地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 381-404.DOI: 10.13745/j.esf.sf.2024.7.1
徐长贵1(), 高阳东2, 刘军3,4, 彭光荣3,4,*(
), 陈兆明3,4, 李洪博3,4, 蔡俊杰3,4, 马庆佑3,4
收稿日期:
2024-03-06
修回日期:
2024-07-01
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
*彭光荣(1978—),男,硕士,高级工程师,从事油气地质研究工作。E-mail: penggr@cnooc.com.cn
作者简介:
徐长贵(1971—),男,博士,教授级高级工程师,从事海洋油气勘探开发管理和综合研究工作。E-mail: xuchg@cnooc.com.cn
基金资助:
XU Changgui1(), GAO Yangdong2, LIU Jun3,4, PENG Guangrong3,4,*(
), CHEN Zhaoming3,4, LI Hongbo3,4, CAI Junjie3,4, MA Qingyou3,4
Received:
2024-03-06
Revised:
2024-07-01
Online:
2024-11-25
Published:
2024-11-25
摘要:
珠江口盆地开平凹陷位于南海北部陆缘的地壳减薄带,是全球范围内新发现的比较典型的“拆离—核杂岩型”盆地(凹陷),具有独特的岩石圈伸展—减薄—破裂过程,研究其结构类型、成因机制和油气地质条件具有重要意义。本文基于三维地震资料精细解释和地质综合研究,发现了南海陆缘“拆离—核杂岩”的新类型盆地,揭示了其成盆成烃过程,推动了洼陷结构、烃源分布和成藏模式等方面的新认识,并首次在该类型凹陷中发现了大油田。研究结果表明:(1)开平凹陷是南海北部陆缘强伸展背景下发育的典型“拆离—核杂岩型”凹陷,其形成过程受水平伸展作用叠加变质核杂岩垂向隆升作用的影响;文昌组沉积期经历了早期断陷和晚期拆离+核杂岩隆升改造两大成盆演化阶段,形成了“北断南超”的凹陷结构;(2)文昌组烃源岩具有“断拆控盆—早洼晚坡—高温增热“的耦合生烃机制,文四段半深湖—深湖相优质烃源岩,在拆离+核杂岩隆升联合作用下变形变位至南部斜坡带,同时受高地温场和岩浆增热影响,该烃源岩呈现高热快熟特征,排烃门限变浅,显著提升了开平凹陷的资源潜力;(3)开平凹陷南部斜坡带具有“断拆成盆控烃、断脊联合控运、多期幕式充注和鼻状构造控聚”的成藏模式。开平南古近系大油田的发现,开辟了珠江口盆地深层油气勘探的新区新领域,成为全球首个陆缘“拆离—核杂岩型”凹陷取得商业发现的成功案例,有望为国内外相似凹陷结构的油气勘探提供重要借鉴。
中图分类号:
徐长贵, 高阳东, 刘军, 彭光荣, 陈兆明, 李洪博, 蔡俊杰, 马庆佑. 南海陆缘“拆离—核杂岩型”盆地发现与油气地质条件:以南海北部开平凹陷为例[J]. 地学前缘, 2024, 31(6): 381-404.
XU Changgui, GAO Yangdong, LIU Jun, PENG Guangrong, CHEN Zhaoming, LI Hongbo, CAI Junjie, MA Qingyou. Discovery of “detachment-core complex type” basins offshore the northern South China Sea and their oil and gas geological conditions:A case study of the Kaiping sag in the northern South China Sea[J]. Earth Science Frontiers, 2024, 31(6): 381-404.
图1 核杂岩结构(a)与“拆离—核杂岩型”盆地结构(b)模式图(据文献[7]修改)
Fig.1 Structure of core complex (a) and basin structure of “detachment core complex type” (b) pattern diagram. Modified after [7].
图5 开平凹陷主拆离断层断面3D(a)及周边区域自由空气重力异常图(b)
Fig.5 3D of the main detachment fault section in Kaiping Depression (a) and the free air gravity anomaly map in the surrounding area (b)
图6 开平“拆离—核杂岩型”凹陷结构特征(剖面位置见图3)
Fig.6 Structural characteristics of the “detachment core complex type” depression in Kaiping (see Figure 3 for the cross-sectional position)
图9 开平凹陷地壳内部层状反射面迁移特征与解释模型
Fig.9 Migration characteristics and interpretation model of layered reflection surfaces within the crust of Kaiping Depression
井名 | 钻遇层位 | 厚度/m | 干酪根类型 | TOC含量/% | 氢指数HI/(mg·g-1) | 沉积相 | 综合评价 |
---|---|---|---|---|---|---|---|
A7 | 文三段 | 91 | Ⅱ1—Ⅱ2型 | 0.6~4.2(2.6) | 162~378(264) | 浅湖—半深湖 | 好 |
文四段 | 145 | Ⅱ1—Ⅱ2型 | 1.3~9.6(5.4) | 134~377(266) | 半深湖—深湖 | 好—很好 | |
A9 | 文三段 | 13 | Ⅱ2型 | 0.3~0.76(0.5) | 134~253(207) | 辫状河三角洲前缘 | 较差 |
文四段 | 182 | Ⅱ1型 | 2.1~4.8(3.4) | 347~589(437) | 半深湖—深湖 | 好—很好 | |
B4 | 文三段 | ||||||
文四段 | 84 | Ⅱ1型 | 0.9~7.0(2.5) | 146~506(305) | 半深湖—深湖 | 好—很好 |
表1 开平凹陷典型钻井烃源岩特征对比分析表
Table 1 Comparison and analysis of typical drilling source rock characteristics in Kaiping Depression
井名 | 钻遇层位 | 厚度/m | 干酪根类型 | TOC含量/% | 氢指数HI/(mg·g-1) | 沉积相 | 综合评价 |
---|---|---|---|---|---|---|---|
A7 | 文三段 | 91 | Ⅱ1—Ⅱ2型 | 0.6~4.2(2.6) | 162~378(264) | 浅湖—半深湖 | 好 |
文四段 | 145 | Ⅱ1—Ⅱ2型 | 1.3~9.6(5.4) | 134~377(266) | 半深湖—深湖 | 好—很好 | |
A9 | 文三段 | 13 | Ⅱ2型 | 0.3~0.76(0.5) | 134~253(207) | 辫状河三角洲前缘 | 较差 |
文四段 | 182 | Ⅱ1型 | 2.1~4.8(3.4) | 347~589(437) | 半深湖—深湖 | 好—很好 | |
B4 | 文三段 | ||||||
文四段 | 84 | Ⅱ1型 | 0.9~7.0(2.5) | 146~506(305) | 半深湖—深湖 | 好—很好 |
图13 开平凹陷古近系主要层系沉积相图(a恩平组下段;b文四段上段)
Fig.13 Sedimentary facies map of the main strata of the Paleogene in the Kaiping Depression (a, lower section of the Enping Formation; b, upper section of the Wensi Formation)
[1] | DAVIS G H, CONEY P J. Geologic development of the Cordilleran metamorphic core complexes[J]. Geology, 1979, 7(3): 120-124. |
[2] | 宋鸿林. 变质核杂岩研究进展、 基本特征及成因探讨[J]. 地学前缘, 1995, 2(1): 103-111. |
[3] | CONEY P J, HARMS T A. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression[J]. Geology, 1984, 12(9): 550-554. |
[4] | WHITNEY D L, TEYSSIER C, REY P, et al. Continental and oceanic core complexes[J]. Geological Society of America Bulletin, 2013, 125(3/4): 273-298. |
[5] | RING U. Metamorphic core complexes[M]//HARFF J, MESCHEDE M, PETERSEN S. Encyclopedia of marine geosciences. Dordrecht: Springer, 2014: 146-167. |
[6] | BRUN J P, SOKOUTIS D, TIREL C, et al. Crustal versus mantle core complexes[J]. Tectonophysics, 2018, 746: 22-45. |
[7] | ARCA M S, KAPP P, JOHNSON R A. Cenozoic crustal extension in southeastern Arizona and implications for models of core-complex development[J]. Tectonophysics, 2010, 488(1/2/3/4): 174-190. |
[8] | 朱志澄. 变质核杂岩和伸展构造研究述评[J]. 地质科技情报, 1994, 13(3): 1-9. |
[9] | CANNAT M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4163-4172. |
[10] | CANNAT M, LAGABRIELLE Y, BOUGAULT H, et al. Ultramafic and gabbroic exposures at the mid-Atlantic ridge: geological mapping in the 15°N region[J]. Tectonophysics, 1997, 279(1/2/3/4): 193-213. |
[11] | MUÑOZ-BARRERA J M, ROTEVATN A, GAWTHORPE R L, et al. The role of structural inheritance in the development of high-displacement crustal faults in the necking domain of rifted margins: the Klakk Fault complex, Frøya high, offshore mid-Norway[J]. Journal of Structural Geology, 2020, 140: 104163. |
[12] | YE Q, MEI L F, JIANG D P, et al. 3-D structure and development of a metamorphic core complex in the northern South China Sea rifted margin[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): 1-16. |
[13] | GRESSETH J L S, OSMUNDSEN P T, PÉRON-PINVIDIC G. 3D evolution of detachment fault systems in necking domains: insights from the Klakk Fault complex and the Frøya high, Mid-Norwegian rifted margin[J]. Tectonics, 2023, 42(3): e2022TC007600. |
[14] | LITTLE T A, WEBBER S M, MIZERA M, et al. Evolution of a rapidly slipping, active low-angle normal fault, Suckling—Dayman metamorphic core complex, SE Papua New Guinea[J]. GSA Bulletin, 2019, 131(7/8): 1333-1363. |
[15] | 刘和甫. 沉积盆地地球动力学分类及构造样式分析[J]. 地球科学: 中国地质大学学报, 1993, 18(6): 699-724, 814. |
[16] | 刘和甫, 李小军, 刘立群. 地球动力学与盆地层序及油气系统分析[J]. 现代地质, 2003, 17(1): 80-86. |
[17] | 任建业, 罗盼, 高圆圆, 等. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、 沉积和岩浆作用记录[J]. 地球科学, 2022, 47(7): 2287-2302. |
[18] |
刘池洋, 王建强, 赵红格, 等. 沉积盆地类型划分及其相关问题讨论[J]. 地学前缘, 2015, 22(3): 1-26.
DOI |
[19] | ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130. |
[20] | 刘德民. 中国变质核杂岩的基本特征[J]. 现代地质, 2003, 17(2): 125-130. |
[21] | 王新社, 郑亚东, 张进江. 呼和浩特变质核杂岩伸展运动学特征及剪切作用类型[J]. 地质通报, 2002, 21(5): 238-245. |
[22] | LUNDIN E R, DORE A G. A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: Early Cretaceous to break-up[J]. Journal of the Geological Society, 1997. 154(3): 545-550. |
[23] | OSMUNDSEN P T, EBBING J. Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins[J]. Tectonics, 2008, 27(6): 286-310. |
[24] | GRESSETH J L S, BRAATHEN A, SERCK C S, et al. Late Paleozoic supradetachment basin configuration in the southwestern Barents Sea: intrabasement seismic facies of the fingerdjupet subbasin[J]. Basin Research, 2022, 34(2): 570-589. |
[25] | KOEHL J B P, BERGH S G, HENNINGSEN T, et al. Middle to Late Devonian—Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp Basin, SW Barents Sea[J]. Solid Earth, 2018, 9(2): 341-372. |
[26] | GARTRELL A P. Rheological controls on extensional styles and the structural evolution of the Northern Carnarvon Basin, North West Shelf, Australia[J]. Australian Journal of Earth Sciences, 2000, 47(2): 231-244. |
[27] | GARTRELL A, KEEP M, VAN DER RIET C, et al. Hyperextension and polyphase rifting: impact on inversion tectonics and stratigraphic architecture of the North West Shelf, Australia[J]. Marine and Petroleum Geology, 2022, 139: 105594. |
[28] | 陆建林, 左宗鑫, 李瑞磊, 等. 松辽盆地长岭断陷变质核杂岩带的发现及其控油气作用研究[J]. 石油实验地质, 2018, 40(6): 771-777. |
[29] | ZHENG Y D, ZHANG Q. The yagan metamorphic core complex and extensional detachment fault in Inner Mongolia[J]. Acta Geologica Sinica, 1993, 67(4): 301-309. |
[30] | PLATT J P, BEHR W M, COOPER F J. Metamorphic core complexes: windows into the mechanics and rheology of the crust[J]. Journal of the Geological Society, 2015, 172(1): 9-27. |
[31] | YANG X B, WANG H Y, LI Z Y, et al. Tectonic-sedimentary evolution of a continental rift basin: a case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China[J]. Marine and Petroleum Geology, 2021, 128: 105068. |
[32] | TARI G C, GJERAZI I, GRASEMANN B. Interpretation of vintage 2D seismic reflection data along the Austrian-Hungarian border: subsurface expression of the rechnitz metamorphic core complex[J]. Interpretation, 2020, 8(4): SQ73-SQ91. |
[33] | HORVÁTH F, TARI G. IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration[J]. Geological Society, London, Special Publications, 1999, 156(1): 195-213. |
[34] | HAGSET A, GRUNDVÅG S A, BADICS B, et al. Deposition of cenomanian-turonian organic-rich units on the Mid-Norwegian margin: controlling factors and regional implications[J]. Marine and Petroleum Geology, 2023, 149: 106102. |
[35] | MUÑOZ-BARRERA J M, ROTEVATN A, GAWTHORPE R L, et al. Supradetachment basins in necking domains of rifted margins: insights from the Norwegian Sea[J]. Basin Research, 2022, 34(3): 991-1019. |
[36] | 徐长贵, 范彩伟. 南海西部近海大中型油气田勘探新进展与思考[J]. 中国海上油气, 2021, 33(2): 13-25. |
[37] | 任建业. 中国近海海域新生代成盆动力机制分析[J]. 地球科学, 2018, 43(10): 3337-3361. |
[38] | YE Q, MEI L F, SHI H S, et al. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin[J]. Tectonics, 2020, 39(3): e2019TC005845. |
[39] | 李林, 王彬, 雷超, 等. 西沙海域盆地构造格局及其差异演化过程分析[J]. 地球科学, 2021, 46(9): 3321-3337. |
[40] | LEI Z L, ZENG G, LIU J Q, et al. Melt-lithosphere interaction controlled compositional variations in mafic dikes from Fujian Province, southeastern China[J]. Journal of Earth Science, 2021, 32(6): 1445-1453. |
[41] | HALL R. Hydrocarbon basins in SE Asia: understanding why they are there[J]. Petroleum Geoscience, 2009, 15(2): 131-146. |
[42] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[43] | SIBUET J C, YEH Y C, LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692: 98-119. |
[44] | CHEN H, XIE X N, MAO K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea margin[J]. Journal of Earth Science, 2020, 31(4): 808-819. |
[45] | CULLEN A, REEMST P, HENSTRA G, et al. Rifting of the South China Sea: new perspectives[J]. Petroleum Geoscience, 2010, 16(3): 273-282. |
[46] |
DENG H D, REN J Y, PANG X, et al. South China Sea documents the transition from wide continental rift to continental break up[J]. Nature Communications, 2020, 11: 4583.
DOI PMID |
[47] | MALAVIEILLE J. Late orogenic extension in mountain belts: insights from the basin and range and the Late Paleozoic variscan belt[J]. Tectonics, 1993, 12(5): 1115-1130. |
[48] |
任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水—超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901-4920.
DOI |
[49] |
任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114.
DOI |
[50] | 郑金云, 高阳东, 张向涛, 等. 珠江口盆地构造演化旋回及其新生代沉积环境变迁[J]. 地球科学, 2022, 47(7): 2374-2390. |
[51] | 王嘉, 栾锡武, 何兵寿, 等. 南海北部珠江口盆地西南段断裂特征与成因讨论[J]. 地球科学, 2021, 46(3): 916-928. |
[52] | ESCARTÍN J, MÉVEL C, PETERSEN S, et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid Atlantic Ridge)[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1451-1482. |
[53] | PARNELL-TURNER R, ESCARTÍN J, OLIVE J A, et al. Genesis of corrugated fault surfaces by strain localization recorded at oceanic detachments[J]. Earth and Planetary Science Letters, 2018, 498: 116-128. |
[54] | PERON-PINVIDIC G, OSMUNDSEN P T. Architecture of the distal and outer domains of the Mid-Norwegian rifted margin: insights from the Rån-Gjallar ridges system[J]. Marine and Petroleum Geology, 2016, 77: 280-299. |
[55] | SUTRA E, MANATSCHAL G, MOHN G, et al. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2575-2597. |
[56] | DAVIS G A, 郑亚东. 变质核杂岩的定义、 类型及构造背景[J]. 地质通报, 2002, 21(4): 185-192. |
[57] | FRIEDMANN S J, BURBANK D W. Rift basins and supradetachment basins: intracontinental extensional end-members[J]. Basin Research, 1995, 7(2): 109-127. |
[58] | JONGEPIER K, CECILIE J, GRUE K. Triassic to early cretaceous stratigraphic and structural development of the northeastern Møre Basin margin, off Mid-Norway[J]. Norsk Geologisk Tidsskrift, 1996, 76, 199-214. |
[59] | RIBES C, GHIENNE J F, MANATSCHAL G, et al. Long-lived mega fault-scarps and related breccias at distal rifted margins: insights from present-day and fossil analogues[J]. Journal of the Geological Society, 2019, 176(5): 801-816. |
[60] | VETTI V V, FOSSEN H. Origin of contrasting Devonian supradetachment basin types in the Scandinavian Caledonides[J]. Geology, 2012, 40(6): 571-574. |
[61] | 彭光荣, 张丽丽, 许新明, 等. 珠江口盆地开平凹陷核杂岩拆离结构及其动力学成因[J]. 地球科学, 2024, 49(9): 3306-3317. |
[62] | 颜丹平. 变质核杂岩研究的新进展[J]. 地质科技情报, 1997, 16(3): 13-19. |
[63] | TIREL C, BRUN J P, BUROV E. Dynamics and structural development of metamorphic core complexes[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B4): B04403. |
[64] | ZHANG X D, YU Q, CHEN F J, et al. Structural characteristics, origin and evolution of metamorphic core complex in central basement uplift and Xujiaweizi Faulted Depression in Songliao Basin, Northeast China[J]. Earth Science Frontiers, 2000, 7(4): 411-419. |
[65] | 纪沫, 胡玲, 刘俊来, 等. 辽南变质核杂岩主拆离断层的波瓦状构造(corrugation)及其成因[J]. 地质科学, 2008, 43(1): 12-22. |
[66] | SEYFERT C K. Cordilleran metamorphic core complexes[M]//SEYFERT C K. Encyclopedia of structural geology and plate tectonics. New York: Van Nortrand Reinhold Company, 1987: 113-130. |
[67] |
施和生, 杜家元, 梅廉夫, 等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发, 2020, 47(3): 447-461.
DOI |
[68] |
张向涛, 彭光荣, 王光增, 等. 珠江口盆地惠州运动的断裂响应研究: 以阳江东凹为例[J]. 地学前缘, 2022, 29(5): 161-175.
DOI |
[69] | 高翔, 刘杰, 牛胜利, 等. 珠江口盆地惠北地区文昌期构造—沉积响应及对优质烃源岩的控制[J]. 海相油气地质, 2022, 27(4): 348-359. |
[70] | 李三忠, 吕海青, 侯方辉, 等. 海洋核杂岩[J]. 海洋地质与第四纪地质, 2006, 26(1): 47-52. |
[71] | JOLIVET L, BRUN J P. Cenozoic geodynamic evolution of the Aegean[J]. International Journal of Earth Sciences, 2010, 99(1): 109-138. |
[72] | TAMAKI K, HONZA E. Global tectionics and formation of marginal basins: role of the western Pacific[J]. Episodes, 1991, 14(3): 224-230. |
[73] | GIANELLI G, MANZELLA A, PUXEDDU M. Crustal models of the geothermal areas of southern Tuscany (Italy)[J]. Tectonophysics, 1997, 281(3/4): 221-239. |
[74] |
庞雄, 任建业, 郑金云, 等. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例[J]. 石油勘探与开发, 2018, 45(1): 27-39.
DOI |
[75] | KARLSEN D A, NYLAND B, FLOOD B, et al. Petroleum geochemistry of the Haltenbanken, Norwegian continental shelf[J]. Geological Society, London, Special Publications, 1995, 86(1): 203-256. |
[76] | 范玉海, 屈红军, 张功成, 等. 世界主要深水含油气盆地烃源岩特征[J]. 海相油气地质, 2011, 16(2): 27-33. |
[77] | MØRK A, ELVEBAKK G, FORSBERG A W, et al. The type section of the Vikinghøgda Formation: a new Lower Triassic unit in central and eastern Svalbard[J]. Polar Research, 1999, 18(1): 51-82. |
[78] | ZHOU Z C, MEI L F, LIU J, et al. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea[J]. Tectonophysics, 2018, 726: 121-136. |
[79] | CLARINGBOULD J S, BELL R E, JACKSON C A L, et al. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea[J]. Earth and Planetary Science Letters, 2017, 475: 190-206. |
[80] | HENSTRA G A, ROTEVATN A, GAWTHORPE R L, et al. Evolution of a major segmented normal fault during multiphase rifting: the origin of plan-view zigzag geometry[J]. Journal of Structural Geology, 2015, 74: 45-63. |
[81] | MIZERA M, LITTLE T A, BIEMILLER J, et al. Structural and geomorphic evidence for rolling-hinge style deformation of an active continental low-angle normal fault, SE Papua new Guinea[J]. Tectonics, 2019, 38(5): 1556-1583. |
[82] | NYÍRI D, TÖKÉS L, ZADRAVECZ C, et al. Early post-rift confined turbidite systems in a supra-detachment basin: implications for the Early to Middle Miocene Basin evolution and hydrocarbon exploration of the Pannonian Basin[J]. Global and Planetary Change, 2021, 203: 103500. |
[83] | CARACCIOLO L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review, application and future development[J]. Earth-Science Reviews, 2020, 209: 103226. |
[84] | FILLMORE R P, WALKER J D, BARTLEY J M, et al. Development of three genetically related basins associated with detachment-style faulting: predicted characteristics and an example from the central Mojave Desert, California[J]. Geology, 1994, 22(12): 1087-1090. |
[1] | 徐田武, 张洪安. 富油凹陷油气分布规律与勘探潜力分析:以东濮凹陷为例[J]. 地学前缘, 2024, 31(6): 368-380. |
[2] | 索艳慧, 姜兆霞, 李三忠, 吴立新. 海底氢气成藏模式与全球分布[J]. 地学前缘, 2024, 31(4): 175-182. |
[3] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[4] | 曹胜桃, 胡瑞忠, 周永章, 刘建中, 谭亲平, 高伟, 郑禄林, 郑禄璟, 宋威方. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72. |
[5] | 陈飞, 曾维特, 仝长亮, 张从伟, 付标, 陈旸, 陈波. 琼州海峡第四纪层序格架及其沉积演化[J]. 地学前缘, 2024, 31(3): 100-112. |
[6] | 韩海英, 郭睿, 王君, 秦国省, 孙晓伟, 余义常, 苏海洋, 高阳. 伊拉克南部白垩系层序格架与沉积特征[J]. 地学前缘, 2023, 30(2): 122-138. |
[7] | 付金华. 鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J]. 地学前缘, 2023, 30(1): 20-29. |
[8] | 杨洪宇, 张兵, 方朝合, 杨凯, 曹倩, 张赛民, 林晓杨. 四川盆地海相深层富钾锂层系沉积演化规律及储卤层响应特征[J]. 地学前缘, 2021, 28(6): 95-104. |
[9] | 张义娜, 蔡文杰, 杨松岭, 张科, 陈景阳. 巴布亚盆地侏罗系陆架边缘三角洲沉积特征及其油气勘探方向[J]. 地学前缘, 2021, 28(1): 167-176. |
[10] | 王春阳,丁巍伟,董崇志,方银霞,马乐天,方鹏高. 南极半岛西侧不活动陆缘陆架区新生代构造变形特征及沉积演化[J]. 地学前缘, 2017, 24(5): 218-229. |
[11] | 周立宏,孙志华,王振升,苏俊青,楼达,李三忠,胡俊刚,王海强,索艳慧. 印缅俯冲增生楔气烟囱分带性及油气成藏规律[J]. 地学前缘, 2017, 24(4): 352-369. |
[12] | 杨胜雄,梁金强,陆敬安,曲长伟,刘博. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14. |
[13] | 周浩玮. 墨西哥Sureste盆地成藏组合及勘探潜力[J]. 地学前缘, 2017, 24(3): 249-256. |
[14] | 石开波,刘波,刘红光,刘建强,潘文庆. 塔里木盆地东北缘库鲁克塔格地区新元古代构造沉积演化[J]. 地学前缘, 2017, 24(1): 297-307. |
[15] | 郭彤楼. 涪陵气田发现的启示与思考[J]. 地学前缘, 2016, 23(1): 29-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||