地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 42-53.DOI: 10.13745/j.esf.sf.2021.8.2
易泽邦1(), 付伟1,*(
), 赵芹1, 许成1, 陆济璞2
收稿日期:
2021-04-21
修回日期:
2021-07-02
出版日期:
2022-01-25
发布日期:
2022-02-22
通信作者:
付伟
作者简介:
易泽邦(1990—),男,博士,主要从事纳米地球化学研究。E-mail: yizb@glut.edu.cn
基金资助:
YI Zebang1(), FU Wei1,*(
), ZHAO Qin1, XU Cheng1, LU Jipu2
Received:
2021-04-21
Revised:
2021-07-02
Online:
2022-01-25
Published:
2022-02-22
Contact:
FU Wei
摘要:
研究风化壳中纳米微粒的稀土元素特征,对于从微观层面揭示我国华南风化壳型稀土矿床成因具有重要意义。以广西平南富稀土花岗岩风化壳剖面(ΣREEmax含量1 201 ×10-6)为典型案例,采用物理方法(超纯水,MQW)和化学方法(Na4P2O7, TSPP)两种技术手段,提取了花岗岩风化产物中的纳米微粒(1~100 nm)。进而采用中空纤维流场流分离-电感耦合等离子质谱仪联用技术(HF5-ICP-MS),对纳米微粒进行了连续分离和表征,同步获得了不同粒径纳米微粒中REE的含量特征。结果指示,化学提取剂TSPP能有效打破花岗岩风化产物中的大颗粒团聚体,它对纳米微粒的提取效率比物理提取方法高102~103倍。在TSPP提取的纳米微粒悬浮液中,REE含量(ΣREETSPP含量)最高可占到风化产物全岩REE总量(ΣREE含量)的80.5 %。纳米微粒主要分布于2~5 nm和10~30 nm两个粒径区间,另有少量粒径为30~80 nm的纳米微粒出现。其中,在2~5 nm微粒中,REE峰位与有机质大分子峰位对应,指示二者在离子键合作用下形成了聚合体。而在10~30 nm微粒中,REE峰位与Al元素峰位相对应,指示REE被黏土矿物纳米微粒吸附或离子交换。此外,本研究还发现轻稀土(LREE)与重稀土(HREE)在纳米微粒中的分布并不一致。其中以La、Ce、Pr和Nd为代表的LREE元素集中出现在2~5 nm和10~30 nm的纳米微粒中,而以Tb和Lu为代表的HREE元素除了在上述两个粒径的纳米微粒中有含量显示外,还分布于30~80 nm的纳米微粒中,指示了花岗岩风化产物中可能存在着相对独立的、与有机质和黏土矿物无直接关联的重稀土纳米微粒矿物。上述发现为进一步认识风化壳型稀土矿床中稀土元素的赋存状态和富集分异过程提供了新的启示。
中图分类号:
易泽邦, 付伟, 赵芹, 许成, 陆济璞. 花岗岩风化壳中稀土纳米微粒的提取、表征及赋存状态研究[J]. 地学前缘, 2022, 29(1): 42-53.
YI Zebang, FU Wei, ZHAO Qin, XU Cheng, LU Jipu. Extraction, characterization and occurrence state of REE-bearing nanoparticles from granite-derived regolith[J]. Earth Science Frontiers, 2022, 29(1): 42-53.
图2 研究区地质简图(a)和风化壳研究剖面野外地质特征和采样位置(b)(图2a据文献[29])
Fig.2 (a) Simplified geologic map of the study area (modified from [29]) and (b) field photo of the profile of granite-drived regolith showing its geologic features and the sampling positions
![]() |
表1 六陈花岗岩风化壳剖面不同深度下REE总量与TSPP和MQW提取纳米微粒悬浮液中REE含量分析结果
Table 1 Comparison of the total REE content at different depth in the Liuchen granite-derived regolith profile with REE contents in TSPP and MQW extracted nanoparticle suspensions
![]() |
图3 研究剖面最大值标准化REE含量垂直分布曲线(黑线)与TSPP提取REE效果对比(红线)
Fig.3 Vertical distribution of normalized REE concentrations in the studied profile (black curve) in comparison with REE extraction results by TSPP (red curve)
图4 HF5-ICP-MS揭示的纳米微粒粒径-稀土元素含量对应关系图
Fig.4 Corresponding relationships between particle size and REE content in nanoparticles for representative LREEs/HREEs occurred in total (black), highly (red) and semi-weathering (blue) granite as revealed by HF5-ICP-MS analysis
[1] | 陈德潜, 吴静淑. 离子吸附型稀土矿床的成矿机制[J]. 中国稀土学报, 1990, 8(2):175-179. |
[2] | 池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4):1-13. |
[3] | 王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、 存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5):796-802. |
[4] |
XU C, KYNICKÝ J, SMITH M P, et al. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 2017, 8:14598.
DOI URL |
[5] | 张祖海. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛, 1990, 5(1):57-71. |
[6] | 霍明远. 中国南岭风化壳型稀土资源分布特征[J]. 自然资源学报, 1992, 7(1):64-70. |
[7] |
LI Y H M, ZHAO W W, ZHOU M F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148:65-95.
DOI URL |
[8] | 赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6):1454-1465. |
[9] | 陈志澄, 洪华华, 庄文明, 等. 花岗岩风化壳稀土存在形态分析方法研究[J]. 分析测试学报, 1993, 12(4):21-25. |
[10] |
COMPTON J S, WHITE R A, SMITH M. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa[J]. Chemical Geology, 2003, 201(3/4):239-255.
DOI URL |
[11] | 马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1):87-94. |
[12] | 赵芝, 王登红, 陈郑辉, 等. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报, 2017, 91(12):2814-2827. |
[13] |
YANG M J, LIANG X L, MA L Y, et al. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525:210-217.
DOI URL |
[14] |
FU W, LI X T, FENG Y Y, et al. Chemical weathering of S-type granite and formation of rare earth element (REE)-rich regolith in South China: critical control of lithology[J]. Chemical Geology, 2019, 520:33-51.
DOI URL |
[15] | CHI R A, TIAN J, LI Z J, et al. Existing state and partitioning of rare earth on weathered ores[J]. Journal of Rare Earths, 2005, 23(6):756-759. |
[16] |
LAND M, ÖHLANDER B, INGRI J, et al. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction[J]. Chemical Geology, 1999, 160(1/2):121-138.
DOI URL |
[17] |
YUSOFF Z M, NGWENYA B T, PARSONS I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia[J]. Chemical Geology, 2013, 349/350:71-86.
DOI URL |
[18] |
ALSHAMERI A, HE H P, XIN C, et al. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: adsorption operative parameters[J]. Hydrometallurgy, 2019, 185:149-161.
DOI URL |
[19] |
LI M Y H, ZHOU M F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits[J]. American Mineralogist, 2020, 105(1):92-108.
DOI URL |
[20] | 刘容, 王汝成, 陆现彩, 等. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究[J]. 岩石矿物学杂志, 2016, 35(4):617-626. |
[21] |
HOCHELLA M F. Nanogeoscience: from origins to cutting-edge applications[J]. Elements, 2008, 4(6):373-379.
DOI URL |
[22] |
CHRISTIAN P, KAMMER F V D, BAALOUSHA M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media[J]. Ecotoxicology, 2008, 17(5):326-343.
DOI URL |
[23] |
BANFIELD J F, ZHANG H Z. Nanoparticles in the environment[J]. Reviews in Mineralogy and Geochemistry, 2001, 44(1):1-58.
DOI URL |
[24] |
LYVÉN B, HASSELLÖV M, TURNER D R, et al. Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(20):3791-3802.
DOI URL |
[25] |
DEDITIUS A P, UTSUNOMIYA S, REICH M, et al. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 2011, 42(1):32-46.
DOI URL |
[26] |
GUÉNET H, DEMANGEAT E, DAVRANCHE M, et al. Experimental evidence of REE size fraction redistribution during redox variation in wetland soil[J]. Science of the Total Environment, 2018, 631/632:580-588.
DOI URL |
[27] |
YI Z B, LOOSLI F, WANG J J, et al. How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils[J]. Environmental Chemistry Letters, 2020, 18(1):215-227.
DOI URL |
[28] | 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志[M]. 北京: 地质出版社, 1985. |
[29] | 王磊, 龙文国, 周岱, 等. 桂东南大容山晚二叠世花岗岩锆石U-Pb年龄和Sr-Nd-Hf同位素特征及其地质意义[J]. 地质通报, 2016, 35(8):1291-1303. |
[30] | 李平初. 广西六陈岩体与离子吸附型稀土矿成矿及成因[J]. 四川有色金属, 2014(1):23-27. |
[31] | WU Z H, LUO J, GUO H Y, et al. Adsorption isotherms of lanthanum to soil constituents and effects of pH, EDTA and fulvic acid on adsorption of lanthanum onto goethite and humic acid[J]. Chemical Speciation & Bioavailability, 2001, 13(3):75-81. |
[32] |
THENG B K G, YUAN G D. Nanoparticles in the soil environment[J]. Elements, 2008, 4(6):395-399.
DOI URL |
[33] |
CALABI-FLOODY M, BENDALL J S, JARA A A, et al. Nanoclays from an Andisol: extraction, properties and carbon stabilization[J]. Geoderma, 2011, 161(3/4):159-167.
DOI URL |
[34] |
HALL G E M, VAIVE J E, MACLAURIN A I. Analyticalaspects of the application of sodium pyrophosphate reagent in the specific extraction of the labile organic component of humus and soils[J]. Journal of Geochemical Exploration, 1996, 56(1):23-36.
DOI URL |
[35] |
LOOSLI F, YI Z B, BERTI D, et al. Toward a better extraction of titanium dioxide engineered nanomaterials from complex environmental matrices[J]. NanoImpact, 2018, 11:119-127.
DOI URL |
[36] |
FILGUEIRAS A V, LAVILLA I, BENDICHO C. Chemical sequential extraction for metal partitioning in environmental solid samples[J]. Journal of Environmental Monitoring, 2002, 4(6):823-857.
DOI URL |
[37] |
LEE W J, MIN B R, MOON M H. Improvement in particle separation by hollow fiber flow field-flow fractionation and the potential use in obtaining particle size distribution[J]. Analytical Chemistry, 1999, 71(16):3446-3452.
DOI URL |
[38] |
RESCHIGLIAN P, ZATTONI A, RODA B, et al. Hyperlayer hollow-fiber flow field-flow fractionation of cells[J]. Journal of Chromatography A, 2003, 985(1/2):519-529.
DOI URL |
[39] |
TAN Z Q, LIU J F, GUO X R, et al. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors[J]. Analytical Chemistry, 2015, 87(16):8441-8447.
DOI URL |
[40] | 李文彦. 土壤天然纳米颗粒提取及其性质和环境行为的表征[D]. 杭州: 浙江大学, 2013. |
[41] |
REGELINK I C, WENG L P, KOOPMANS G F, et al. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts[J]. Geoderma, 2013, 202/203:134-141.
DOI URL |
[42] |
STOLPE B, GUO L D, SHILLER A M. Binding and transport of rare earth elements by organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS[J]. Geochimica et Cosmochimica Acta, 2013, 106:446-462.
DOI URL |
[43] |
SIRIPINYANOND A, BARNES R M, AMARASIRIWARDENA D. Flow field-flow fractionation-inductively coupled plasma mass spectrometry for sediment bound trace metal characterization[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9):1055-1064.
DOI URL |
[44] |
VEGA F A, WENG L P. Speciation of heavy metals in River Rhine[J]. Water Research, 2013, 47(1):363-372.
DOI URL |
[45] |
ANDERSSON K, DAHLQVIST R, TURNER D, et al. Colloidal rare earth elements in a boreal river: changing sources and distributions during the spring flood[J]. Geochimica et Cosmochimica Acta, 2006, 70(13):3261-3274.
DOI URL |
[46] |
NEUBAUER E, V D KAMMER F, HOFMANN T. Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff[J]. Water Research, 2013, 47(8):2757-2769.
DOI URL |
[47] |
TYLER G, OLSSON T. Conditions related to solubility of rare and minor elements in forest soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(5):594-601.
DOI URL |
[48] |
FU W, LUO P, HU Z Y, et al. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference[J]. Ore Geology Reviews, 2019, 114:103120.
DOI URL |
[49] |
YANG Y, RATTÉ D, SMETS B F, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption[J]. Chemosphere, 2001, 43(8):1013-1021.
DOI URL |
[50] |
BUETTNER K M, RINCIOG C I, MYLON S E. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1/2/3):74-79.
DOI URL |
[51] |
ZHANG W L, SCHWAB A P, WHITE J C, et al. Impact of nanoparticle surface properties on the attachment of cerium oxide nanoparticles to sand and kaolin[J]. Journal of Environmental Quality, 2018, 47(1):129-138.
DOI URL |
[52] |
BORST A M, SMITH M P, FINCH A A, et al. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 2020, 11(1):4386
DOI URL |
[1] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[2] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[3] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[4] | 罗欢, 邵德勇, 孟康, 张瑜, 宋辉, 闫建萍, 张同伟. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82. |
[5] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[6] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[7] | 任江波, 邓义楠, 赖佩欣, 何高文, 王汾连, 姚会强, 邓希光, 刘永刚. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2): 412-425. |
[8] | 王旭影, 姜在兴. 苏北盆地古近系阜三段物源特征及其形成的构造背景分析[J]. 地学前缘, 2021, 28(2): 376-390. |
[9] | 洪瑾,甘成势,刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54. |
[10] | 柳青青,迟清华,王学求,周建,刘汉粮,刘东盛,高艳芳,翟大兴. 中国东部大陆尺度地球化学走廊带碳酸盐岩稀土元素分布特征与影响因素[J]. 地学前缘, 2018, 25(4): 99-115. |
[11] | 于扬,李德先,王登红,黄凡,刘秀丽,田兆雪,邓茂春. 溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J]. 地学前缘, 2017, 24(5): 172-181. |
[12] | 任宏,欧阳荷根. 内蒙古拜仁达坝银多金属矿床二氧化碳不混溶成矿作用研究[J]. 地学前缘, 2017, 24(2): 151-158. |
[13] | 崔晓南,黄文辉,敖卫华,周鸿璞,梁飞. 渭北煤田下峪口矿二叠纪煤中稀土元素地球化学研究[J]. 地学前缘, 2016, 23(3): 90-96. |
[14] | 郭江峰,姚多喜,陈健,陈萍. 重庆龙潭组煤中稀土元素地球化学及地质成因分析[J]. 地学前缘, 2016, 23(3): 51-58. |
[15] | 闫德宇,黄文辉,王婷灏,刘贝. 中、下扬子地区下寒武统黑色页岩微量元素富集特征[J]. 地学前缘, 2016, 23(3): 42-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||