地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 191-205.DOI: 10.13745/j.esf.sf.2023.9.36
• 非主题来稿选登:新能源与成烃成藏作用 • 上一篇 下一篇
收稿日期:
2023-03-31
修回日期:
2023-07-15
出版日期:
2024-07-25
发布日期:
2024-07-10
通信作者:
* 黄文松(1973—),男,高级工程师,主要从事常规与非常规油气开发地质评价与储层地质建模研究。E-mail: 作者简介:
窦立荣(1965—),男,教授级高级工程师,博士生导师,主要从事全球油气地质研究、资源评价和勘探实践。E-mail: dlirong@petrochina.com.cn
基金资助:
DOU Lirong(), HUANG Wensong*(
), KONG Xiangwen, WANG Ping, ZHAO Zibin
Received:
2023-03-31
Revised:
2023-07-15
Online:
2024-07-25
Published:
2024-07-10
摘要:
西加拿大盆地上泥盆统Duvernay页岩是最大海侵期形成的一套页岩油气富集与生产层系。为明确Duvernay页岩油气富集控制因素,在Duvernay页岩地质背景分析的基础上,运用岩心、测井、薄片、扫描电镜、3D孔隙重建信息及有机地化资料,对有机质富集的沉积因素、流体分布、储层质量及影响因素进行了分析,认为Duvernay页岩油气富集主要受盆内成因的硅质页岩沉积环境、有机质热演化、页岩储层质量及稳定构造背景的共同控制。研究发现,Duvernay组为晚泥盆世的深水陆棚环境,岩性以泥灰岩、灰泥岩和泥页岩为主,可识别出10种岩石相,其中硅质页岩最为发育;Duvernay页岩中主要发育II、III型海相有机质,有机质热演化程度中等,处于凝析气-湿气阶段,因此凝析油含量高;油气主要富集在黏土级矿物形成的富含有机孔的硅质页岩中,孔隙类型以有机质孔和粒内孔为主,有效孔隙度占比高,连通孔隙非常发育且横向连续分布,并具有垂向上相互连通的特征;成岩作用改善了页岩储层物性,天然裂缝提高了页岩储层的渗透率,而稳定的构造发育特征是Duvernay页岩油能够较好地保存至今的关键。
中图分类号:
窦立荣, 黄文松, 孔祥文, 汪萍, 赵子斌. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205.
DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin[J]. Earth Science Frontiers, 2024, 31(4): 191-205.
图2 西加盆地Simonette工区内岩性对比剖面图(剖面位置见图1a) 图中GR单位为gAPI,取值范围0~300;DT单位为μs/ft,取值范围100~40;DEN、RHOB、RHOZ为密度曲线,单位为g·cm-3,取值范围2.3~2.8。
Fig.2 A lithology correlation section in the Simonette block of the Western Canada Basin (The section position is shown in Fig.1a)
图3 Duvernay组不同类型页岩岩心照片 a—纹层状硅质页岩;b—富生物化石页岩;c—含生物遗迹页岩;d—含灰质砾屑页岩。
Fig.3 Core pictures of different types of Duvernay shales. a—Laminar siliceous shale; b—Biofossil rich shale; c—Shale with trace fossil; d—Calcareous gravel shale.
图4 Duvernay页岩电子扫描电镜照片 a—石英颗粒被伊利石包裹; b—伊利石和伊蒙混层; c—分散有机质包裹自生黄铁矿; d—有机质嵌在自生方解石与黏土矿物间。Q—石英;F—长石;K—干酪根;Op—有机颗粒;Ca—方解石;Py—黄铁矿;Si—自生石英;Cl—黏土矿物;Fd—铁白云石。
Fig.4 Electron scanning electron microscope photos of Duvernay shales. a—Quartz grains encased in illite; b—Intercalation of illite and illimolite; c—Dispersed organic matter enclosed in authigenic pyrite; d—Organic matter embedded between authigenic calcite and clay minerals; Q—Quartz; F—Feldspar; K—Kerogen; Op—Organic particles; Ca—Calcite; Py—Pyrite; Si—Authigenic quartz; Cl—Clay minerals; Fd—Ferroan dolomite.
图5 Simonette区各类页岩岩石相石英含量与有机碳含量(a)和密度(b)的关系
Fig.5 Correlation between quartz content and organic carbon content (a) and bulk density (b) of various lithofacies of shales in Simonette block
图7 Duvernay页岩含油气特征图 a—西加盆地Duvernay页岩气油比分布图;b—Simonette区块Duvernay页岩凝析油含量分区;c—氢指数与凝析油含量相关关系。
Fig.7 Map of oil and gas characteristics of Duvernay shale. a—Gas-oil ratio distribution map of Duvernay shale in the Western Canada Basin; b—Zoning of condensate oil content in the Simonette block; c—Relationship between hydrogen index and condensate oil content.
图8 Duvernay页岩储层有机孔特征 a—Simontte地区,11-8井,3 822 m;b—Simontte地区,6-9井,3 427.37 m;c—Pinto地区,11-34井,3 959.03 m;d—Willesdon Green地区,11-05井,3 405 m。
Fig.8 Characteristics of organic pore of Duvernay shale reservoir. a—Well 11-8, 3822 m in the Simonette area; b—Well 6-9, 3427.37 m in the Simonette area;c—Well 11-34, 3959.03 m in the Pinto area; d—Well 11-05, 3405 m in the Willesdon Green area.
图9 Duvernay页岩储层3D FIB-SEM分析 红色—孤立孔;蓝色—连通孔;绿色—有机质。 a—6-9井,3 432.59 m;b—11-8井,3 810.35 m; c—11-34井,3 945.27 m;d—13-5井,3 122.72 m。
Fig.9 3D FIB-SEM photos of Duvernay shale reservoir. red—isolated pores; blue—connected pores; green—organic matter. a—Well 6-9, 3432.59 m; b—Well 11-8, 3810.35 m; c—Well 11-34, 3945.27 m; d—Well 13-5, 3122.72 m.
图12 Duvernay页岩储层不同尺度下微裂缝的发育与脆性特征 a—水平缝和高角度缝;b—微裂缝被方解石等填充;c—矿物颗粒间的微裂缝;d—取心照片;e—岩心中的正交缝(注:图d位置在图e岩心照片黑色箭头处)。
Fig.12 Development and brittleness characteristics of microfractures at different scales in Duvernay shale reservoirs
[1] | US Energy Information Administration. annual energy outlook 2020[R]. Washington: US Department of Energy, 2020. https://www.eia.gov/aeo. |
[2] |
邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12.
DOI |
[3] |
杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24 (5): 553-559.
DOI |
[4] | 周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019, 40 (3): 469-477. |
[5] | 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、 富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. |
[6] | 王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43 (6): 850-862. |
[7] | 李倩文, 马晓潇, 高波, 等. 美国重点页岩油区勘探开发进展及启示[J]. 新疆石油地质, 2021, 42 (5): 630-640. |
[8] | 张福祥, 李国欣, 郑新权, 等. 北美后页岩革命时代带来的启示[J]. 中国石油勘探, 2022, 27(1): 26-39. |
[9] | LYSTER S, CORLETT H J, BERHANE H. Hydrocarbon resource potential of the Duvernay Formation in Alberta-update[R]// AER/AGS Open File Report. Alberta: The Alberta Geological Survey, 2017: 2. |
[10] |
李国欣, 罗凯, 石德勤. 页岩油气成功开发的关键技术、 先进理念与重要启示: 以加拿大都沃内项目为例[J]. 石油勘探与开发, 2020, 47(4): 739-749.
DOI |
[11] | 张仁贵, 刘迪仁, 彭成, 等. 中国陆相页岩油勘探开发现状及展望[J]. 现代化工, 2022, 42(3): 6-10 |
[12] | 周雪. 美国页岩油勘探开发现状及其对中国的启示[J]. 现代化工, 2022, 42(7): 5-9 |
[13] | PRICE R A. Cordilleran tectonics and the evolution of the Western Canada Sedimentary Basin[J]. Bulletin of Canadian Petroleum Geology, 1990, 38(1): 176-177. |
[14] | PORTER J W, PRICE R A, MCCROSSAN R G. The western Canada sedimentary basin[J]. Physical and Engineering Sciences, 1982, 305(1489): 169-192. |
[15] | Machel H G, Foght J. Products and depth limits of microbial activity in petroliferous subsurface settings[M]//Microbial sediments. Heidelberg, Berlin: Springer, 2000: 105-120. |
[16] |
孔祥文, 汪萍, 夏朝辉, 等. 西加拿大沉积盆地Simonette区块上泥盆统Duvernay页岩地质特征与流体分布规律[J]. 中国石油勘探, 2022, 27(2): 93-107.
DOI |
[17] | WRIGHT G N, MCMECHAN M E, POTTER D E G, et al. Structure and architecture of the Western Canada sedimentary basin[J]. Geological Atlas of the Western Canada Sedimentary Basin, 1994, 4: 25-40. |
[18] | WHALEN M T, EBERLI G P, VAN BUCHEM F S P, et al. Bypass margins, basin-restricted wedges, and platform-to-basin correlation, Upper Devonian, Canadian Rocky Mountains: implications for sequence stratigraphy of carbonate platform systems[J]. Journal of Sedimentary Research, 2000, 70(4): 913-936. |
[19] | CHOW N, Wendte J, STASIUK L D. Productivity versus preservation controls on two organic-rich carbonate facies in the Devonian of Alberta: sedimentological and organic petrological evidence[J]. Bulletin of Canadian Petroleum Geology, 1995, 43(4): 433-460. |
[20] | STOAKES F A. Nature and control of shale basin fill and its effect on reef growth and termination: Upper Devonian Duvernay and Ireton Formations of Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 1980, 28(3): 345-410. |
[21] | LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
[22] | ANFORT S J, BACHU S, BENTLEY L R. View correspondence (jump link). regional-scale hydrogeology of the Upper Devonian-Lower Creataceous sedimentary succession, South-Central Alberta Basin, Canada(Article)[J]. AAPG Bulletin, 2001, 85(4): 637-660. |
[23] | WANG G, CARR T R. Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin[J]. AAPG Bulletin, 2013, 97(12): 2173-2205. |
[24] | ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada Sedimentary Basin: application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92(1): 87-125. |
[25] | KUUSKRAA V, STEVENS S. Lessons learned to help optimize development[J]. Oil and Gas Journal, 2009, 107: 52-57. |
[26] | 邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013. |
[27] | 牛嘉玉, 蒋凌志, 史卜庆, 等. 油气矿藏地质与评价[M]. 北京: 科学出版社, 2013. |
[28] | CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in Northeastern British Columbia, Part II: evaluation of regional potential gas resources[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 22-61. |
[29] | ALLAN J, CREANEY S. Oil families of the Western Canada Basin[J]. Bulletin of Canadian Petroleum Geology, 1991, 39(2): 107-122. |
[30] | DAVIS M, WILLIAMS R, WILLBERG D, et al. Novel controlled pressure coring and laboratory methodologies enable quantitative determination of resource-in-place and pvt behavior of the Duvernay shale[C]. Alberta: SPE Unconventional Resources Conference Canada. OnePetro, 2013. |
[31] | WUST R A, HACKLEY P C, NASSICHUK B R, et al. Vitrinite reflectance versus pyrolysis Tmax data: Assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta, Canada[C]. Alberta: SPE Unconventional Resources Conference and Exhibition-Asia Pacific. OnePetro, 2013. |
[32] | BEATON A P, PAWLOWICZ J G, ANDERSON S D A, et al. Rock eval, total organic carbon and adsorption isotherms of the Duvernay and Muskwa formations in Alberta: shale gas data release[R]//Energy Resources Conservation Board. Alberta: ERCB/AGS Open File Report. Alberta: The Alberta Geological Survey, 2010, 4(2010): 33. |
[33] | NICHOLAS B H, JULIA M M, LEVI J K, et al. Organic matter accumulation in the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin, from sequence stratigraphic analysis and geochemical proxies[J]. Sedimentary Geology, 2018, 376: 185-203. |
[34] | GREEN D G, MOUNTJOY E W. Fault and conduit controlled burial dolomitization of the Devonian West-Central Alberta Deep Basin[J]. Bulletin of Canadian Petroleum Geology, 2005, 53(2): 101-129. |
[35] | US Energy Information Administration. Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States[R]. Washington: US Department of Energy, 2013. |
[36] | JARVIED M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
[37] | 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220. |
[38] | CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imagingMicrostructure of Gas Shales[J]. AAPG Bulletin, 2012, 96(4): 665-677. |
[39] | MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas(Article)[J]. AAPG Bulletin, 2012, 96(8): 0149-1423. |
[40] | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. |
[41] | DOW W G. Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploraton, 1977, 7: 79-99. |
[42] | CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239. |
[43] |
吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256
DOI |
[44] | 李玉喜, 聂海宽, 龙鹏宇. 我国富含有机质泥页岩发育特点与页岩气战略选区[J]. 天然气工业, 2009, 29(12): 115-118, 152-153. |
[1] | 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||