地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 66-82.DOI: 10.13745/j.esf.sf.2022.5.34
罗欢1(), 邵德勇2, 孟康2, 张瑜2, 宋辉2, 闫建萍1, 张同伟3,*(
)
收稿日期:
2022-04-06
修回日期:
2022-04-30
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
*张同伟(1965—),男,教授,博士生导师,主要从事石油、天然气地质地球化学及成藏地球化学研究工作。E-mail: 作者简介:
罗 欢(1995—),男,博士研究生,地球化学专业。E-mail: luoh17@lzu.edu.cn
基金资助:
LUO Huan1(), SHAO Deyong2, MENG Kang2, ZHANG Yu2, SONG Hui2, YAN Jianping1, ZHANG Tongwei3,*(
)
Received:
2022-04-06
Revised:
2022-04-30
Online:
2023-05-25
Published:
2023-04-27
摘要:
通过对鄂西宜昌地区鄂阳页1井(EYY1)寒武系底部岩家河组和水井沱组下部的总有机碳(TOC)、总无机碳(TIC)、微量元素(Ba、U、Th)和稀土元素分析,并结合前人对中上扬子地区7个位于不同沉积环境区寒武系剖面的研究结果和已有数据报道,讨论了寒武系水井沱组富有机质页岩中过剩钡(Ba过剩)的成因、来源及其对海洋古生产力水平的指示。结果表明,中上扬子地区寒武系富有机质页岩普遍富集Ba过剩,而且从浅水内陆棚到深水外陆棚——大陆斜坡,再到热水沉积区,寒武系页岩的Ba过剩富集程度趋于增加,反映了与古陆物源区的距离远近以及古地理背景对Ba过剩富集的控制。寒武系富有机质页岩中所富集的Ba过剩有热液成因和生物成因两种来源,Ba过剩-Eu异常图版可用于推测其主要来源:黔北—湘西北地区所处的热水沉积区内Ba过剩含量极高(>10 000 μg/g),具有显著的正Eu异常,且Ba过剩与Eu异常值具有正相关性,指示Ba过剩主要为热液成因,其含量变化反映了热液活动的强度;鄂西地区和黔南地区Ba过剩含量相对较高(5 000~10 000 μg/g),四川盆地西部Ba过剩含量相对较低(<1 000 μg/g),而且都不具备正Eu异常,指示Ba过剩为生物成因,其含量变化与古生产力水平有关。与中上扬子其他地区寒武系页岩的TOC含量、U/Th值及Ba过剩富集程度的综合对比表明,宜昌地区较高的古生产力水平和强还原条件为有机质的来源和保存提供了物质基础和有利条件,共同决定了寒武系水井沱组页岩有机质的富集。
中图分类号:
罗欢, 邵德勇, 孟康, 张瑜, 宋辉, 闫建萍, 张同伟. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82.
LUO Huan, SHAO Deyong, MENG Kang, ZHANG Yu, SONG Hui, YAN Jianping, ZHANG Tongwei. Origin of excess barium in the Cambrian shale of Yichang area, western Hubei, and its implication for organic matter accumulation[J]. Earth Science Frontiers, 2023, 30(3): 66-82.
图2 寒武纪第二世(521~509 Ma)初期中上扬子地区古地理图(据文献[34]修改)
Fig.2 Paleo-geographic map of the middle-upper Yangtze region in the Early Cambrian Epoch 2 (521-507 Ma). Modified after [34].
编号 | 剖面名称 | 剖面位置 | 古地理背景 | 采样层位 | 样品 总数* | 寒武系第二统富 有机质段厚度***/m | 富有机质段 内样品数 | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 沙滩剖面 | 四川南江 | 浅水内陆棚 | 郭家坝组下部 | 26 | 32(28~60 ) | 10 | [ |
2 | W201 | 四川威远 | 浅水内陆棚 | 筇竹寺组下部 | 20 | 30(2 820~2 790 ) | 5 | [ |
3 | N206 | 四川长宁 | 资阳—长宁裂陷槽内部 | 筇竹寺组下部 | 10 | 31(1 890~1 859 ) | 7 | [ |
4 | EYY1 | 湖北宜昌 | 深水外陆棚 | 岩家河组和 水井沱组下部 | 64 | 63(3 057~2 994 ) | 43 | 本研究 |
5 | YK1 | 重庆酉阳 | 深水外陆棚 (靠近热水沉积区) | 牛蹄塘组 | 53** | 37(62~25 ) | 42***** | [ |
6 | GMD1 | 贵州湄潭 | 热水沉积区 | 牛蹄塘组 | 44 | 110(1 709~1 599 ) | 37 | [ |
7 | 松桃剖面 | 贵州松桃 | 热水沉积区 | 九门冲组下部 | 14 | >16****(44~60 ) | 10 | [ |
8 | TX1 | 贵州岑巩 | 大陆斜坡 | 牛蹄塘组 | 17 | 42(1 817~1 775 ) | 10 | [ |
表1 中上扬子地区寒武系剖面信息汇总表
Table 1 Basic information on the studied Cambrian sections in the middle-upper Yangtze region
编号 | 剖面名称 | 剖面位置 | 古地理背景 | 采样层位 | 样品 总数* | 寒武系第二统富 有机质段厚度***/m | 富有机质段 内样品数 | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 沙滩剖面 | 四川南江 | 浅水内陆棚 | 郭家坝组下部 | 26 | 32(28~60 ) | 10 | [ |
2 | W201 | 四川威远 | 浅水内陆棚 | 筇竹寺组下部 | 20 | 30(2 820~2 790 ) | 5 | [ |
3 | N206 | 四川长宁 | 资阳—长宁裂陷槽内部 | 筇竹寺组下部 | 10 | 31(1 890~1 859 ) | 7 | [ |
4 | EYY1 | 湖北宜昌 | 深水外陆棚 | 岩家河组和 水井沱组下部 | 64 | 63(3 057~2 994 ) | 43 | 本研究 |
5 | YK1 | 重庆酉阳 | 深水外陆棚 (靠近热水沉积区) | 牛蹄塘组 | 53** | 37(62~25 ) | 42***** | [ |
6 | GMD1 | 贵州湄潭 | 热水沉积区 | 牛蹄塘组 | 44 | 110(1 709~1 599 ) | 37 | [ |
7 | 松桃剖面 | 贵州松桃 | 热水沉积区 | 九门冲组下部 | 14 | >16****(44~60 ) | 10 | [ |
8 | TX1 | 贵州岑巩 | 大陆斜坡 | 牛蹄塘组 | 17 | 42(1 817~1 775 ) | 10 | [ |
图4 中上扬子地区寒武系第二统富有机质页岩对比图
Fig.4 Stratigraphic correlation of organic-rich shale formations ( blue shaded area) of Cambrian Series 2 in the middle-upper Yangtz region
图7 鄂阳页1井(EYY1)剖面岩家河组上部(即2层)钙质页岩中的自形重晶石 单偏光,样品EYY1-178(3 059.70 m,w(Ba)=32 541.90 μg/g)。
Fig.7 Euhedral barite in the upper Yanjiahe Formation (bed 2) of the EYY1 section
图8 鄂阳页1井(EYY1)剖面水井沱组富有机质段下部(3层下部)的Ba过剩异常富集样品中的重晶石脉体
Fig.8 Vein barite in sample with abnormally high Baex level from the lower part of organic-rich interval of the Shuijingtuo Formation, EYY1 section (lower part of bed 3)
图9 中上扬子地区各剖面寒武系第二统富有机质段内TOC含量、U/Th值、Ba过剩含量和Eu异常值箱型图
Fig.9 Box plots of TOC contents, U/Th ratios, Baex levels, and Eu anomaly values in Cambrian Stage 2 shale samples from different areas of the middle-upper Yangtze region
[1] |
GUO Q J, SHIELDS G A, LIU C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
DOI URL |
[2] |
LI Y F, FAN T L, ZHANG J C, et al. Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: implications for hydrothermal influences and paleocean redox conditions[J]. Journal of Asian Earth Sciences, 2015, 109: 100-123.
DOI URL |
[3] |
LIU K, FENG Q L, SHEN J, et al. Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491: 1-9.
DOI URL |
[4] |
WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
DOI URL |
[5] |
WU Y W, TIAN H, GONG D J, et al. Paleo-environmental variation and its control on organic matter enrichment of black shales from shallow shelf to slope regions on the Upper Yangtze Platform during Cambrian Stage 3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109653.
DOI URL |
[6] | RUDNICK R L, GAO S. Composition of the continental crust[M]// HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry: Second Edition. Amsterdam: Elsevier, 2014: 1-51. |
[7] | 周锡强, 遇昊, 黄泰誉, 等. 重晶石沉积类型及成因评述: 兼论扬子地区下寒武统重晶石的富集机制[J]. 沉积学报, 2016, 34(6): 1044-1056. |
[8] |
DYMOND J, SUESS E, LYLE M. Barium indeep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181.
DOI URL |
[9] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
DOI URL |
[10] | 贾智彬, 侯读杰, 孙德强, 等. 热水沉积判别标志及与烃源岩的耦合关系[J]. 天然气地球科学, 2016, 27(6): 1025-1034. |
[11] | 罗胜元, 刘安, 李海, 等. 中扬子宜昌地区寒武系水井沱组页岩含气性及影响因素[J]. 石油实验地质, 2019, 41(1): 56-67. |
[12] | 陈孝红, 危凯, 张保民, 等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 2018, 45(2): 207-226. |
[13] |
GUO J F, LI Y, LI G X. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007.
DOI URL |
[14] |
ZHANG Z F, ZHANG Z L, LI G X, et al. The Cambrian brachiopod fauna from the first-trilobite age Shuijingtuo Formation in the Three Gorges area of China[J]. Palaeoworld, 2016, 25(3): 333-355.
DOI URL |
[15] | 陈平. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义[J]. 地层古生物论文集, 1984, (2): 49- 64, 164-165. |
[16] | 钱逸. 中国小壳化石分类学与生物地层学[M]. 北京: 科学出版社, 1999. |
[17] | 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447. |
[18] |
COHEN K M, FINNEY S C, GIBBARD P L, et al. The ICS international chronostratigraphic chart[J]. Episodes, 2013, 36(3): 199-204.
DOI URL |
[19] |
LANDING E, GEYER G, BRASIER M D, et al. Cambrian Evolutionary Radiation: Context, correlation, and chronostratigraphy—Overcoming deficiencies of the first appearance datum (FAD) concept[J]. Earth-Science Reviews, 2013, 123: 133-172.
DOI URL |
[20] |
ZHANG X L, AHLBERG P, BABCOCK L E, et al. Challenges in defining the base of Cambrian Series 2 and Stage 3[J]. Earth-Science Reviews, 2017, 172: 124-139.
DOI URL |
[21] | 李玉喜, 聂海宽, 龙鹏宇. 我国富含有机质泥页岩发育特点与页岩气战略选区[J]. 天然气工业, 2009, 29(12): 115-118, 152. |
[22] | 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一) 南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16. |
[23] |
聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4): 484-491.
DOI |
[24] | 张金川, 姜生玲, 唐玄, 等. 我国页岩气富集类型及资源特点[J]. 天然气工业, 2009, 29(12): 109-114, 151. |
[25] |
何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59.
DOI |
[26] |
FU Y, DONG L, LI C, et al. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang Formation[J]. Journal of Earth Science, 2016, 27(2): 271-281.
DOI URL |
[27] |
SHI C H, CAO J, HAN S C, et al. A review of polymetallic mineralization in Lower Cambrian black shales in South China: combined effects of seawater, hydrothermal fluids, and biological activity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561: 110073.
DOI URL |
[28] |
XU L G, LEHMANN B, JINGWEN MAO J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: a reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
DOI URL |
[29] |
ZHU M Y, ZHANG J M, YANG A H, et al. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach[J]. Progress in Natural Science, 2003, 13(12): 951-960.
DOI URL |
[30] |
ISHIKAWA T, UENO Y, SHU D G, et al. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China[J]. Precambrian Research, 2013, 225: 190-208.
DOI URL |
[31] |
JIANG G Q, WANG X Q, SHI X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian (Ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317/318: 96-110.
DOI URL |
[32] |
STEINER M, LI G X, QIAN Y, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
DOI URL |
[33] |
STEINER M, WALLIS E, ERDTMANN B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils: insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191.
DOI URL |
[34] | 赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40(4): 701-715. |
[35] | 段金宝, 梅庆华, 李毕松, 等. 四川盆地震旦纪—早寒武世构造-沉积演化过程[J]. 地球科学, 2019, 44(3): 738-755. |
[36] | 刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. |
[37] | 魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. |
[38] | 钟勇, 李亚林, 张晓斌, 等. 四川盆地下组合张性构造特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 498-510. |
[39] |
郭彤楼. 多旋回盆地叠合复合控藏在常规非常规天然气勘探中的实践[J]. 地学前缘, 2022, 29(6): 109-119.
DOI |
[40] |
CHEN D Z, WANG J G, QING H R, et al. Hydrothermal venting activities in the Early Cambrian, South China: petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009, 258(3/4): 168-181.
DOI URL |
[41] |
GAO P, HE Z L, LI S J, et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 381-397.
DOI URL |
[42] |
CHEN J B, ALGEO T J, ZHAO L S, et al. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181-202.
DOI URL |
[43] |
LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare earth element and yttrium variability in south east Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
DOI URL |
[44] | MCLENNAN S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[M]// Geochemistry and Mineralogy of Rare Earth Elements. Berlin: De Gruyter, 1989: 169-200. |
[45] |
JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
DOI URL |
[46] |
GINGELE F, DAHMKE A. Discrete barite particles andBarium as tracers of paleoproductivity in South Atlantic sediments[J]. Paleoceanography, 1994, 9(1): 151-168.
DOI URL |
[47] |
SCHMITZ B, CHARISI S D, THOMPSON E I, et al. Barium,SiO2(excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event[J]. Terra Nova, 1997, 9(2): 95-99.
DOI URL |
[48] |
THUNELL R C, MOORE W S, DYMOND J, et al. Elemental and isotopic fluxes in the southern California Bight:a time-series sediment trap study in the San Pedro Basin[J]. Journal of Geophysical Research Atmospheres, 1994, 99(C1): 875.
DOI URL |
[49] |
KLUMP J, HEBBELN D, WEFER G. The impact of sediment provenance on Barium-based productivity estimates[J]. Marine Geology, 2000, 169(3/4): 259-271.
DOI URL |
[50] |
REITZ A, PFEIFER K, DE LANGE G J, et al. Biogenic Barium and the detrital Ba/Al ratio: a comparison of their direct and indirect determination[J]. Marine Geology, 2004, 204(3/4): 289-300.
DOI URL |
[51] |
GONNEEA M E, PAYTAN A. Phase associations of Barium in marine sediments[J]. Marine Chemistry, 2006, 100(1/2): 124-135.
DOI URL |
[52] |
DEHAIRS F, CHESSELET R, JEDWAB J. Discrete suspended particles of barite and the Barium cycle in the open ocean[J]. Earth and Planetary Science Letters, 1980, 49(2): 528-550.
DOI URL |
[53] |
LEA D, BOYLE E. Barium content of benthic foraminifera controlled by bottom-water composition[J]. Nature, 1989, 338(6218): 751-753.
DOI |
[54] |
MARTIN J H, KNAUER G A. The elemental composition of plankton[J]. Geochimica et Cosmochimica Acta, 1973, 37(7): 1639-1653.
DOI URL |
[55] |
RILEY J P, ROTH I. The distribution of trace elements in some species of phytoplankton grown in culture[J]. Journal of the Marine Biological Association of the United Kingdom, 1971, 51(1): 63-72.
DOI URL |
[56] |
DYMOND J, LYLE M, FINNEY B, et al. Ferromanganese nodules from MANOP Sites H, S, and R: control of mineralogical and chemical composition by multiple accretionary processes[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 931-949.
DOI URL |
[57] | EAGLE M, PAYTAN A, ARRIGO K R, et al. A comparison between excess Barium and barite as indicators of carbon export[J]. Paleoceanography, 2003, 18(1): 1021. |
[58] | 王富良, 黄艺, 付勇, 等. 黔东早寒武世早期重晶石富集机制研究: 来自硫同位素的约束[J]. 地球学报, 2020, 41(5): 686-698. |
[59] |
HEIN J R, ZIERENBERG R A, MAYNARD J B, et al. Barite-forming environments along a rifted continental margin, southern California Borderland[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/12/13): 1327-1349.
DOI URL |
[60] |
BISHOP J K B. The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988, 332(6162): 341-343.
DOI |
[61] |
MARTINEZ-RUIZ F, PAYTAN A, GONZALEZ-MUÑOZ M T, et al. Barite formation in the ocean: origin of amorphous and crystalline precipitates[J]. Chemical Geology, 2019, 511: 441-451.
DOI URL |
[62] |
SCHENAU S J, PRINS M A, DE LANGE G J, et al. Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1545-1556.
DOI URL |
[63] |
VON BREYMANN M T, EMEIS K C, SUESS E. Water depth and diagenetic constraints on the use of Barium as a palaeoproductivity indicator[J]. Geological Society, London, Special Publications, 1992, 64(1): 273-284.
DOI URL |
[64] |
SHEN J, SCHOEPFER S D, FENG Q L, et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery[J]. Earth-Science Reviews, 2015, 149: 136-162.
DOI URL |
[65] |
DOUVILLE E, CHARLOU J L, OELKERS E H, et al. The rainbow vent fluids (36°14’N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J]. Chemical Geology, 2002, 184(1/2): 37-48.
DOI URL |
[66] |
OGAWA Y, SHIKAZONO N, ISHIYAMA D, et al. An experimental study on felsic rock-artificial seawater interaction: implications for hydrothermal alteration and sulfate formation in the Kuroko mining area of Japan[J]. Mineralium Deposita, 2005, 39(8): 813-821.
DOI URL |
[67] |
LUO H, ZHANG T W, YAN J P, et al. Rare earth elements and yttrium (REY) distribution pattern of Lower Cambrian organic-rich shale in Yichang area, western Hubei Province, South China, and source of carbonate minerals[J]. Applied Geochemistry, 2022, 136: 105173.
DOI URL |
[68] |
DULSKI P. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry[J]. Fresenius’ Journal of Analytical Chemistry, 1994, 350(4/5): 194-203.
DOI URL |
[69] |
JARVIS K E, GRAY A L, MCCURDY E. Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion[J]. Journal of Analytical Atomic Spectrometry, 1989, 4(8): 743.
DOI URL |
[70] |
SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
DOI URL |
[71] |
ISHIKAWA T, UENO Y, KOMIYA T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China:prominent global-scale isotope excursions just before the Cambrian Explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208.
DOI URL |
[72] | 谷志东, 李宗银, 袁苗, 等. 四川盆地及其周缘晚震旦世—早寒武世早期区域抬升运动对岩溶储层发育的影响[J]. 天然气工业, 2014, 34(8): 37-45. |
[73] | 汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312. |
[74] | 武赛军, 魏国齐, 杨威, 等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学, 2016, 27(1): 60-70. |
[75] | 武赛军, 魏国齐, 杨威, 等. 四川盆地关键构造变革期不整合特征及其油气地质意义[J]. 科技导报, 2015, 33(10): 93-100. |
[76] |
BRUMSACK H J. The trace metal content of recent organic carbon-rich sediments:implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 344-361.
DOI URL |
[77] | HENDY I L. Diagenetic behavior of barite in a coastal upwelling setting[J]. Paleoceanography, 2010, 25(4): A4103. |
[78] |
HENKEL S, MOGOLLÓN J M, NÖTHEN K, et al. Diagenetic Barium cycling in Black Sea sediments: a case study for anoxic marine environments[J]. Geochimica et Cosmochimica Acta, 2012, 88: 88-105.
DOI URL |
[1] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[2] | 孟庆修, 曹自成, 丁文龙, 杨德彬, 马海陇, 刁新东, 王明, 韩鹏远, 王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律[J]. 地学前缘, 2024, 31(5): 247-262. |
[3] | 吴淳, 刘航宇, 芦飞凡, 刘波, 石开波, 何卿. 北京西山下苇甸中上寒武统风暴沉积特征及模式[J]. 地学前缘, 2023, 30(6): 110-124. |
[4] | 邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
[5] | 张同伟, 罗欢, 孟康. 我国南方不同地区寒武系页岩含气性差异主控因素探讨[J]. 地学前缘, 2023, 30(3): 1-13. |
[6] | 吴陈君, 刘新社, 文志刚, 妥进才. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘, 2023, 30(3): 101-109. |
[7] | 孟康, 邵德勇, 张六六, 李立武, 张瑜, 罗欢, 宋辉, 张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义[J]. 地学前缘, 2023, 30(3): 14-27. |
[8] | 宋辉, 邵德勇, 罗欢, 孟康, 张瑜, 唐玄, 张同伟. 鄂西宜昌地区下寒武统水井沱组草莓状黄铁矿SEM图像特征及古环境指示意义:以鄂阳页1井为例[J]. 地学前缘, 2023, 30(3): 195-207. |
[9] | 潘晓强, 华洪, 代乔坤, 骆劲舟, 刘紫薇. 宜昌地区寒武系水井沱组(第二统第三阶)生物组合面貌及其地层分布[J]. 地学前缘, 2023, 30(3): 28-43. |
[10] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[11] | 张瑜, 黄德将, 张六六, 万传辉, 罗欢, 邵德勇, 孟康, 闫建萍, 张同伟. 鄂西宜昌地区寒武系水井沱组页岩生物成因硅特征及其对页岩气富集的影响[J]. 地学前缘, 2023, 30(3): 83-100. |
[12] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[13] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[14] | 易泽邦, 付伟, 赵芹, 许成, 陆济璞. 花岗岩风化壳中稀土纳米微粒的提取、表征及赋存状态研究[J]. 地学前缘, 2022, 29(1): 42-53. |
[15] | 王旭影, 姜在兴. 苏北盆地古近系阜三段物源特征及其形成的构造背景分析[J]. 地学前缘, 2021, 28(2): 376-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||