[1] |
IEA. Global hydrogen review 2021[R]. Paris: IEA, 2021.
|
[2] |
韩双彪, 唐致远, 杨春龙, 等. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270-1284.
DOI
|
[3] |
PRINZHOFER A, CISSÉ C S T, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326.
DOI
|
[4] |
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程: 从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4): 1063-1080.
DOI
|
[5] |
郭玲莉, 李三忠, 赵淑娟, 等. 洋−陆转换带类型与成因机制[J]. 地学前缘, 2017, 24(4): 320-328.
|
[6] |
李三忠, 索艳慧, 周洁, 等. 微板块与大板块: 基本原理与范式转换[J]. 地质学报, 2022, 96(10): 3541-3558.
DOI
|
[7] |
MACDONALD K C. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10 155-190.
DOI
|
[8] |
ZHANG M C, DI H Z, XU M, et al. Seismic imaging of Dante’s Domes oceanic core complex from streamer waveform inversion and reverse time migration[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(8): e2021JB023814.
DOI
|
[9] |
MCCOLLOM T M, BACH W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 856-875.
DOI
|
[10] |
黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7): 1901-1907.
|
[11] |
LI L F, LI Z M, ZHONG R C, et al. Direct H2S, HS− and pH measurements of high-temperature hydrothermal vent fluids with in situ Raman spectroscopy[J]. Geophysical Research Letters, 2023, 50(9): e2023GL103195.
DOI
|
[12] |
XI S C, SUN Q L, HUANG R F, et al. Different magmatic-hydrothermal fluids at the same magma source support distinct microbial communities: evidence from in situ detection[J]. Journal of Geophysical Research: Oceans, 2023, 128(5): e2023JC019703.
DOI
|
[13] |
BEAULIEU S E, SZAFRAŃSKI K M. InterRidge global database of active submarine hydrothermal vent fields version 3.4[DB]. PANGAEA, 2020. [2024-06-08]. https://doi.org/10.1594/PANGAEA.917894.
|
[14] |
TRUCHE L, JOUBERT G, DARGENT M, et al. Clay minerals trap hydrogen in the Earth’s crust: evidence from the Cigar Lake uranium deposit, Athabasca[J]. Earth and Planetary Science Letters, 2018, 493 186-197.
DOI
|
[15] |
FRYER P. Recent studies of serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle[J]. Geochemistry, 2002, 62(4): 257-302.
DOI
|
[16] |
KLEIN F, SCHROEDER T, JOHN C M, et al. Mineral carbonation of peridotite fueled by magmatic degassing and melt impregnation in an oceanic transform fault[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(8): e2315662121.
|
[17] |
ARROUVEL C, PRINZHOFER A. Genesis of natural hydrogen: new insights from thermodynamic simulations[J]. International Journal of Hydrogen Energy, 2021, 46(36): 18780-18794.
DOI
|
[18] |
GERYA T V, BERCOVICI D, BECKER T W. Dynamic slab segmentation due to brittle-ductile damage in the outer rise[J]. Nature, 2021, 599(7884): 245-250.
DOI
|
[19] |
VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta, 2018, 223 437-461.
DOI
|
[20] |
VAN KEKEN P E, HACKER B R, SYRACUSE E M, et al. Subduction factory: 4.Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.
|
[21] |
MOTTL M J, KOMOR S C, FRYER P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: ocean Drilling Program Leg 195[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11): 9009.
|
[22] |
MYAGKIY A, MORETTI I, BRUNET F. Space and time distribution of subsurface H2 concentration in so-called “fairy circles”: insight from a conceptual 2-D transport model[J]. Bulletin de la Société Géologique de France, 2020, 191(1): 13.
|
[23] |
LARIN N, ZGONNIK V, RODINA S, et al. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia[J]. Natural Resources Research, 2015, 24(3): 369-383.
DOI
|
[24] |
ZGONNIK V, BEAUMONT V, DEVILLE E, et al. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)[J]. Progress in Earth and Planetary Science, 2015, 2(1): 31.
DOI
|
[25] |
BEKKER A, SLACK J F, PLANAVSKY N, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
DOI
|
[26] |
HAN S B, TANG Z Y, WANG C S, et al. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, Northeast China: new insights into deep Earth exploration[J]. Science Bulletin, 2022, 67(10): 1003-1006.
DOI
|
[27] |
李三忠, 索艳慧, 姜兆霞, 等. 氢构造与海底氢能系统[J]. 科学通报, 2024, https://doi.org/10.1360/TB-2024-0368.
|
[28] |
ZGONNIK V. The occurrence and geoscience of natural hydrogen: a comprehensive review[J]. Earth-Science Reviews, 2020, 203 103140.
DOI
|
[29] |
LIU Z L, PEREZ-GUSSINYE M, GARCÍA-PINTADO J, et al. Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins[J]. Geology, 2023, 51(3): 284-289.
DOI
|
[30] |
WORMAN S L, PRATSON L F, KARSON J A, et al. Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13283-13293.
|
[31] |
CHEN C L, YAN P, YU J H, et al. Seismically imaged crustal breakup in the Southwest Taiwan Basin of the northeastern South China Sea margin[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(8): e2023GC010918.
DOI
|
[32] |
姜兆霞, 李三忠, 索艳慧, 等. 海底氢能探测与开采技术展望[J]. 地学前缘, 2024, 31(4): 183-190.
|
[33] |
王璐, 金之钧, 吕泽宇, 等. 地下储氢研究进展及展望[J]. 地球科学, 2024, 49(6): 1-14.
|