地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 340-353.DOI: 10.13745/j.esf.sf.2023.9.43
陈昌锦1,2(), 程晓敢1,2,*(
), 林秀斌1,2, 李丰1,2, 田禾丰1,2, 屈梦雪1,2, 孙思瑶1,2
收稿日期:
2023-11-03
修回日期:
2023-11-22
出版日期:
2024-07-25
发布日期:
2024-07-10
通信作者:
* 程晓敢(1974—),男,教授,主要从事盆地构造研究工作。E-mail: 作者简介:
陈昌锦(1998—),男,硕士研究生,构造地质学专业。E-mail: 22038013@zju.edu.cn
基金资助:
CHEN Changjin1,2(), CHENG Xiaogan1,2,*(
), LIN Xiubin1,2, LI Feng1,2, TIAN Hefeng1,2, QU Mengxue1,2, SUN Siyao1,2
Received:
2023-11-03
Revised:
2023-11-22
Online:
2024-07-25
Published:
2024-07-10
摘要:
在印度-欧亚板块碰撞远程效应影响下,天山造山带在新生代活化隆升,与其南缘相邻的塔里木盆地北部发生挠曲沉降并沉积了巨厚的新生代地层,该巨厚新生代地层和造山沉积地层为本文进一步探究南天山隆升过程提供了关键的沉积记录。本文采用有限弹性板数值模拟的方法,对盆地新生代不同时期基底沉降剖面分别进行建模研究。结果表明:盆地沉降受沉积负载和构造负载共同控制,66~>5.3 Ma期间沉积负载对盆地沉降的贡献量小于或等于构造负载的贡献量;约5.3 Ma至今沉积负载对盆地沉降的贡献量远大于构造负载。南天山构造负载变化速率表现为66~>26.3 Ma缓慢增长;26.3~>5.3 Ma南天山稳定增长;约5.3 Ma至今南天山造山带构造负载高度快速增长。基于对盆地沉降过程的分析,限制南天山新生代初始隆升时间为古近纪,其相对海拔高度从400 m增长到2 500 m;虽然在约5.3 Ma至今南天山相对海拔高度保持稳定,但构造负载高度仍在增加,这可能是盆地俯冲作用的加剧在一定程度上抑制了造山带平均海拔高度的增长,进而导致南天山的侵蚀和隆升达到相对平衡。
中图分类号:
陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353.
CHEN Changjin, CHENG Xiaogan, LIN Xiubin, LI Feng, TIAN Hefeng, QU Mengxue, SUN Siyao. Modeling of the Cenozoic subsidence of northern Tarim Basin using elastic plate numerical model: Implications for uplift of South Tian Shan[J]. Earth Science Frontiers, 2024, 31(4): 340-353.
图1 区域大地构造背景及塔里木盆地北部新生代地层厚度等值线图(据文献[6]修改) 黑色实线为图3中AA'剖面位置。
Fig.1 Regional tectonic background and contour map of Cenozoic strata thickness in the northern Tarim Basin. Modified after [6]. The solid black line indicates the location of profile AA' in Fig.3.
图3 研究区代表性地震剖面揭示的地层厚度分布与构造(剖面位置见图1中AA'剖面)
Fig.3 Seismic profile revealing stratigraphic thickness distribution and structure in the study area (Profile location: AA' profile in Fig.1)
岩性 | 压实系数/(105 cm-1) | 初始孔隙度Ø0 | 沉积物颗粒密度ρs/(g·cm-3) |
---|---|---|---|
砂岩 | 0.27 | 0.49 | 2.65 |
页岩 | 0.51 | 0.63 | 2.72 |
泥质砂岩 | 0.39 | 0.56 | 2.68 |
表1 各类型沉积岩去压实系数(据文献[38]修改)
Table 1 Decompaction factors for various types of sedimentary rocks. Modified after [38].
岩性 | 压实系数/(105 cm-1) | 初始孔隙度Ø0 | 沉积物颗粒密度ρs/(g·cm-3) |
---|---|---|---|
砂岩 | 0.27 | 0.49 | 2.65 |
页岩 | 0.51 | 0.63 | 2.72 |
泥质砂岩 | 0.39 | 0.56 | 2.68 |
图5 剖面新生代地层平衡演化图示,各地层沉积时期基底形态 a—原始沉积剖面;b—回剥N2k和Q地层,代表N1k末期基底沉降剖面;c—回剥N1k地层,此时代表N1j末期基底沉降剖面;d—回剥N1j地层,此时代表E末期基底沉降剖面。
Fig.5 Evolution diagram of Cenozoic strata balance profile, showing the basement morphology during sedimentation periods
图7 根据基底形态筛选Te值 a—根据基底形态确定最佳Te值范围;b—加密处理后的实验结果。
Fig.7 Screening Te based on basement morphology. (a) Determining the optimal Te value range;(b) Experimental results after encryption processing
图8 新生代不同演化阶段塔里木盆地北部模拟结果与实际基底形态拟合 a,c,e和g—分别为古新世—渐新世、渐新世—中新世、中新世和新近纪—第四纪对有限板只加载沉积负载时模拟结果与盆地基底形态拟合对比; b,d,f和h—分别为古新世—渐新世、渐新世—中新世、中新世和新近纪—第四纪对有限板同时加载沉积负载和构造负载的模拟结果与盆地基底形态拟合对比。
Fig.8 Comparative analysis of the simulation results and the actual basement fitting in the northern Tarim Basin during the Cenozoic. (a), (c), (e), and (g) respectively represent comparisons between simulation results of sediment loading only on finite plates during the Paleogene-Neogene, Neogene-Miocene, Miocene, and Neogene-Quaternary, and the fitting of the basin’s basement. (b), (d), (f), and (h) respectively represent comparisons between simulation results of both sediment loading and tectonic loading on finite plates during the Paleogene-Neogene, Neogene-Miocene, Miocene, and Neogene-Quaternary, and the fitting of the basin’s basement.
图10 根据沉降模型总结南天山造山带构造负载平均高度和相对海拔变化图
Fig.10 Summary of the average height and average elevation changes of tectonic loading in the south Tian Shan orogenic belt according to the subsidence model
图11 沉积负载和构造负载分别贡献了该时期盆地沉降总量的百分比图
Fig.11 Percentage contribution of sedimentary load and tectonic load to the total subsidence of the basin during this period
[1] |
MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426.
PMID |
[2] | ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676. |
[3] |
郭晓玉, 罗旭聪, 高锐, 等. 印度-欧亚板块主碰撞带全地壳尺度相互作用关系研究[J]. 地学前缘, 2023, 30(2): 1-17.
DOI |
[4] | NEIL E A, HOUSEMAN G A. Geodynamics of the Tarim Basin and the Tian Shan in central Asia[J]. Tectonics, 1997, 16(4): 571-584. |
[5] | DAYEM K E, MOLNAR P, CLARK M K, et al. Far-field lithospheric deformation in Tibet during continental collision[J]. Tectonics, 2009, 28(6): TC6005. |
[6] | LI C, WANG S L, NAYLOR M, et al. Evolution of the Cenozoic Tarim Basin by flexural subsidence and sediment ponding: insights from quantitative basin modelling[J]. Marine and Petroleum Geology, 2020, 112: 104047. |
[7] |
LI W, CHEN Y, YUAN X H, et al. Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision[J]. Nature Communications, 2022, 13(1): 3738.
DOI PMID |
[8] | YIN A, NIE S, CRAIG P, et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 1998, 17(1): 1-27. |
[9] | DUMITRU T A, ZHOU D, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[J]. Memoir of the Geological Society of America, 2001, 194: 71-99. |
[10] | SOBEL E R, CHEN J, HEERMANCE R V. Late Oligocene-Early Miocene initiation of shortening in the southwestern Chinese Tian Shan: implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1/2): 70-81. |
[11] | 常健, 邱楠生, 李佳蔚. 塔里木盆地与南天山的耦合关系: 来自(U-Th)/He年龄的新证据[J]. 地学前缘, 2012, 19(5): 234-243. |
[12] | JIA Y Y, SUN J M, LU L, et al. Late Oligocene-Miocene intra-continental mountain building of the Harke Mountains, southern Chinese Tian Shan: evidence from detrital AFT and AHe analysis[J]. Journal of Asian Earth Sciences, 2020, 191: 104198. |
[13] | ZHANG T, FANG X, SONG C H, et al. Cenozoic tectonic deformation and uplift of the South Tian Shan: implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression[J]. Tectonophysics, 2014, 628: 172-187. |
[14] | LI C, WANG S L, WANG L S. Tectonostratigraphic history of the southern Tian Shan, western China, from seismic reflection profiling[J]. Journal of Asian Earth Sciences, 2019, 172: 101-114. |
[15] | CHEN J, HE D. Propagation growth of en echelon detachment folds: case from the Nankalayuergun fold zone, North Tarim Basin, NW China[J]. Journal of Structural Geology, 2021, 143: 104253. |
[16] | YANG Y Q, LIU M. Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan[J]. Tectonics, 2002, 21(6): 9. DOI: 10.1029/2001TC001300. |
[17] | HUANG B C, PIPER J D A, PENG S T, et al. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, western China[J]. Earth and Planetary Science Letters, 2006, 251(3/4): 346-364. |
[18] | CHARVET J, SHU L S, LAURENT-CHARVET S, et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China[J]. Science China: Earth Sciences, 2011, 54(2): 166-184. |
[19] | 汤良杰, 邱海峻, 云露, 等. 塔里木盆地北缘—南天山造山带盆-山耦合和构造转换[J]. 地学前缘, 2012, 19(5): 195-204. |
[20] |
LI J Y, ZHANG J, ZHAO X X, et al. Mantle subduction and uplift of intracontinental mountains: a case study from the Chinese Tianshan Mountains within Eurasia[J]. Scientific Reports, 2016, 6: 28831.
DOI PMID |
[21] | CHEN H L, LIN X B, CHENG X G, et al. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau[J]. Journal of the Geological Society, 2022, 179(2): jgs2021. |
[22] | 张希明. 塔里木盆地中新生代沉积演化特征[J]. 新疆地质, 2001, 19(4): 246-250. |
[23] | 金之钧, 张一伟, 陈书平. 塔里木盆地构造-沉积波动过程[J]. 中国科学D辑: 地球科学, 2005, 35(6): 530-539. |
[24] | WANG X, SUPPE J, GUAN S W, et al. Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China[J]. AAPG Special Volumes, 2011, 94: 215-243. |
[25] | 李曰俊, 杨海军, 张光亚, 等. 重新划分塔里木盆地塔北隆起的次级构造单元[J]. 岩石学报, 2012, 28(8): 2466-2478. |
[26] | 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77. |
[27] | RAIMONDO T, HAND M, COLLINS W J. Compressional intracontinental orogens: ancient and modern perspectives[J]. Earth-Science Reviews, 2014, 130: 128-153. |
[28] | 李曰俊, 杨海军, 赵岩, 等. 南天山区域大地构造与演化[J]. 大地构造与成矿学, 2009, 33(1): 94-104. |
[29] | 李世琴, 唐鹏程, 饶刚. 南天山库车褶皱-冲断带喀拉玉尔滚构造带新生代变形特征及其控制因素[J]. 地球科学: 中国地质大学学报, 2013, 38(4): 859-869. |
[30] | ALLEN M B, WINDLEY B F, ZHANG C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 1993, 220(1): 89-115. |
[31] | CHARREAU J, GUMIAUX C, AVOUAC J P, et al. The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: climatic and tectonic implications[J]. Earth and Planetary Science Letters, 2009, 287(3/4): 298-310. |
[32] | 孙继敏, 朱日祥. 天山北麓晚新生代沉积及其新构造与古环境指示意义[J]. 第四纪研究, 2006, 26(1): 14-19. |
[33] | LIU S F, NUMMEDAL D. Late Cretaceous subsidence in Wyoming: quantifying the dynamic component[J]. Geology, 2004, 32(5): 397-400. |
[34] | LIU S F, NUMMEDAL D, LIU L J. Migration of dynamic subsidence across the Late Cretaceous United States Western Interior Basin in response to Farallon plate subduction[J]. Geology, 2011, 39(6): 555-558. |
[35] | PREZZI C B, UBA C E, GÖTZE H J. Flexural isostasy in the Bolivian Andes: Chaco foreland basin development[J]. Tectonophysics, 2009, 474(3/4): 526-543. |
[36] | TURCOTTE D L, SCHUBERT G. Geodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2002. |
[37] | BUROV E B, DIAMENT M. The effective elastic thickness (Te) of continental lithosphere: what does it really mean?[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B3): 3905-3927. |
[38] | SCLATER J G, CHRISTIE P A F. Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea basin[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B7): 3711-3739. |
[39] | AITKEN A R A. Did the growth of Tibetan topography control the locus and evolution of Tien Shan Mountain building?[J]. Geology, 2011, 39(5): 459-462. |
[40] | WICKERT A D. Open-source modular solutions for flexural isostasy: gFlex v1.0[J]. Geoscientific Model Development Discussions, 2015, 8(6): 4245-4292. |
[41] | ALLEN P A, ALLEN J R. Basin analysis: principles and application to petroleum play assessment[M]. 3rd ed. Chichester, West Susex, UK: Wiley-Blackwell, 2013. |
[42] | 刘绍文, 王良书, 李成, 等. 塔里木盆地岩石圈热-流变学结构和新生代热体制[J]. 地质学报, 2006, 80(3): 344-350. |
[43] | JIANG X D, JIN Y, MCNUTT M K. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): B05406. |
[44] | 付永涛, 范守志, 施小斌. 关于岩石圈有效弹性厚度的地质理解[J]. 地质科学, 2005, 40(4): 585-593. |
[45] | CLOETINGH S, BUROV E B. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates[J]. Geophysical Journal International, 1996, 124(3): 695-723. |
[46] | LAVIER L L, STECKLER M S. The effect of sedimentary cover on the flexural strength of continental lithosphere[J]. Nature, 1997, 389: 476-479. |
[47] | GAO R, HUANG D D, LU D Y, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chinese Science Bulletin, 2000, 45(24): 2281-2286. |
[48] | GAO R, HOU H, CAI X, et al. Fine crustal structure beneath the junction of the southwest Tian Shan and Tarim Basin, NW China[J]. Lithosphere, 2013, 5(4): 382-392. |
[49] | KAO H, GAO R, RAU R J, et al. Seismic image of the Tarim Basin and its collision with Tibet[J]. Geology, 2001, 29(7): 575. |
[50] | ZHAO J M, LIU G D, LU Z X, et al. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar Basin[J]. Tectonophysics, 2003, 376(3): 199-239. |
[51] | 郭超, 张志勇, 吴林, 等. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据[J]. 地球科学, 2022, 47(9): 3417-3430. |
[52] | RICHTER F, PEARSON J, VILKAS M, et al. Growth of the southern Tian Shan-Pamir and its impact on central Asian climate[J]. GSA Bulletin, 2022, 135(7/8): 1859-1878. |
[53] | TAPPONNIER P, MOLNAR P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and baykal regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3425-3459. |
[54] | TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. |
[55] | ENGLAND P, HOUSEMAN G. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions[J]. Nature, 1985, 315(6017): 297-301. |
[56] | AVOUAC J P, TAPPONNIER P, BAI M, et al. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6755-6804. |
[57] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[58] | DE GRAVE J, BUSLOV M M, VAN DEN HAUTE P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 188-204. |
[59] | HUANGFU P P, LI Z H, ZHANG K J, et al. India-tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 2021, 48(14): e2021GL094561. |
[60] | JOLIVET M, DOMINGUEZ S, CHARREAU J, et al. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation[J]. Tectonics, 2010, 29(6): TC6019. |
[61] | GLORIE S, DE GRAVE J, BUSLOV M M, et al. Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: the role of inherited structures during deformation-propagation[J]. Tectonics, 2011, 30(6): TC6016. |
[62] | ROWLEY D B, CURRIE B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
[63] | MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 77-102. |
[64] | SHA Y Y, SHI Z G, LIU X D, et al. Role of the Tian Shan Mountains and Pamir Plateau in increasing spatiotemporal differentiation of precipitation over interior Asia[J]. Journal of Climate, 2018, 31(19): 8141-8162. |
[65] | CHARREAU J, GILDER S, CHEN Y, et al. Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan Mountains[J]. Geology, 2006, 34(3): 181-184. |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 王斌,陈博,计文化. 吉尔吉斯南天山Djanydjer蛇绿混杂岩地质特征及辉长岩年代学研究[J]. 地学前缘, 2016, 23(3): 198-209. |
[3] | 刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5): 1-28. |
[4] | 李忠, 高剑, 郭春涛, 徐建强. 塔里木块体北部泥盆—石炭纪陆缘构造演化:盆地充填序列与物源体系约束[J]. 地学前缘, 2015, 22(1): 35-52. |
[5] | 郭瑞清, 秦切, 木合塔尔·扎日, 赵亮亮, 孙敏佳, 魏震. 新疆库鲁克塔格西段奥陶纪花岗岩体地质特征及构造意义[J]. 地学前缘, 2013, 20(4): 251-263. |
[6] | 常健,邱楠生,李佳蔚. 塔里木盆地与南天山的耦合关系:来自(U-Th)/He 年龄的新证据[J]. 地学前缘, 2012, 19(5): 234-243. |
[7] | 汤良杰,邱海峻,云露,杨勇,黄太柱,王鹏昊,谢大庆. 塔里木盆地北缘—南天山造山带盆山耦合和构造转换[J]. 地学前缘, 2012, 19(5): 195-204. |
[8] | 郭璇,朱永峰. 新疆西南天山小哈拉军山辉长岩体岩石学及地球化学研究[J]. 地学前缘, 2011, 18(2): 180-190. |
[9] | 漆家福 雷刚林 李明刚 谢会文 杨书江. 库车坳陷—南天山盆山过渡带的收缩构造变形模式[J]. 地学前缘, 2009, 16(3): 120-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||