地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 199-212.DOI: 10.13745/j.esf.sf.2023.2.37
• 深层-超深层海相层系烃源岩发育、生烃演化和油气地球化学特征及示踪 • 上一篇 下一篇
邱楠生1,2(), 常健1,2, 冯乾乾1,2, 曾帅1,2, 刘效妤1,2, 李慧莉3, 马安来3
收稿日期:
2023-02-06
修回日期:
2023-03-10
出版日期:
2023-11-25
发布日期:
2023-11-25
作者简介:
邱楠生(1968—),男,博士,教授,主要从事盆地构造-热演化研究工作。E-mail: qiunsh@cup.edu.cn
基金资助:
QIU Nansheng1,2(), CHANG Jian1,2, FENG Qianqian1,2, ZENG Shuai1,2, LIU Xiaoyu1,2, LI Huili3, MA Anlai3
Received:
2023-02-06
Revised:
2023-03-10
Online:
2023-11-25
Published:
2023-11-25
摘要:
我国中西部盆地深层、超深层油气相态、分布深度和油气贫富差异大,盆地温度场是制约油气成藏及烃源岩成熟演化的关键要素。本文以塔里木盆地和四川盆地寒武系为研究对象,系统解析盆地古、今温度场特征,明确寒武系烃源岩热演化及其差异性,探讨热演化对油气生成及油气相态的控制作用。结果表明,塔里木盆地和四川盆地现今平均热流为(42.5±7.6)和(53.8±7.6) mW/m2,反映了“冷盆”和“温盆”特征。塔里木盆地热流自早寒武世以来呈下降趋势,早二叠世受岩浆活动的影响,出现短暂的峰值。四川盆地寒武纪至早二叠世为稳定低热流,早二叠世末受峨眉山地幔柱热效应的深刻影响,热流快速上升,晚二叠世以来热流下降。由于四川盆地的热状况一直高于塔里木盆地,同时受二叠纪岩浆活动的差异影响,盆地寒武系烃源岩成熟演化、油气生成和相态存在差异。塔里木盆地寒武系烃源岩的热演化具有3种类型:(1)古生代迅速成熟演化定型;(2)早古生代快速演化-后期持续演化型;(3)早古生代和中生代快速演化型。四川盆地寒武系烃源岩的热演化具有3种类型:(1)持续演化型;(2)加里东期热演化停滞-中生代持续演化型;(3)加里东期和印支期热演化停滞-后期持续演化型。极低的地热背景使得塔里木盆地深层-超深层仍存在液态烃保存的有利温度条件。
中图分类号:
邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212.
QIU Nansheng, CHANG Jian, FENG Qianqian, ZENG Shuai, LIU Xiaoyu, LI Huili, MA Anlai. Maturation history of deep and ultra-deep source rocks, central and western basins, China[J]. Earth Science Frontiers, 2023, 30(6): 199-212.
图9 塔里木盆地LT1井和四川盆地MS1井寒武系烃源岩热演化和温度演化过程
Fig.9 Thermal evolution and heating rate at the Cambrian source rocks for the Well LT1 in the Tarim Basin and the Well MS1 in the Sichuan Basin
图10 (a)二叠纪峨眉山大火成岩省热效应范围(据文献[66]修改);(b)塔里木大火成岩省热效应范围(据文献[33]修改)
Fig.10 (a) Thermal effect range of the Permian Emeishan large igneous province (modified after [66]); (b) Thermal effect range of the Permian Tarim large igneous province. Modified after [33].
图11 (a)四川盆地YF1井下寒武统烃源岩热演化与温度演化;(b)四川盆地YF1井下志留统烃源岩热演化与温度演化;(c)塔里木盆地SB5井下寒武统烃源岩热演化与温度演化
Fig.11 (a) Maturity and temperature evolution of the Lower Cambrian source rock of the Well YF1 in the Sichuan Basin; (b) Maturity and temperature evolution of the Lower Silurian source rock of the Well YF1 in the Sichuan Basin; (c) Maturity and temperature evolution of the Lower Cambrian source rock of the Well sb5 in the Tarim Basin.
[1] |
李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
DOI |
[2] | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672, 683. |
[3] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[4] | 邱楠生, 何丽娟, 常健, 等. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 2020, 42(5): 790-802. |
[5] | 任战利, 崔军平, 祁凯, 等. 叠合盆地深层、超深层热演化史恢复理论及方法研究新进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 910-929. |
[6] | 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3):177-183. |
[7] | 马庆佑, 吕海涛, 蒋华山, 等. 塔里木盆地台盆区构造单元划分方案[J]. 海相油气地质, 2015, 20(1): 1-9. |
[8] | 贾承造, 魏国齐. 塔里木盆地构造特征与含油气性[J]. 科学通报, 2002, 47(增刊1): 1-8. |
[9] | 邬光辉, 邓卫, 黄少英, 等. 塔里木盆地构造-古地理演化[J]. 地质科学, 2020, 55(2):305-321. |
[10] | 肖贤明. 塔里木盆地三叠系烃源岩有机岩石学特征与生烃评价[J]. 地球化学, 1997, 26(1): 64-71. |
[11] | 赵靖舟. 塔里木盆地北部寒武—奥陶系海相烃源岩重新认识[J]. 沉积学报, 2001, 19(1):117-124. |
[12] | 赵孟军, 张宝民, 肖中尧, 等. 塔里木盆地奥陶系偏腐殖型烃源岩的发现[J]. 天然气工业, 1998, 18(5): 32-36. |
[13] | 赵孟军, 张水昌. 塔里木盆地石炭系巴楚组碳酸盐岩烃源岩及其原油特征[J]. 海相油气地质, 2000, 5(1): 23-28. |
[14] | 刘胜, 邱斌, 陈新安, 等. 塔里木盆地西端中生界沉积环境与油气地质特征[J]. 新疆石油地质, 2006, 27(1):10-14. |
[15] | 刘玉魁, 闵磊, 冯游文, 等. 塔里木盆地乌什凹陷石油地质特征[J]. 天然气工业, 2007, 27(1):24-26. |
[16] | 云露, 翟晓先. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质, 2008, 29(6):726-732. |
[17] | 朱传玲, 闫华, 云露, 等. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征[J]. 石油实验地质, 2014, 36(5):626-632. |
[18] | 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13. |
[19] | 杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682. |
[20] |
张科, 潘文庆, 苏劲, 等. 塔里木盆地南华系—寒武系烃源岩时空分布与生烃潜力评价[J]. 中国石油勘探, 2022, 27(4): 121-134.
DOI |
[21] | 张水昌, 高志勇, 李建军, 等. 塔里木盆地寒武系—奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发, 2012, 39(3):285-294. |
[22] | 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7):1224-1232. |
[23] | 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1):8-21. |
[24] | 朱光有, 胡剑风, 陈永权, 等. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境[J]. 地质学报, 2022, 96(6):2116-2130. |
[25] |
魏国齐, 朱永进, 郑剑锋, 等. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价[J]. 石油勘探与开发, 2021, 48(6): 1114-1126.
DOI |
[26] |
刘池洋. 叠合盆地特征及油气赋存条件[J]. 石油学报, 2007, 28(1): 1-7.
DOI |
[27] | 刘树根, 李智武, 孙玮, 等. 四川含油气叠合盆地基本特征[J]. 地质科学, 2011, 46(1):233-257. |
[28] |
LIU S G, YANG Y, DENG B, et al. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth-Science Reviews, 2021, 213: 103470.
DOI URL |
[29] |
ZOU C N, WEI G Q, XU C C, et al. Geochemistry of the Sinian-Cambrian gas system in the Sichuan Basin, China[J]. Organic Geochemistry, 2014, 74: 13-21.
DOI URL |
[30] |
LI X Q, ZHANG J Z, WANG Y, et al. Accumulation conditions of Lower Paleozoic shale gas from the southern Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2016, 1(2): 101-108.
DOI URL |
[31] | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1)[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
[32] |
KETCHAM R A, CARTER A, DONELICK R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 2007, 92(5/6): 799-810.
DOI URL |
[33] |
YAMADA R, MURAKAMI M, TAGAMI T. Statistical modelling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments[J]. Chemical Geology, 2007, 236(1/2): 75-91.
DOI URL |
[34] |
GUENTHNER W R, REINERS P W, KETCHAM R A, et al. Helium diffusion in natural zircon:radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science, 2013, 313(3): 145-198.
DOI URL |
[35] |
FLOWERS R M, KETCHAM R A, SHUSTER D L, et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2347-2365.
DOI URL |
[36] |
NIELSEN S B, CLAUSEN O R, MCGREGOR E. Basin%Ro: a vitrinite reflectance model derived from basin and laboratory data[J]. Basin Research, 2017, 29: 515-536.
DOI URL |
[37] | BURNHAM A, PETERS K E, ANONYMOUS. Evolution of vitrinite reflectance models[C]. AAPG 2016 annual convention and exhibition. Tulsa: American Association of Petroleum Geologists and Society for Sedimentary Geology, 2016. |
[38] |
QIU N S, CHANG J, ZUO Y H, et al. Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, Northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821.
DOI URL |
[39] |
FENG Q Q, QIU N, FU X D, et al. Maturity evolution of Permian source rocks in the Sichuan Basin, southwestern China: the role of the Emeishan mantle plume[J]. Journal of Asian Earth Sciences. 2022, 229: 105180.
DOI URL |
[40] |
QIU N S, LIU W, FU X D, et al. Maturity evolution of Lower Cambrian Qiongzhusi Formation shale of the Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 128: 105061.
DOI URL |
[41] |
FENG Q Q, QIU N S, FU X D, et al. Permian geothermal units in the Sichuan Basin: implications for the thermal effect of the Emeishan mantle plume[J]. Marine and Petroleum Geology, 2021, 132: 105226.
DOI URL |
[42] | 邱楠生, 刘雯, 徐秋晨, 等. 深层-古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. |
[43] | 贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801. |
[44] |
QIU N S, CHANG J, ZHU C Q, et al. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China[J]. Earth-Science Reviews, 2022, 224: 103884.
DOI URL |
[45] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1):1-17.
DOI |
[46] |
刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1):11-28.
DOI |
[47] |
郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468.
DOI |
[48] | 孙冬胜, 李双建, 李建交, 等. 塔里木与四川盆地震旦系—寒武系油气成藏条件对比与启示[J]. 地质学报, 2022, 96(1): 249-264. |
[49] |
BRYAN S E, ERNST R E. Revised definition of large igneous provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/2/3/4): 175-202.
DOI URL |
[50] |
CHEN C S, QIN S F, WANG Y P, et al. High temperature methane emissions from Large Igneous Provinces as contributors to Late Permian mass extinctions[J]. Nature Communications, 2022, 13: 6893.
DOI PMID |
[51] | 陈军, 徐义刚. 二叠纪大火成岩省的环境与生物效应:进展与前瞻[J]. 矿物岩石地球化学通报. 2017, 36(3): 374-393. |
[52] |
XU Y G, HE B, CHUNG S L, et al. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology, 2004, 32(10): 917-920.
DOI URL |
[53] |
ZHANG Z C, MAHONEY J J, MAO J W, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China[J]. Journal of Petrology, 2006, 47(10): 1997-2019.
DOI URL |
[54] |
SHELLNUTT J G, DENYSZYN S W, MUNDIL R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China)[J]. Gondwana Research, 2012, 22(1): 118-126.
DOI URL |
[55] |
LIU X Y, QIU N S, SØAGER N, et al. Geochemistry of Late Permian basalts from boreholes in the Sichuan Basin, SW China: implications for an extension of the Emeishan large igneous province[J]. Chemical Geology, 2022, 588: 120636.
DOI URL |
[56] |
HE B, XU Y G, CHUNG S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 391-405.
DOI URL |
[57] |
ALI J R, LO C H, THOMPSON G M, et al. Emeishan basalt Ar-Ar overprint ages define several tectonic events that affected the western Yangtze platform in the Mesozoic and Cenozoic[J]. Journal of Asian Earth Sciences, 2004, 23(2): 163-178.
DOI URL |
[58] |
SUN Y D, LAI X L, WIGNALL P B, et al. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models[J]. Lithos, 2010, 119(1/2): 20-33.
DOI URL |
[59] |
SHELLNUTT J G. The Emeishan large igneous province: a synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394.
DOI URL |
[60] |
HONG Y T, HE B, MUNDIL R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
DOI URL |
[61] |
HUANG B C, YAN Y G, PIPER J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
DOI URL |
[62] |
YAN H, PI D H, JIANG S Y, et al. New constraints on the onset age of the Emeishan LIP volcanism and implications for the Guadalupian mass extinction[J]. Lithos, 2020, 360/361: 105441.
DOI URL |
[63] |
LIU Y D, LI L, VAN WIJK J, et al. Surface-wave tomography of the Emeishan large igneous province (China): magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction[J]. Geology, 2021, 49(9): 1032-1037.
DOI URL |
[64] | 胡明毅, 胡忠贵, 魏国齐, 等. 四川盆地茅口组层序岩相古地理特征及储集层预测[J]. 石油勘探与开发, 2012, 39(1): 45-55. |
[65] |
LI H B, ZHANG Z C, SANTOSH M, et al. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction[J]. Journal of Asian Earth Sciences, 2017, 134: 293-308.
DOI URL |
[66] | 梁宇馨, 李红, 张冬冬, 等. 四川盆地华蓥山峨眉玄武岩地球化学特征及其成因分析[J]. 地质科学, 2021, 56(1): 288-302. |
[67] |
ZHANG D Y, ZHANG Z C, SANTOSH M, et al. Perovskite and badeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume[J]. Earth and Planetary Science Letters, 2013, 361: 238-248.
DOI URL |
[68] |
XU Y G, WEI X, LUO Z Y, et al. The Early Permian Tarim large igneous province: main characteristics and a plume incubation model[J]. Lithos, 2014, 204: 20-35.
DOI URL |
[69] |
YU X, YANG S F, CHEN H L, et al. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics[J]. Gondwana Research, 2011, 20(2/3): 485-497.
DOI URL |
[70] |
SHANGGUAN S, PEATE I U, TIAN W, et al. Re-evaluating the geochronology of the Permian Tarim magmatic province: implications for temporal evolution of magmatism[J]. Journal of the Geological Society, 2016, 173(1): 228-239.
DOI URL |
[1] | 徐长贵, 高阳东, 刘军, 彭光荣, 陈兆明, 李洪博, 蔡俊杰, 马庆佑. 南海陆缘“拆离—核杂岩型”盆地发现与油气地质条件:以南海北部开平凹陷为例[J]. 地学前缘, 2024, 31(6): 381-404. |
[2] | 乔辉, 张永贵, 聂海宽, 彭勇民, 张珂, 苏海琨. 页岩储层多尺度天然裂缝表征与三维地质建模:以四川盆地平桥构造带五峰组-龙马溪组页岩为例[J]. 地学前缘, 2024, 31(5): 89-102. |
[3] | 孟庆修, 曹自成, 丁文龙, 杨德彬, 马海陇, 刁新东, 王明, 韩鹏远, 王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律[J]. 地学前缘, 2024, 31(5): 247-262. |
[4] | 谷雨, 吴俊, 樊太亮, 吕峻岭. 塔北-塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[5] | 窦立荣, 黄文松, 孔祥文, 汪萍, 赵子斌. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205. |
[6] | 刘金萍, 王改云, 简晓玲, 朱传庆, 胡小强, 袁晓蔷, 王超. 北黄海东部次盆地构造热机制与成烃效应[J]. 地学前缘, 2024, 31(4): 206-218. |
[7] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[8] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[9] | 王俊鹏, 曾联波, 徐振平, 王珂, 曾庆鲁, 张知源, 张荣虎, 蒋俊. 成岩流体对超深致密砂岩储层构造裂缝充填及溶蚀改造的影响:以塔里木盆地克拉苏油气田为例[J]. 地学前缘, 2024, 31(3): 312-323. |
[10] | 刘超, 付晓飞, 李扬成, 王海学, 孙冰, 郝炎, 胡慧婷, 杨子成, 李依霖, 谷社峰, 周爱红, 马成龙. 烃源岩作为铀源岩的可能性:研究现状与展望[J]. 地学前缘, 2024, 31(2): 284-298. |
[11] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[12] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[13] | 金之钧, 陈书平, 张瑞. 沉积盆地波动过程分析:研究现状与展望[J]. 地学前缘, 2024, 31(1): 284-296. |
[14] | 吴淳, 刘航宇, 芦飞凡, 刘波, 石开波, 何卿. 北京西山下苇甸中上寒武统风暴沉积特征及模式[J]. 地学前缘, 2023, 30(6): 110-124. |
[15] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||