, et al. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE[J]. Plant and Soil, 2013, 366(1/2): 143-163.
DOI URL |
[34] |
VÁZQUEZ-ORTEGA A, PERDRIAL J, HARPOLD A, et al. Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain[J]. Chemical Geology, 2015, 391: 19-32.
DOI URL |
[35] |
NOGARO G, BURGIN A J. Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments[J]. Biogeochemistry, 2014, 120: 279-294.
DOI URL |
[36] |
XING S P, GUO H M, ZHANG L Z, et al. Silicate weathering contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene aquifers of the Guide Basin, China[J]. Journal of Hydrology, 2022, 606: 127444.
DOI URL |
[37] |
VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1): 71-79.
DOI URL |
[38] |
MEENAKSHI V. Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis[J]. Journal of Hazardous Materials, 2004, 106(1/2): 85-97.
DOI URL |
[39] |
GAO X B, LUO W T, LUO X S, et al. Indigenous microbes induced fluoride release from aquifer sediments[J]. Environmental Pollution, 2019, 252: 580-590.
DOI PMID |
[40] |
GOMEZ M L, BLARASIN M T, MARTÍNEZ D E. Arsenic and fluoride in a loess aquifer in the central area of Argentina[J]. Environmental Geology, 2009, 57(1): 143-155.
DOI URL |
[1] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[2] | 罗欢, 邵德勇, 孟康, 张瑜, 宋辉, 闫建萍, 张同伟. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82. |
[3] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[4] | 邢世平, 郭华明, 吴萍, 胡学达, 赵振, 袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘, 2022, 29(3): 115-128. |
[5] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[6] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[7] | 易泽邦, 付伟, 赵芹, 许成, 陆济璞. 花岗岩风化壳中稀土纳米微粒的提取、表征及赋存状态研究[J]. 地学前缘, 2022, 29(1): 42-53. |
[8] | 王旭影, 姜在兴. 苏北盆地古近系阜三段物源特征及其形成的构造背景分析[J]. 地学前缘, 2021, 28(2): 376-390. |
[9] | 任江波, 邓义楠, 赖佩欣, 何高文, 王汾连, 姚会强, 邓希光, 刘永刚. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2): 412-425. |
[10] | 马月花, 唐保春, 苏生云, 张盛生, 李成英. 青海共和盆地地热流体地球化学特征及热储水-岩相互作用过程[J]. 地学前缘, 2020, 27(1): 123-133. |
[11] | 洪瑾,甘成势,刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54. |
[12] | 梁梦钰,郭华明,李晓萌,王振,修伟. 贵德盆地三河流域高砷地下水中溶解性有机物三维荧光特性及其指示意义[J]. 地学前缘, 2019, 26(3): 243-254. |
[13] | 柳青青,迟清华,王学求,周建,刘汉粮,刘东盛,高艳芳,翟大兴. 中国东部大陆尺度地球化学走廊带碳酸盐岩稀土元素分布特征与影响因素[J]. 地学前缘, 2018, 25(4): 99-115. |
[14] | 于扬,李德先,王登红,黄凡,刘秀丽,田兆雪,邓茂春. 溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J]. 地学前缘, 2017, 24(5): 172-181. |
[15] | 任宏,欧阳荷根. 内蒙古拜仁达坝银多金属矿床二氧化碳不混溶成矿作用研究[J]. 地学前缘, 2017, 24(2): 151-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||