地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 326-339.DOI: 10.13745/j.esf.sf.2023.11.33
李佩1(), 张春霞2,3,*(
), 罗浩1, 刘志成1, 高战武1
收稿日期:
2023-07-10
修回日期:
2023-08-22
出版日期:
2024-07-25
发布日期:
2024-07-10
通信作者:
* 张春霞(1977—),女,博士,研究员,博士生导师,主要从事第四纪地质与环境研究工作。E-mail: 作者简介:
李 佩(1991—),女,博士,工程师,主要从事第四纪地质和活动构造研究工作。E-mail: lipei911223@126.com
基金资助:
LI Pei1(), ZHANG Chunxia2,3,*(
), LUO Hao1, LIU Zhicheng1, GAO Zhanwu1
Received:
2023-07-10
Revised:
2023-08-22
Online:
2024-07-25
Published:
2024-07-10
摘要:
青藏高原东南缘的云南区域是研究晚新生代以来气候和环境演化的重要区域之一。虽然针对云南区域已经开展了大量古气候和古环境演化的研究,但是晚中新世到上新世云南区域湿度变化的记录仅为碳同位素和孢粉记录,且分辨率较低。因此,该区域缺乏晚中新世到上新世连续的高分辨率古湿度变化记录。本研究主要基于云南省东北部昭通盆地内晚中新世到上新世的沉积物岩心,通过对沉积物粒度的测试分析,综合沉积序列、岩性特征和沉积构造,表明:昭通盆地在8.8~6.2 Ma以沼泽亚相沉积环境为主;在6.2~2.8 Ma以浅湖亚相沉积环境为主;在2.8~2.6 Ma以湖滨亚相沉积环境为主。昭通盆地沉积物粒度参数记录的晚中新世到上新世云南区域呈现干旱化的趋势。结合前期该钻孔黏土矿物和化学风化的相关成果,认为晚中新世到上新世南亚季风呈现逐渐减弱的趋势,并主要受控于全球变冷和全球CO2浓度降低的影响。
中图分类号:
李佩, 张春霞, 罗浩, 刘志成, 高战武. 青藏高原东南缘昭通盆地晚中新世到上新世古环境演化过程[J]. 地学前缘, 2024, 31(4): 326-339.
LI Pei, ZHANG Chunxia, LUO Hao, LIU Zhicheng, GAO Zhanwu. The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2024, 31(4): 326-339.
图1 青藏高原东南缘及昭通盆地的位置(a),昭通盆地地质图及ZK1钻孔的位置(b)(据文献[6]修改)
Fig.1 Schematic diagram showing the location of Zhaotong Basin on the southeastern margin of the Tibetan Plateau (a), schematic geological map of the area surrounding borehole ZK1 in the Zhaotong Basin (b). Modified after [6].
深度/m | 岩性特征 | 层位 |
---|---|---|
0.0~5.8 | 灰色、灰白色砂质粉砂,灰色泥质粉砂夹褐黄色赤铁矿团块。团块呈不规则形状,一般小于4 cm,从上往下团块数量减少 | I |
5.8~22.4 | 深绿灰色黏土。夹两层螺化石层,其中18.86~19.06 m的化石含量相对较少,而且螺体都小于1 cm;19.5~19.7 m含大量螺化石,螺体为3~5 cm | II |
22.4~63.0 | 灰绿色粉砂质黏土。共夹一层劣质褐煤(32.1~32.25 m),一层泥质粉砂(32.5~32.6 m)和7层螺化石层。化石层分别为:①25.50~25.55 m;②24.30~24.35 m;③31.28~31.30 m;④31.95~32.05 m;⑤32.5~32.6 m;⑥42.5~43.3 m | III |
63.0~64.7 | 深褐色褐煤。含炭化木和水草化石 | IV |
64.7~72.1 | 黑褐色泥炭。中间夹有3层黑褐色碳质黏土层 | V |
72.1~104.5 | 深褐色褐煤。含炭化木和水草化石 | VI |
104.5~111.6 | 深灰-灰色黏土 | VII |
111.6~120 | 浅灰色灰岩(二叠纪灰岩) | VIII |
表1 ZK1钻孔的岩性描述及地层层位序列
Table 1 Lithologic description and stratigraphic sequence of borehole ZK1
深度/m | 岩性特征 | 层位 |
---|---|---|
0.0~5.8 | 灰色、灰白色砂质粉砂,灰色泥质粉砂夹褐黄色赤铁矿团块。团块呈不规则形状,一般小于4 cm,从上往下团块数量减少 | I |
5.8~22.4 | 深绿灰色黏土。夹两层螺化石层,其中18.86~19.06 m的化石含量相对较少,而且螺体都小于1 cm;19.5~19.7 m含大量螺化石,螺体为3~5 cm | II |
22.4~63.0 | 灰绿色粉砂质黏土。共夹一层劣质褐煤(32.1~32.25 m),一层泥质粉砂(32.5~32.6 m)和7层螺化石层。化石层分别为:①25.50~25.55 m;②24.30~24.35 m;③31.28~31.30 m;④31.95~32.05 m;⑤32.5~32.6 m;⑥42.5~43.3 m | III |
63.0~64.7 | 深褐色褐煤。含炭化木和水草化石 | IV |
64.7~72.1 | 黑褐色泥炭。中间夹有3层黑褐色碳质黏土层 | V |
72.1~104.5 | 深褐色褐煤。含炭化木和水草化石 | VI |
104.5~111.6 | 深灰-灰色黏土 | VII |
111.6~120 | 浅灰色灰岩(二叠纪灰岩) | VIII |
图2 昭通盆地ZK1钻孔磁性地层年代框架(据文献[2]修改) a,b和c—昭通盆地ZK1钻孔的岩石地层序列、磁倾角和磁性倒转序列;d—为磁性极性年表(ANTNS2012)(据文献[19]);e—基于标准磁性极性年表得到昭通盆地ZK1钻孔沉积物的13个年代控制点及其所在层位。
Fig.2 Magnetostratigraphic age framework of borehole ZK1 in the Zhaotong Basin (modified after [2]). (a), (b) and (c) represent lithology, inclination and magnetic polarity zonation; (d) geomagnetic polarity timescale (GPTS) (adapted from [19]); (e) thirteen age control points of sediment from borehole ZK1 in the Zhaotong Basin based on the standard geomagnetic polarity timescale.
分带 | 黏土(<2 μm)含量/% | 粉砂(2~63 μm)含量/% | 砂(>63 μm)含量/% | 中值粒径/μm | 平均粒径/μm | |
---|---|---|---|---|---|---|
Unit I | 范围 | 7.0~37.8 | 60.3~93.1 | 0~34.1 | 4.4~52.4 | 8.9~47.4 |
平均值 | 17.4 | 75.6 | 6.9 | 10.1 | 19.4 | |
Unit II | 范围 | 4.1~32.8 | 45.7~93.3 | 0.01~21.6 | 4.0~29.2 | 9.9~49.7 |
平均值 | 13.7 | 81.1 | 5.22 | 10.0 | 17.85 | |
Unit III | 范围 | 6.5~36.5 | 28.6~68.8 | 2.6~65 | 3.2~104.8 | 9.3~140.0 |
平均值 | 17.5 | 54.7 | 28.6 | 29.8 | 49.4 |
表2 ZK1钻孔黏土、粉砂、砂含量及中值粒径和平均粒径在各带的变化范围
Table 2 Variation range of clay, silt, sand content, median particle size, and average particle size in afferent zones of borehole ZK1
分带 | 黏土(<2 μm)含量/% | 粉砂(2~63 μm)含量/% | 砂(>63 μm)含量/% | 中值粒径/μm | 平均粒径/μm | |
---|---|---|---|---|---|---|
Unit I | 范围 | 7.0~37.8 | 60.3~93.1 | 0~34.1 | 4.4~52.4 | 8.9~47.4 |
平均值 | 17.4 | 75.6 | 6.9 | 10.1 | 19.4 | |
Unit II | 范围 | 4.1~32.8 | 45.7~93.3 | 0.01~21.6 | 4.0~29.2 | 9.9~49.7 |
平均值 | 13.7 | 81.1 | 5.22 | 10.0 | 17.85 | |
Unit III | 范围 | 6.5~36.5 | 28.6~68.8 | 2.6~65 | 3.2~104.8 | 9.3~140.0 |
平均值 | 17.5 | 54.7 | 28.6 | 29.8 | 49.4 |
图4 昭通盆地ZK1钻孔沉积物各沉积带频率分布曲线及概率累积曲线
Fig.4 Frequency distribution curve and probability accumulation curve of each sedimentary zone of borehole ZK1 in the Zhaotong Basin
图6 昭通盆地晚中新世到上新世沉积物沉积相划分及野外地层沉积构造特征
Fig.6 Sedimentary facies division and field stratigraphic sedimentary structural characteristics in Zhaotong Basin during the Late Miocene to Pliocene
图7 昭通盆地ZK1钻孔不同粒径含量(a-c)、平均粒径(d)、黏土矿物比值(Kao/(Sm+Ver(HIV)))(据文献[17])(e)、化学风化指标CIA和K/Al值(f,g)(据文献[18])、深海氧同位素记录(h)(据文献[37])、巴基斯坦北部Siwalik古土壤碳酸岩碳同位素记录(i)(据文献[38]) 图中灰色点表示ZK1钻孔沉积物粒度参数的原始数据,曲线为5点求平均,线段为线性回归所得到不同阶段的趋势线。
Fig.7 The various contents of grain size (a-c)、median grain size (d), the ratio of clay mineral content (Kao/(Sm+Ver(HIV)))[17] (e), the chemical weathering index of CIA and the ratio value of K/Al[18], global ice volume as indicated by marine oxygen isotope (h)[37], δ18O record (PDB) of palaeosol carbonate nodules from the Siwalik Group in northern Pakistan (i)[38]. Record: the gray dots in the figure represent the original data of sediment particle size parameters of ZK1 borehole, the curve is smoothed using a 5-point moving average, and the line segments are the trend lines of different stages obtained by linear regression.
[1] | CASANOVAS-VILAR I, ALBA D M, GARCÉS M, et al. Updated chronology for the Miocene hominoid radiation in western Eurasia[J]. Proceedings of the National Academy of Science, 2011, 108(14): 5554-5559. |
[2] | JI X P, JABLONSKIN G, SU D F, et al. Juvenile hominoid cranium from the terminal Miocene of Yunnan, China[J]. Chinese Science Bulletin, 2013, 58(31): 3771-3779. |
[3] | JABLONSKI N G, SU D F, FLYNN L J, et al. The site of Shuitangba (Yunnan, China) preserves a unique, terminal Miocene fauna[J]. Journal of Vertebrate Paleontology, 2014, 34(5): 1251-1257. |
[4] |
HARRISON T, JI X P, SU D. On the systematic status of the Late Neogene hominoids from Yunnan Province, China[J]. Journal of Human Evolution, 2002, 43(2): 207-227.
PMID |
[5] | CHANG L, GUO Z T, DENG C L, et al. Pollen evidence of the palaeoenvironments of Lufengpithecus lufengensis in the Zhaotong Basin, southeastern margin of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 95-104. |
[6] |
ZHANG C X, GUO Z T, DENG C L, et al. Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China[J]. Scientific Reports, 2016, 6: 20012.
DOI PMID |
[7] | ZHAO L C, WANG Y F, LIU C J, et al. Climatic implications of fruit and seed assemblage from Miocene of Yunnan, southwestern China[J]. Quaternary International, 2004, 117(1): 81-89. |
[8] | XU J X, FERGUSON D K, LI C S, et al. Climatic and ecological implications of Late Pliocene Palynoflora from Longling, Yunnan, China[J]. Quaternary International, 2004, 117(1): 91-103. |
[9] | KOU X Y, FERGUSON D K, XU J X, et al. The reconstruction of paleovegetation and paleoclimate in the Late Pliocene of West Yunnan, China[J]. Climatic Change, 2006, 77(3): 431-448. |
[10] | XU J X, FERGUSON D K, LI C S, et al. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China[J]. Review of Palaeobotany and Palynology, 2008, 148(1): 36-59. |
[11] | XIA K, SU T, LIU Y S, et al. Quantitative climate reconstructions of the Late Miocene Xiaolongtan megaflora from Yunnan, Southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 80-86. |
[12] | JACQUESF M B, GUO S X, SU T, et al. Quantitative reconstruction of the Late Miocene monsoon climates of Southwest China: a case study of the Lincang flora from Yunnan Province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3/4): 318-327. |
[13] | ZHANG Q Q, FERGUSON D K, MOSBRUGGER V, et al. Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 363/364: 23-36 |
[14] | XING Y W, UTESCHER T, JACQUES F M B, et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: evidence from plant macrofossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358/359/360: 19-26. |
[15] | BIASATTI D, WANG Y, GAO F, et al. Paleoecologies and paleoclimates of Late Cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 2012, 44: 48-61. |
[16] | SU T, JACQUES F M B, SPICER R A, et al. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the Late Pliocene Longmen megaflora[J]. Climate of the Past, 2013, 9(4): 1911-1920. |
[17] | LI P, ZHANG C X, GUO Z T, et al. Clay mineral assemblages in the Zhaotong Basin of southwestern China: implications for the Late Miocene and Pliocene evolution of the South Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 90-100. |
[18] | LI P, ZHANG C X, KELLEY J, et al. Late Miocene climate cooling contributed to the disappearance of hominoids in Yunnan Region, southwestern China[J]. Geophysical Research Letters, 2020, 47(11): e87741. |
[19] | XIAO J L, FAN J W, ZHOU L, et al. A model for linking grain-size component to lake level status of a modern clastic lake[J]. Journal of Asian Earth Sciences, 2013, 69: 149-158. |
[20] | LU Y, FANG X M, FRIEDRICH O, et al. Characteristic grain-size component: a useful process-related parameter for grain-size analysis of lacustrine clastics?[J]. Quaternary International, 2018, 479: 90-99. |
[21] | YANG L Y, ZHANG W L, FANG X M, et al. Aridification recorded by lithofacies and grain size in a continuous Pliocene-Quaternary lacustrine sediment record in the western Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109903. |
[22] | 王爱宽, 秦勇, 兰凤娟, 等. 云南昭通盆地新近系褐煤地球化学特征[C]// 煤层气勘探开发理论与技术: 2010年全国煤层气学术研讨会论文集. 苏州, 2010: 130-135. |
[23] | 屈念念, 李家斌. 云南昭通盆地重磁特征及其地质意义[J]. 中国地质调查, 2016, 3(4): 37-42. |
[24] | 罗星云, 张永宏. 云南新近纪聚煤盆地特征及成因类型[J]. 中国煤炭地质, 2013, 25(9): 10-17. |
[25] | 王建中. 昭通盆地上第三系褐煤煤层气资源勘探前景初步评价[J]. 中国煤层气, 2010, 7(2): 3-6. |
[26] | 姜能人, 孙荣. 对昭通盆地晚新生代地层的一些看法[J]. 云南地质, 1986, 3: 74-83. |
[27] | HILGEN F J, LOURENS L J, VAN DAM J A, et al. The Neogene period[M]// GRADSTEINF M, OGGJ G. The geologic time scale. Amsterdam: Elsevier, 2012: 923-978. |
[28] | FRIEDMAN G M, SANDERS J E. Principles of sedimentary deposits[M]. New York: John Wiley and Sons, 1978. |
[29] | 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003. |
[30] | VISHER G S. Grain size distributions and depositional processes[J]. SEPM Journal of Sedimentary Research, 1969, 39(3): 1074-1106. |
[31] | PASSEGA R, BYRAMJEE R. Grain-size image of clastic deposits[J]. Sedimentology, 1969, 13(3): 233-252. |
[32] | ZHANG C, XIAO G, GUO Z, et al. Evidence of late Early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift[J]. Global and Planetary Change, 2015, 128: 31-46. |
[33] | ZHANG C, PATERSON G, HU B, et al. Elevation dependent weathering and padogenesis of the Emeishan Basalt in the northeastern Yunnan, China[C]// International Quaternary Conference Abstact. 2015: T02409. |
[34] | HOKE G D, JING L Z, HREN M T, et al. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 2014, 394: 270-278. |
[35] | DECELLES P G, QUADE J, KAPP P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 2007, 253(3): 389-401. |
[36] | LIU X D, SUN H, MIAO Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14. |
[37] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[38] | QUADE J, CERLING T E, BOWMAN J R. Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246): 163-166. |
[39] | ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897. |
[40] | QUADE J, CATER J M L, OJHA T P, et al. Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols[J]. Geological Society of America Bulletin, 1995, 107(12): 1381-1397. |
[41] |
BADGLEY C, BARRY J C, MORGAN M E, et al. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12145-12149.
DOI PMID |
[42] | HOORN C, OHJA T, QUADE J. Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163(3): 133-161. |
[43] | SANYAL P, BHATTACHARYA S K, KUMAR R, et al. Mio-Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205(1): 23-41. |
[44] | SANYAL P, BHATTACHARYA S K, PRASAD M. Chemical diagenesis of Siwalik sandstone: isotopic and mineralogical proxies from Surai Khola section, Nepal[J]. Sedimentary Geology, 2005, 180(1): 57-74. |
[45] | CLIFT P D, HODGES K V, HESLOP D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880. |
[1] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[2] | 邢智峰, 张湘赟, 李婉颖, 齐永安, 郑伟, 吴盼盼, 张立军. PTME后华北板块南缘生物复苏后期古环境特征:来自豫西登封中三叠统二马营组的证据[J]. 地学前缘, 2023, 30(5): 491-509. |
[3] | 谭宁, 张仲石, 郭正堂, 王会军. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5): 310-321. |
[4] | 官玉龙, 陈亮, 姜兆霞, 李三忠, 肖春凤, 陈龙. 东北印度洋源汇过程及古环境与古季风演化[J]. 地学前缘, 2022, 29(5): 102-118. |
[5] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[6] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[7] | 王相力, 卫炜. 铬稳定同位素地球化学[J]. 地学前缘, 2020, 27(3): 78-103. |
[8] | 侯卫国,董海良,蒋宏忱,李高远,杨渐. 沉积物中古DNA在古生态、古环境和古气候研究中的应用[J]. 地学前缘, 2017, 24(2): 286-291. |
[9] | 于晓辉, 沈军, 林玲玲, 范天骐. 辽宁中元古代初期粗碎屑岩中微生物砂质颗粒的发现及古环境意义[J]. 地学前缘, 2016, 23(4): 284-291. |
[10] | 邵龙义,李猛,李永红,张云鹏,鲁静,张文龙,田政,文怀军. 柴达木盆地北缘侏罗系页岩气地质特征及控制因素[J]. 地学前缘, 2014, 21(4): 311-322. |
[11] | 李美铮, 刘楚雄, 江大勇, 郝维城, 孙元林, 孙作玉. 贵州盘县新民地区关岭组中三叠世盘县动物群产出层段碳酸盐岩微相分析和古环境恢复[J]. 地学前缘, 2011, 18(6): 341-346. |
[12] | 秦锋, 杨健, 李金锋, 刘海明, 王宇飞. 中国山西张村上新世气候与海拔的初步研究[J]. 地学前缘, 2010, 17(5): 345-360. |
[13] | 贾慧 孙柏年 李相传 肖良 吴靖宇. 浙东新近纪一种栎属植物化石微细特征及其古环境指示[J]. 地学前缘, 2009, 16(5): 79-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||