地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 282-303.DOI: 10.13745/j.esf.sf.2024.6.80
胡晗1,2(), 张立飞2,*(
), 彭卫刚3, 兰春元2, 刘志成2
收稿日期:
2024-05-05
修回日期:
2024-06-20
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
*张立飞(1963—),男,教授,博士生导师,主要从事变质地质学方面的研究工作。E-mail: Lfzhang@pku.edu.cn
作者简介:
胡 晗(1994—),女,博士,助理研究员,主要从事变质地质学和俯冲带深部碳循环方面的研究工作。E-mail: huhan1@pku.edu.cn
基金资助:
HU Han1,2(), ZHANG Lifei2,*(
), PENG Weigang3, LAN Chunyuan2, LIU Zhicheng2
Received:
2024-05-05
Revised:
2024-06-20
Online:
2024-11-25
Published:
2024-11-25
摘要:
大洋沉积物是俯冲带碳输入的主要贡献者之一,为俯冲带“加工厂”提供了大量的有机碳和无机碳。探索这些碳在俯冲带的命运对于更好地了解地球深部碳循环至关重要。虽然超深金刚石和岛弧碳排放的证据强调了俯冲有机碳在这一循环中的作用,但有机碳俯冲到弧下深度的岩石学证据仍然缺乏。此外,在俯冲带(超)高压((U)HP)条件下形成的非生物成因CH4流体的命运仍未得到充分探索。中国西南天山洋壳型HP-UHP变质带以低地温梯度的冷俯冲为特征,富含含碳(如碳酸盐、石墨、CH4、CO2等)岩石,是研究俯冲带碳循环的理想天然实验室。本文对新疆西南天山造山带超高压泥质片岩中不同类型石墨进行了详细的岩石学观察、拉曼光谱和稳定碳同位素分析。发现两种类型的石墨:Type-1石墨以微小包裹体形式存在于石榴石中,δ13CTOC值较低(-24.3‰~-23.2‰),表明其为生物成因;Type-2石墨呈平行于片理的条带状分布,δ13CTOC值较高,为-14.8‰~-12.5‰,表明其来源于非生物成因的前驱体。扫描电镜图像和拉曼光谱表明,这两种类型的石墨具有相似的形态特征和结晶度。通过热力学模型、金红石Zr温度计和碳质物质的拉曼光谱(RSCM),我们对这两类石墨的形成条件进行了约束。Type-1石墨是由俯冲板块中有机碳在进变质作用中石墨化形成的,温度达到530~555 ℃。Type-2石墨在峰期榴辉岩相变质条件下(约2.7 GPa、530 ℃)从COH流体中沉淀出。与Type-2石墨相关的含CH4流体包裹体和热力学模拟表明,CH4流体中的碳可能通过氧化作用沉淀出石墨。石榴石中Type-1石墨与柯石英共存的岩石学特征和相平衡模拟计算表明,有机碳来源的石墨可以俯冲至超过90 km的弧下深度。这为有机碳向地幔深度俯冲提供了岩石学证据,可能为解释δ13C值较轻的金刚石的起源提供线索。Type-2石墨强调了俯冲带碳流动性的局限性,这一过程可能会影响碳在俯冲带的停留时间,并调节弧火山的碳释放。此外,我们的研究结果还强调了环境氧化还原状态在控制俯冲带COH流体的命运和碳迁移方面的重要作用,尤其是在氧逸度变化的岩性界面。进一步研究这些CH4流体在不同氧化还原条件下的迁移,对于更好地理解俯冲带中碳的迁移具有重要意义。
中图分类号:
胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303.
HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones[J]. Earth Science Frontiers, 2024, 31(6): 282-303.
图1 中国西南天山高压—超高压变质带地质图 (据文献[20]修改) a—中国天山西部的简化构造格架;b—中国西南天山剖面示意图,显示塔里木板块向北俯冲到中天山板块之下,以及超高压和高压亚带的相对位置;c—中国西南天山高压—超高压变质带简化地质图及采样点分布,采样点1有H1811D、H1811H、H1814B和H1817样品,采样点2有H1813B样品,采样点3有H1713-6样品,采样点4有H1840、H1842和H1845样品。
Fig.1 Geological map of the high-pressure-ultrahigh-pressure metamorphic belt in the southwestern Tianshan, China. Modified after [20].
图2 西南天山含Type-1石墨的泥质片岩的代表性手标本照片、显微照片及石榴石中的柯石英、石墨包裹体 (据文献[69]) a, b—含Type-1石墨(Gph)的泥质片岩的代表性手标本照片和薄片扫描图,Type-1石墨呈浸染状分布于岩石中;c—含Type-1石墨的泥质片岩的代表性显微照片,主要由多硅白云母(Phn)、石英(Qz)和石榴石(Grt)组成,多硅白云母、石英和石榴石中含有微量石墨;d—Type-1石墨包裹体沿石榴石的生长环带发育;e—具有放射状裂纹特征的石榴石及其中包裹的石墨和柯石英(Coe);f—石榴石中的柯石英和石墨包裹体;g—石榴石中柯石英的拉曼光谱。Ttn—榍石;Rt—金红石。
Fig.2 Representative hand specimen photographs and photomicrographs of the Type-1 graphite-bearing pelitic schists from the southwestern Tianshan, and the coesite and graphite inclusions in garnet. Adapted from [69].
图3 西南天山含Type-2石墨的泥质片岩的代表性手标本照片和显微照片 (据文献[70]) a, b—含Type-2石墨(Gph)的泥质片岩的代表性手标本照片和薄片扫描照片;c—条带状定向的Type-2石墨和多硅白云母(Phn)确定了岩石的片理方向;d—f—共生的Type-2石墨和金红石(Rt);e—石榴石(Grt)覆盖了先前存在的Type-1石墨+金红石组合;b—f—平面单偏振光照片。Ap—磷灰石;Qz—石英;Py—黄铁矿;Pg—钠云母;Czo—斜黝帘石。
Fig.3 Representative hand specimen photographs and photomicrographs of the Type-2 graphite-bearing pelitic schists from the southwestern Tianshan. Adapted from [70].
图4 西南天山含Type-2石墨的泥质片岩中流体包裹体的岩相学特征及拉曼光谱特征 (据文献[70]) a—c—含石墨的石榴石中纯气相 (CH4+ N2+ CO2) 流体包裹体;d, e—含Type-2石墨的泥质片岩中与石榴石斑晶相邻的含石墨石英中纯气相 (CH4+ N2+ CO2) 流体包裹体;f, g—气液两相(富液相少气相,均为H2O + N2)流体包裹体。需要注意,图d和图f的视域相同,但聚焦深度不同。矿物代号含义同前图。
Fig.4 Petrographic characteristics and Raman spectra of fluid inclusions in Type-2 graphite-bearing pelitic schists from the southwestern Tianshan. Adapted from [70].
图5 西南天山含石墨泥质片岩中Type-1石墨和Type-2石墨的晶体及集合体的形貌特征(d—f据文献[70]) Dol—白云石;其他矿物代号含义同前图。
Fig.5 Morphologies of Type-1 and Type-2 graphite crystals and aggregates in graphite-bearing pelitic schists from the southwestern Tianshan (d—f adapted from [70])
图6 含石墨泥质片岩中两类石墨的代表性拉曼光谱及每类石墨对应的R2值直方图 (据文献[70])
Fig.6 Representative Raman spectra of the two types of graphite in the graphite-bearing pelitic schists and histograms of the corresponding R2 values for each graphite type. Adapted from [70].
类型 | 样品编号 | δ13CTOC/‰ | TOC质量分数/% | δ13CTIC/‰ | δ18O/‰ |
---|---|---|---|---|---|
含Type-1石墨 泥质片岩 | H1811D | -24.26 | 0.75 | <b.d.l. | <b.d.l. |
H1813B | -23.15 | 0.23 | -6.52 | 14.17 | |
H1811H | -23.58 | 1.07 | <b.d.l. | <b.d.l. | |
H1817 | -24.14 | 1.24 | -10.67 | 11.48 | |
含Type-2石墨 泥质片岩 | H1842 | -12.48 | 0.42 | -6.76 | 15.80 |
H1840-2 | -14.33 | 0.11 | -6.71 | 10.78 | |
H1840-1 | -14.78 | 0.06 | -6.63 | 10.65 | |
H1821-2 | -14.48 | 1.64 | -7.03 | 12.52 | |
H1845 | -13.48 | 0.65 | -5.00 | 18.78 | |
H1845(重复样) | -13.37 | 0.63 | <b.d.l. | <b.d.l. | |
H1713-6 | -14.55 | 0.49 | -7.03 | 12.45 | |
H1713-6(重复样) | -14.51 | 0.51 | <b.d.l. | <b.d.l. | |
含石榴石云母片岩 | H1814B | -23.26 | 0.12 | -11.31 | 14.19 |
表1 中国西南天山泥质片岩中碳酸盐和石墨的稳定同位素分析及有机碳含量 (据文献[69-70])
Table 1 Stable isotope analysis of carbonates and graphite, and organic carbon content in pelitic schists from the southwestern Tianshan, China. Adapted from [69-70].
类型 | 样品编号 | δ13CTOC/‰ | TOC质量分数/% | δ13CTIC/‰ | δ18O/‰ |
---|---|---|---|---|---|
含Type-1石墨 泥质片岩 | H1811D | -24.26 | 0.75 | <b.d.l. | <b.d.l. |
H1813B | -23.15 | 0.23 | -6.52 | 14.17 | |
H1811H | -23.58 | 1.07 | <b.d.l. | <b.d.l. | |
H1817 | -24.14 | 1.24 | -10.67 | 11.48 | |
含Type-2石墨 泥质片岩 | H1842 | -12.48 | 0.42 | -6.76 | 15.80 |
H1840-2 | -14.33 | 0.11 | -6.71 | 10.78 | |
H1840-1 | -14.78 | 0.06 | -6.63 | 10.65 | |
H1821-2 | -14.48 | 1.64 | -7.03 | 12.52 | |
H1845 | -13.48 | 0.65 | -5.00 | 18.78 | |
H1845(重复样) | -13.37 | 0.63 | <b.d.l. | <b.d.l. | |
H1713-6 | -14.55 | 0.49 | -7.03 | 12.45 | |
H1713-6(重复样) | -14.51 | 0.51 | <b.d.l. | <b.d.l. | |
含石榴石云母片岩 | H1814B | -23.26 | 0.12 | -11.31 | 14.19 |
图7 两类石墨的δ13CTOC值和总有机碳(TOC)质量分数,以及含石墨泥质片岩中碳酸盐的δ13CTIC和δ18O值 (据文献[70]) a—含石墨泥质片岩中两种类型石墨的δ13CTOC值和总有机碳(TOC)质量分数。为了比较,我们还加上了中国西南天山贫石墨的石榴石云母片岩(样品H1814B)和含脉状石墨基性榴辉岩[38]中石墨的δ13CTOC值和TOC质量分数;b—与地幔碳[31]、碳酸盐[9,11,38]和有机碳[74]等不同碳源的石墨碳同位素组成对比;c—含石墨泥质片岩中石墨的δ13CTOC值和碳酸盐的δ13CTIC值;d—含石墨泥质片岩中碳酸盐的δ13CTIC和δ18O值。
Fig.7 δ13CTOC values and total organic carbon (TOC) mass fractions for the two types of graphite, and δ13CTIC and δ18O values for carbonates in graphite-bearing pelitic schists. Adapted from [70].
图8 含Type-1和Type-2石墨的泥质片岩的p—T视剖面图 (据文献[69-70]) a, b—含Type-1石墨的泥质片岩H1813B的p—T相图与石榴石、多硅白云母的等值线[69];c, d—含Type-2石墨的泥质片岩H1842的p—T相图与石榴石、多硅白云母、金红石的等值线。体系为NCKFMASHTi+CO2(+quartz/coesite + rutile + F);石榴石中的XPrp、XGrs和XAlm等值线分别用绿色、粉色和紫色虚线绘制;灰色曲线为H1813B和H1842折返的p—T轨迹;金刚石—石墨转变线引自文献[76]。
Fig.8 p—T pseudosections for the investigated Type-1 and Type-2 graphite-bearing UHP pelitic schists. Adapted from [69-70].
图9 C—O—H三元图展示了石墨饱和曲线;p—XO图展示了碳饱和COH流体的原子碳含量和氧逸度(据文献[70]) a—温度为500 ℃时的C—O—H三元图,显示了0.1、0.5、1.0、2.0和2.7 GPa时石墨的饱和曲线。请注意,2.7 GPa和2.0 GPa的石墨饱和曲线几乎重叠。带黑边的虚线圈表示碳饱和表面对应的氧逸度。b, c—p—XO图显示碳饱和COH流体的碳原子摩尔分数和氧逸度关系,XO=n(O)/[n(O)+n(H)],在27 GPa和500 ℃条件下,富CH4还原性流体的氧逸度增加会导致石墨沉淀,同时流体碳含量降低。
Fig.9 A C—O—H ternary diagram showing the graphite saturation curve, and p—XO diagrams showing the atomic carbon content and oxygen fugacity of carbon-saturated COH fluids. Adapted from [70].
图10 俯冲带中有机碳的命运示意图(据文献[69]) 俯冲带海相沉积物中的无序有机物(organic matter,OM,δ13COM<-20‰)会随着温度的升高而部分或完全石墨化。本研究的结果表明,这些来自洋壳沉积物的无序有机碳俯冲到弧下深度(约90 km,柯石英稳定域),形成了δ13COM为-24‰的石墨。地表有机碳的这种俯冲作用可能有助于形成δ13C值较轻的蛇绿岩型金刚石(δ13C峰值为-25‰)。
Fig.10 Schematic diagram of the fate of organic carbon in a subduction zone. Adapted from [69].
[1] | PLANK T, MANNING C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343-352. |
[2] | KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling[J]. Earth and Planetary Science Letters, 2001, 189(1/2): 19-29. |
[3] | KERRICK D M, CONNOLLY J A. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle[J]. Nature, 2001, 411(6835): 293-296. |
[4] | GORMAN P J, KERRICK D M, CONNOLLY J A D. Modeling open system metamorphic decarbonation of subducting slabs[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): n/a. |
[5] | COOK-KOLLARS J, BEBOUT G E, COLLINS N C, et al. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps[J]. Chemical Geology, 2014, 386: 31-48. |
[6] | FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4: 703-706. |
[7] | AGUE J J, NICOLESCU S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geoscience, 2014, 7(5): 355-360. |
[8] | KELEMEN P B, MANNING C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997-E4006. |
[9] | GALVEZ M E, BEYSSAC O, MARTINEZ I, et al. Graphite formation by carbonate reduction during subduction[J]. Nature Geoscience, 2013, 6(6): 473-477. |
[10] | LAZAR C, ZHANG C, MANNING C E, et al. Redox effects on calcite-portlandite-fluid equilibria at forearc conditions: carbon mobility, methanogenesis, and reduction melting of calcite[J]. American Mineralogist, 2014, 99(8/9): 1604-1615. |
[11] |
VITALE BROVARONE A, MARTINEZ I, ELMALEH A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communications, 2017, 8: 14134.
DOI PMID |
[12] | TAO R B, ZHANG L F, TIAN M, et al. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation[J]. Geochimica et Cosmochimica Acta, 2018, 239: 390-408. |
[13] | PENG W G, ZHANG L F, TUMIATI S, et al. Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones[J]. Geochimica et Cosmochimica Acta, 2021, 311: 119-140. |
[14] |
POLI S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids[J]. Nature Geoscience, 2015, 8(8): 633-636.
DOI |
[15] | THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79. |
[16] | STEWART E M, AGUE J J, FERRY J M, et al. Carbonation and decarbonation reactions: implications for planetary habitability[J]. American Mineralogist, 2019, 104(10): 1369-1380. |
[17] | PICCOLI F, VITALE BROVARONE A, BEYSSAC O, et al. Carbonation by fluid-rock interactions at high-pressure conditions: implications for carbon cycling in subduction zones[J]. Earth and Planetary Science Letters, 2016, 445: 146-159. |
[18] | SCAMBELLURI M, BEBOUT G E, BELMONTE D, et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling[J]. Earth and Planetary Science Letters, 2016, 441: 155-166. |
[19] | PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243. |
[20] | HU H, VITALE BROVARONE A, ZHANG L F, et al. Retrograde carbon sequestration in orogenic complexes: a case study from the Chinese southwestern Tianshan[J]. Lithos, 2021, 392: 106151. |
[21] | SVERJENSKY D A, STAGNO V, HUANG F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7(12): 909-913. |
[22] |
FREZZOTTI M L. Diamond growth from organic compounds in hydrous fluids deep within the Earth[J]. Nature Communications, 2019, 10: 4952.
DOI PMID |
[23] | DUNCAN M S, DASGUPTA R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon[J]. Nature Geoscience, 2017, 10(5): 387-392. |
[24] | EGUCHI J, SEALES J, DASGUPTA R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon[J]. Nature Geoscience, 2020, 13(1): 71-76. |
[25] |
TUMIATI S, RECCHIA S, REMUSAT L, et al. Subducted organic matter buffered by marine carbonate rules the carbon isotopic signature of arc emissions[J]. Nature Communications, 2022, 13: 2909.
DOI PMID |
[26] | YANG J S, WU W W, LIAN D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 2(3): 198-212. |
[27] | CARTIGNY P, PALOT M, THOMASSOT E, et al. Diamond formation: a stable isotope perspective[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 699-732. |
[28] | SCHULZE D J, HARTE B, PAGE F Z et al. Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin[J]. Geology, 2013, 41(4): 455-458. |
[29] | GIULIANI A, DRYSDALE R N, WOODHEAD J D, et al. Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion[J]. Science Advances, 2022, 8(9): eabj1325. |
[30] | BUSECK P R, BEYSSAC O. From organic matter to graphite: graphitization[J]. Elements, 2014, 10(6): 421-426. |
[31] | LUQUE F J, CRESPO-FEO E, BARRENECHEA J F, et al. Carbon isotopes of graphite: implications on fluid history[J]. Geoscience Frontiers, 2012, 3(2): 197-207. |
[32] | SALOTTI C A, HEINRICH E W, GIARDINI A A. Abiotic carbon and the formation of graphite deposits[J]. Economic Geology, 1971, 66(6): 929-932. |
[33] | BARRENECHEA J F, LUQUE F J, MILLWARD D, et al. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data[J]. Contributions to Mineralogy and Petrology, 2009, 158(1): 37-51. |
[34] | TOURET J L R, HUIZENGA J M, WILBERT KEHELPANNALA K V, et al. Vein-type graphite deposits in Sri Lanka: the ultimate fate of granulite fluids[J]. Chemical Geology, 2019, 508: 167-181. |
[35] | LUQUE F J, PASTERIS J D, WOPENKA B, et al. Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation[J]. American Journal of Science, 1998, 298(6): 471-498. |
[36] | PASTERIS J D, CHOU I M. Fluid-deposited graphitic inclusions in quartz: comparison between KTB (German continental deep-drilling) core samples and artificially reequilibrated natural inclusions[J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 109-122. |
[37] | LUQUE F J, ORTEGA L, BARRENECHEA J F, et al. Deposition of highly crystalline graphite from moderate-temperature fluids[J]. Geology, 2009, 37(3): 275-278. |
[38] | ZHU J J, ZHANG L F, TAO R B, et al. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone[J]. Chemical Geology, 2020, 533: 119430. |
[39] | SCHIDLOWSKI M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept[J]. Precambrian Research, 2001, 106(1/2): 117-134. |
[40] | SATISH-KUMAR M. Graphite-bearing CO2-fluid inclusions in granulites: insights on graphite precipitation and carbon isotope evolution[J]. Geochimica et Cosmochimica Acta, 2005, 69(15): 3841-3856. |
[41] | GAO J, LI M S, XIAO X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics, 1998, 287(1/2/3/4): 213-231. |
[42] | GAO, KLEMD, ZHANG, et al. p-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China[J]. Journal of Metamorphic Geology, 1999, 17(6): 621-636. |
[43] | ZHANG L F, AI Y L, LI X P, et al. Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks[J]. Lithos, 2007, 96(1/2): 266-280. |
[44] | ZHANG L F, DU J X, LÜ Z, et al. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: peak metamorphic age and P-T path[J]. Chinese Science Bulletin, 2013, 58(35): 4378-4383. |
[45] | LÜ Z, BUCHER K, ZHANG L, et al. The Habutengsu metapelites and metagreywackes in western Tianshan, China: metamorphic evolution and tectonic implications[J]. Journal of Metamorphic Geology, 2012, 30(9): 907-926. |
[46] | LÜ Z, ZHANG L F. Coesite in the eclogite and schist of the Atantayi Valley, southwestern Tianshan, China[J]. Chinese Science Bulletin, 2012, 57(13): 1467-1472. |
[47] | YANG X, ZHANG L F, TIAN Z L, et al. Petrology and U-Pb zircon dating of coesite-bearing metapelite from the Kebuerte Valley, western Tianshan, China[J]. Journal of Asian Earth Sciences, 2013, 70: 295-307. |
[48] | ZHANG L F, WANG Y, ZHANG L J, et al. Ultrahigh pressure metamorphism and tectonic evolution of southwestern Tianshan Orogenic Belt, China: a comprehensive review[J]. Geological Society, London, Special Publications, 2019, 474(1): 133-152. |
[49] | ZHANG L F, ELLIS D J, JIANG W B. Ultrahigh-pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites[J]. American Mineralogist, 2002, 87(7): 853-860. |
[50] | LI X P, ZHANG L, WEI C, et al. Petrology of rodingite derived from eclogite in western Tianshan, China[J]. Journal of Metamorphic Geology, 2007, 25(3): 363-382. |
[51] | LÜ Z, BUCHER K, ZHANG L F. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan[J]. Journal of Asian Earth Sciences, 2013, 76: 37-47. |
[52] | SHEN T T, HERMANN J, ZHANG L F, et al. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan[J]. Journal of Petrology, 2015, 56(7): 1425-1458. |
[53] | LÜ Z, ZHANG L F, YUE J, et al. Ultrahigh-pressure and high-P lawsonite eclogites in Muzhaerte, Chinese western Tianshan[J]. Journal of Metamorphic Geology, 2019, 37(5): 717-743. |
[54] | TAO R B, ZHANG L J, ZHANG L F. Redox evolution of western Tianshan subduction zone and its effect on deep carbon cycle[J]. Geoscience Frontiers, 2020, 11(3): 915-924. |
[55] | ZHANG L F, ELLIS D J, WILLIAMS S, et al. Ultra-high pressure metamorphism in western Tianshan, China: part II. Evidence from magnesite in eclogite[J]. American Mineralogist, 2002, 87(7): 861-866. |
[56] | LI J L, KLEMD R, GAO J, et al. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): evidence for prograde metamorphism during subduction of oceanic crust[J]. American Mineralogist, 2014, 99(1): 206-217. |
[57] | LÜ Z, ZHANG L F, CHEN Z Y. Jadeite- and dolomite-bearing coesite eclogite from western Tianshan, NW China[J]. European Journal of Mineralogy, 2014, 26(2): 245-256. |
[58] | 彭卫刚, 张立飞, 申婷婷, 等. 俯冲带碳酸盐化对深部碳循环的启示: 以中国西南天山碳酸盐化云母片岩为例[J]. 岩石学报, 2018, 34(4): 1204-1218. |
[59] | LÜ Z, ZHANG L, DU J, et al. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication[J]. Journal of Metamorphic Geology, 2009, 27(9): 773-787. |
[60] | TAO R B, ZHANG L F, FEI Y W, et al. The effect of Fe on the stability of dolomite at high pressure: experimental study and petrological observation in eclogite from southwestern Tianshan, China[J]. Geochimica et Cosmochimica Acta, 2014, 143: 253-267. |
[61] | LÜ Z, ZHANG L F, DU J X, et al. Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan, China: fluid processes and elemental mobility during exhumation in a cold subduction zone[J]. Lithos, 2012, 136: 168-186. |
[62] | BEYSSAC O, GOFFÉ B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871. |
[63] | BEYSSAC O, GOFFÉ B, PETITET J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276. |
[64] | WOJDYR M. Fityk: a general-purpose peak fitting program[J]. Journal of Applied Crystallography, 2010, 43(5): 1126-1128. |
[65] | DONG J, WEI C J. Multi-stage metamorphism of the South Altyn ultrahigh-pressure metamorphic belt, West China: insights into tectonic evolution from continental subduction to arc-backarc extension[J]. Journal of Petrology, 2021, 62(11): egab082. |
[66] | ZHANG C, DUAN Z H. GFluid: an Excel spreadsheet for investigating C-O-H fluid composition under high temperatures and pressures[J]. Computers and Geosciences, 2010, 36(4): 569-572. |
[67] | ZHANG C, DUAN Z H. A model for C-O-H fluid in the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2089-2102. |
[68] | WHITNEY D L, EVANS B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1): 185-187. |
[69] | HU H, ZHANG L F, LAN C Y, et al. Petrological evidence for deep subduction of organic carbon to subarc depths[J]. Communications Earth & Environment, 2023, 4: 418. |
[70] | HU H, ZHANG L, BADER T, et al. Fluid-deposited graphite in metapelites from the southwestern Tianshan Orogen (China): implications for carbon cycling in subduction zones[J]. Lithos, 2024, 482: 107733. |
[71] | NEMANICH R J, SOLIN S A. First- and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2): 392-401. |
[72] | WOPENKA B, PASTERIS J D. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy[J]. American Mineralogist, 1993, 78(5/6): 533-557. |
[73] | REICH S, THOMSEN C. Raman spectroscopy of graphite[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1824): 2271-2288. |
[74] | YANG X Q, MAO J W, JIANG Z S, et al. The Carboniferous Shikebutai iron deposit in western Tianshan, northwestern China: petrology, Fe-O-C-Si isotopes, and implications for iron pathways[J]. Economic Geology, 2019, 114(6): 1207-1222. |
[75] | LIAN D Y, YANG J S. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle[J]. Engineering, 2019, 5(3): 406-420. |
[76] | DAY H W. A revised diamond-graphite transition curve[J]. American Mineralogist, 2012, 97(1): 52-62. |
[77] | ZHANG L J, CHU X, ZHANG L F, et al. The early exhumation history of the western Tianshan UHP metamorphic belt, China: new constraints from titanite U-Pb geochronology and thermobarometry[J]. Journal of Metamorphic Geology, 2018, 36(5): 631-651. |
[78] | TOMKINS H S, POWELL R, ELLIS D J. The pressure dependence of the zirconium-in-rutile thermometer[J]. Journal of Metamorphic Geology, 2007, 25(6): 703-713. |
[79] | KOHN M J. A refined zirconium-in-rutile thermometer[J]. American Mineralogist, 2020, 105(6): 963-971. |
[80] | HOEFS J. Stable isotope geochemistry[M]. Berlin, Heidelberg: Springer, 2004. |
[81] | DERA G, PUCÉAT E, PELLENARD P, et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 198-207. |
[82] | VALLEY J W, O’NEIL J R. 13C 12C exchange between calcite and graphite: a possible thermometer in Grenville marbles[J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 411-419. |
[83] | WADA H. Microscale isotopic zoning in calcite and graphite crystals in marble[J]. Nature, 1988, 331(6151): 61-63. |
[84] | RAY J S. Carbon isotopic variations in fluid-deposited graphite: evidence for multicomponent Rayleigh isotopic fractionation[J]. International Geology Review, 2009, 51(1): 45-57. |
[85] | ZHU J J, ZHANG L F, LÜ Z, et al. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: implications for deep carbon cycle[J]. Journal of Asian Earth Sciences, 2018, 153: 307-324. |
[86] | SHI G U, TROPPER P, CUI W Y, et al. Methane (CH4)-bearing fluid inclusions in the Myanmar jadeitite[J]. Geochemical Journal, 2005, 39(6): 503-516. |
[87] | DEINES P. The isotopic composition of reduced organic carbon[M]//Handbook of environmental isotope geochemistry, vol 1. New York, Amsterdam: Elsevier, 1980: 239-406. |
[88] | SHEPPARD S M F, SCHWARCZ H P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite[J]. Contributions to Mineralogy and Petrology, 1970, 26(3): 161-198. |
[89] | BOTTINGA Y. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor[J]. Geochimica et Cosmochimica Acta, 1969, 33(1): 49-64. |
[90] | OHMOTO H, RYE R O. Isotopes of sulfur and carbon[M]//BARNES H L. Geochemistry of hydrothermal ore deposits. New York: Wiley, 1979: 509-567. |
[91] | RUMBLE D. Hydrothermal graphitic carbon[J]. Elements, 2014, 10(6): 427-433. |
[92] | LUQUE F J, RODAS M. Constraints on graphite crystallinity in some Spanish fluid-deposited occurrences from different geologic settings[J]. Mineralium Deposita, 1999, 34(2): 215-219. |
[93] | PASTERIS. Causes of the uniformly high crystallinity of graphite in large epigenetic deposits[J]. Journal of Metamorphic Geology, 1999, 17(6): 779-787. |
[94] | ETIOPE G, SHERWOOD LOLLAR B. Abiotic methane on Earth[J]. Reviews of Geophysics, 2013, 51(2): 276-299. |
[95] | PASSCHIER C W, TROUW R A. Microtectonics[M]. Berlin: Springer, 2005. |
[96] | GAO J, JOHN T, KLEMD R, et al. Mobilization of Ti-Nb-Ta during subduction: evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China[J]. Geochimica et Cosmochimica Acta, 2007, 71(20): 4974-4996. |
[97] | AOYA M, KOUKETSU Y, ENDO S, et al. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks[J]. Journal of Metamorphic Geology, 2010, 28(9): 895-914. |
[98] | WEI C J, WANG W, CLARKE G L, et al. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the South Tianshan Orogen, NW China: phase equilibria and P-T path[J]. Journal of Petrology, 2009, 50(10): 1973-1991. |
[99] | ZACK T, MORAES R, KRONZ A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148(4): 471-488. |
[100] | SOBOLEV N V, FURSENKO B A, GORYAINOV S V, et al. Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 11875-11879. |
[101] | CARTIGNY P. Stable isotopes and the origin of diamond[J]. Elements, 2005, 1(2): 79-84. |
[102] | TAPPERT R, STACHEL T, HARRIS J W, et al. Subducting oceanic crust: the source of deep diamonds[J]. Geology, 2005, 33(7): 565-568. |
[103] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[104] | LAN C Y, TAO R B, HUANG F, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989. |
[105] | SIEBER M J, HERMANN J, YAXLEY G M. An experimental investigation of C-O-H fluid-driven carbonation of serpentinites under forearc conditions[J]. Earth and Planetary Science Letters, 2018, 496: 178-188. |
[106] | SIEBER M J, YAXLEY G M, HERMANN J. COH-fluid induced metasomatism of peridotites in the forearc mantle[J]. Contributions to Mineralogy and Petrology, 2022, 177(4): 44. |
[1] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[2] | 郑成, 孙承君, 金红, 黄玉环, 岳新安, 杨桂朋, 丁海兵. 雅浦海沟北部深渊和超深渊沉积物的物质组成、来源和形成过程研究[J]. 地学前缘, 2022, 29(5): 73-87. |
[3] | 李栋, 赵敏, 刘再华, 陈波. 普定岩溶水-碳循环模拟试验场水体双碳同位素特征(δ13C-Δ14C)与碳足迹[J]. 地学前缘, 2022, 29(3): 155-166. |
[4] | 田飞, 王永, 袁路朋, 汤文坤. 浑善达克沙地碱湖表层沉积物的粒度、沉积有机质变化特征与指示意义[J]. 地学前缘, 2022, 29(2): 317-326. |
[5] | 曹代勇, 刘志飞, 王安民, 王路, 丁正云, 李阳. 构造物理化学条件对煤变质作用的控制[J]. 地学前缘, 2022, 29(1): 439-448. |
[6] | 孙春岩,贺会策,宋腾,赵浩,杜文慧,相江芸. ODP/IODP典型水合物站位稳定带界限和水合物分布的地球化学识别标志[J]. 地学前缘, 2017, 24(2): 234-245. |
[7] | 杨元元, 马寅生, 刘成林, 程海艳. 风化作用对烃源岩有机质丰度的影响:以柴北缘石灰沟克鲁克组为例[J]. 地学前缘, 2016, 23(5): 113-118. |
[8] | 郭冀隆, 李紫晶, 张阳阳, 陈家玮. 地质封存CO2水岩作用对页岩有机碳的萃取效应研究[J]. 地学前缘, 2015, 22(5): 239-246. |
[9] | 奚小环, 李敏*, 张秀芝, 张燕平, 张德存, 张建新, 窦磊, 杨奕. 中国中东部平原及周边地区土壤有机碳分布与变化趋势研究[J]. 地学前缘, 2013, 20(1): 154-165. |
[10] | 丁虎, 刘丛强, 郎赟超, 刘文景. 桂西北典型峰丛洼地降雨过程中地表水溶解性碳和δ13CDIC变化特征[J]. 地学前缘, 2011, 18(6): 182-189. |
[11] | 茅昌平, 季峻峰, 罗郧, 袁旭音, 杨忠芳, 宋垠先, 陈骏. 长江干流颗粒有机碳及其同位素组成的季节性输送特征[J]. 地学前缘, 2011, 18(6): 161-168. |
[12] | 侯青叶, 杨忠芳, 余涛, 顾兆炎, 夏学齐, 沈承德. 乌裕尔河流域颗粒有机碳的来源:碳同位素证据[J]. 地学前缘, 2011, 18(6): 150-160. |
[13] | 廖艳, 杨忠芳, 夏学齐, 蒋宏忱. 青藏高原冻土土壤呼吸温度敏感性和不同活性有机碳组分研究[J]. 地学前缘, 2011, 18(6): 85-93. |
[14] | 向武, Jiasong Fang, 万翔, 贺灵, 孙兴庭, 闭向阳. 全球变化背景下北方泥炭地释放溶解有机碳的驱动机制[J]. 地学前缘, 2011, 18(6): 72-78. |
[15] | 夏学齐, 杨忠芳, 余涛, 侯青叶, 白荣杰, 崔玉军. 中国东北地区20世纪末土地利用变化的土壤碳源汇效应[J]. 地学前缘, 2011, 18(6): 56-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||