地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 42-54.DOI: 10.13745/j.esf.sf.2022.1.11
董宏坤1,2(), 万世明1,3,*(
), 刘畅4, 赵德博1, 曾志刚1,2, 李安春1
收稿日期:
2021-09-19
修回日期:
2021-12-14
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
万世明
作者简介:
董宏坤(1996—),男,硕士研究生,海洋地质专业。E-mail: donghongkun@qdio.ac.cn
基金资助:
DONG Hongkun1,2(), WAN Shiming1,3,*(
), LIU Chang4, ZHAO Debo1, ZENG Zhigang1,2, LI Anchun1
Received:
2021-09-19
Revised:
2021-12-14
Online:
2022-07-25
Published:
2022-07-28
Contact:
WAN Shiming
摘要:
沉积物颜色是其物质组成和形成环境的重要标志,对古海洋古环境重建有特殊指示意义。国际大洋发现计划(IODP)368航次在南海北部钻取的U1502站沉积岩心中发现了上百米红褐色-绿灰色韵律沉积层,但其成因不明。为探究其物源和红绿韵律沉积层的成因,我们对该站位岩心样品开展了矿物学和地球化学分析,包括粒度、黏土矿物、常微量元素和Sr-Nd同位素组成、有机碳含量及碳酸盐碳氧同位素组成分析。物源分析表明,U1502站沉积物陆源输入以珠江为主而吕宋次之,红层相对绿层有稍多的吕宋物质贡献。地球化学指标指示红绿沉积层的形成没有遭受热液、冷泉流体的影响,其形成是南海晚中新世构造演化和冰期-间冰期旋回中水体通风、底层水氧化还原环境改变及早期成岩作用共同影响的结果。结合以前南海北部沉积物源研究及沉积物颜色频谱分析,推测红绿层可能分别对应了间冰期-冰期时间尺度。指标重建指示了红绿层分别形成于偏氧化和偏还原的底层水氧化还原环境。自中中新世以来随着吕宋岛弧与欧亚板块碰撞,南海海盆从开放的环境变得相对封闭,其深部通风和氧化还原条件开始呈现典型的冰期-间冰期旋回模式。红层对应了间冰期高海平面时期南海深层水通风良好、水体偏氧化的沉积环境,而绿层则指示了冰期低海平面时期南海层化加强、水体偏还原的环境。不同的氧化还原条件控制了早期成岩作用中致色含铁自生矿物如赤铁矿的形成与转化,最终引起沉积层颜色韵律变化。
中图分类号:
董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54.
DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea[J]. Earth Science Frontiers, 2022, 29(4): 42-54.
图1 南海北部及周边海陆分布和研究区站位图(季风和洋流分布分别引自[17]和[18⇓-20])
Fig.1 Sea and land distributions and study site locations in and around the northern South China Sea. Monsoon pattern adapted from [17]. Ocean current distribution adapted from [18⇓-20].
图2 U1502站沉积物粒度、黏土矿物组成、87Sr/86Sr-εNd及稀土元素含量 红绿阴影分别表示颜色反射率a*指示的红绿韵律沉积层。
Fig.2 Depth profiles for clay mineral compositions, grain size, 87Sr/86Sr ratio, εNd value and La content in core sediments from Site U1502. Red and green shadows indicate respectively the rhythmic reddish-brown and greenish-gray sedimentary layers according to reflectance a*.
图3 U1502站沉积物常微量元素含量及碳酸盐C、O同位素组成 (南海北部陆架表层沉积物REE含量数据引自[38];黄铁矿含量引自[3])
Fig.3 Depth profiles for reflectance a*, major and trace element contents, ∑REE content and carbonate C-O isotopic compositions in core sediments from Site U1502. ∑REE content of surface sediment in northern South China Sea shelf adapted from [38]. Pyrite content adapted from [3].
图4 沉积物源示踪 (a)黏土矿物三角图(吕宋引自[39];珠江(>2.5 ka)引自[41];珠江(<2.5 ka)引自[41-42]);(b)La-Th-Sc构造环境图解(数据引自[48];冲绳海槽热液蚀变沉积物引自[49];吕宋火山岩引自[50];珠江沉积物(<2.5 ka)引自[51];珠江沉积物(>2.5 ka):ZK20站样品;东沙冷泉碳酸盐引自[52]);(c)稀土元素球粒陨石标准化图解(东沙冷泉碳酸盐引自[52];冲绳海槽热液蚀变沉积物引自[53];上大陆地壳(UCC)引自[43];西菲律宾海沉积物:MD3050站样品;珠江沉积物(<2.5 ka):4R-92站样品;珠江沉积物(>2.5 ka):ZK20站样品);(d)εNd-87Sr/86Sr协变图(吕宋河流引自[56];珠江(<2.5 ka)引自[40];珠江(>2.5 ka)引自[57])。
Fig.4 Sediment provenance identification. Data from [39⇓⇓⇓-43,48⇓⇓⇓⇓-53,56-57].
图5 U1502站物源、生产力、氧化还原环境及古海洋指标综合对比R/(R+D)为钙质超微化石相对含量Reticulofenestra/(Reticulofenestra+Discoaster),引自[16]。
Fig.5 Comparison of depth profiles for provenance, productivity, redox environment and paleoceanographic indicators for Site U1502. R/(R+D): Reticulofenestra/(Reticulofenestra+Discoaster), after [16].
图6 U1502站典型红绿沉积层(452~458 m) 颜色反射率a*的频谱分析结果
Fig.6 Spectral analysis of reflectance data for typical red-green sediment layers (452-458 m) at Site U1502
[1] | POTTER P E, MAYNARD B J, PRYOR W A. Sedimentology of shale[M]. Berlin: Springer, 1980. |
[2] | PAUL M M. A new graph for understanding colors of mudrocks and shales[J]. Journal of Geological Education, 1990, 38(1): 16-20. |
[3] | JIAN Z, LARSEN H C, ALVAREZ ZARIKIAN C A, et al. Expedition 368 preliminary report: South China Sea rifted margin[R]. College Station, TX: International Ocean Discovery Program, 2018. https://doi.org/10.14379/iodp.pr.368.2018. |
[4] |
TADA R, MURRAY R W, ALVAREZ ZARIKIAN C A, et al. Proceedings of IODP, 346[C]. College Station, TX: Integrated Ocean Drilling Program, 2015. DOI: 10.2204/iodp.proc.346.2015.
DOI |
[5] | 黄永建, 王成善, 顾健. 白垩纪大洋缺氧事件: 研究进展与未来展望[J]. 地质学报, 2008(1): 21-30. |
[6] | 李响, 蔡元峰. 白垩纪大洋红层的致色机制及成因研究[J]. 矿物学报, 2014, 34(4): 451-460. |
[7] | 胡修棉, 王成善, 李祥辉, 等. 藏南上白垩统大洋红层: 岩石类型、 沉积环境与颜色成因[J]. 中国科学 D辑: 地球科学, 2006, 36(9): 811-821. |
[8] | GLASBY G P. Mineralogy, geochemistry, and origin of Pacific red clays: a review[J]. New Zealand Journal of Geology and Geophysics, 1991, 34(2): 167-176. |
[9] | 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21. |
[10] | 程文斌, 顾雪祥, 胡修棉, 等. 现代大洋红色黏土与白垩纪大洋红层元素地球化学对比[J]. 地质学报, 2008, 82(1): 37-47. |
[11] | WANG C S, HU X M, SARTI M, et al. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments[J]. Cretaceous Research, 2005, 26(1): 21-32. |
[12] | EMERSON D, MOYER G L. Microbiology at seamounts[J]. Oceanography, 2010, 23: 148-163. |
[13] | KIYOKAWA S, UESHIBA T. Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan[J]. Sedimentary Geology, 2015, 319: 98-113. |
[14] | JAKOBSSON M, LØVLIE R, AL-HANBALI H, et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology, 2000, 28(1): 23-26. |
[15] | 谢昕, 王汝建, 肖文申, 等. 西北冰洋及白令海沉积物颜色旋回与成因[J]. 科学通报, 2016, 61(16): 1828-1839. |
[16] | JIN X B, XU J, LI H, et al. Origin of the rhythmic reddish-brown and greenish-gray sediments in the abyssal South China Sea: implications for oceanic circulation in the late Miocene[J]. Marine Geology, 2020, 430(1): 106378. |
[17] | WEBSTER P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32(4): 427-476. |
[18] | FANG G, FANG W, FANG Y, et al. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanography of Taiwanica, 1998, 37(1): 1-16. |
[19] | WANG Y, REN M E, ZHU D, et al. Sediment supply to the continental shelf by the major rivers of China[J]. Journal of the Geological Society, 1986, 143(6): 935-944. |
[20] | LIU Z, COLIN C, LI X, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology, 2010, 277(1/2/3/4): 48-60. |
[21] | YAN Q S, SHI X F, CASTILLO P R. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: a petrologic perspective[J]. Journal of Asian Earth Sciences, 2014, 85: 178-201. |
[22] | LI C F, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15: 4958-4983. |
[23] | TIAN J, MA X, ZHOU J, et al. Subsidence of the northern South China Sea and formation of the Bashi Strait in the latest Miocene: paleoceanographic evidences from 9-Myr high resolution benthic foraminiferal δ18O and δ13C records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 382-391. |
[24] | GUO Z T, SUN B, ZHANG Z S, et al. A major reorganization of Asian climate regime by the Early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174. |
[25] | SUN X, WANG P. How old is the Asian monsoon system? Paleobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222. |
[26] | WAN S M, LI A C, CLIFT P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 561-582. |
[27] | LIU Z F, ZHAO Y L, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. |
[28] | MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: a global synthesis[M]. New York: Cambridge University Press, 2011. |
[29] | HUANG C-Y, YUAN P B, TSAO S-J. Temporal and spatial records of active arc-continent collision in Taiwan: a synthesis[J]. Geological Society of America Bulletin, 2006, 118(3/4): 274-288. |
[30] | WAN S M, LI A C, CLIFT P D, et al. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma[J]. Marine Geology, 2010, 278(1/2/3/4): 115-121. |
[31] | QU T D, GIRTON J B, WHITEHEAD J A. Deepwater overflow through Luzon strait[J]. Journal of Geophysical Research, 2006, 111(C1): 1-11. |
[32] | JIN H Y, JIAN Z M, WAN S. Recent deep water ventilation in the South China Sea and its paleoceanographic implications[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 139: 88-94. |
[33] | MOORE D M, REYNOLDS R C. X-ray diffraction and the identification and analysis of clay minerals[J]. Clay Minerals, 1999, 34(1): 210-211. |
[34] | BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. |
[35] |
RÉVILLON S, JOUET G, BAYON G, et al. The provenance of sediments in the Gulf of Lions, western Mediterranean Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12: Q08006. DOI: 10.1029/2011GC003523.
DOI URL |
[36] | JACOBSEN S B, WASSERBURG G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155. |
[37] | PINGITORE N E, FRETZDORFF S B, SEITZ B P, et al. Dissolution kinetics of CaCO3 in common laboratory solvents[J]. Journal of Sedimentary Research, 1993, 63(4): 641-645. |
[38] | GE Q, XUE Z G, CHU F. Rare earth element distributions in continental shelf sediment, northern South China Sea[J]. Water, 2020, 12(12): 3540. |
[39] | LIU Z F, ZHAO Y L, COLIN C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. |
[40] |
LIU Z F, COLIN C, HUANG W, et al. Climatic and tectonic controls on weathering in South China and the Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins[J]. Geochemistry, Geophysics, Geosystems, 2007, 8: Q05005. DOI: 10.1029/2006GC001490.
DOI URL |
[41] | HU D K, CLIFT P D, BÖNING P, et al. Holocene evolution in weathering and erosion patterns in the Pearl River delta[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2349-2368. |
[42] | 刘志飞, COLIN C, 黄维, 等. 珠江流域盆地表层沉积物的黏土矿物及其对南海沉积物的贡献[J]. 科学通报, 2007(4): 448-456. |
[43] | TAYLOR S R, MCLENNAN S M. The continental crust:its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publication, 1985. |
[44] | MCLENNAN S M, HEMMING S R, MCDANIEL D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. GSA Special Papers, 1993, 284: 21-40. |
[45] | CULLERS R L, BASU A, SUTTNER L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA[J]. Chemical Geology, 1988, 70(4): 335-348. |
[46] | 邵磊, 李献华, 韦刚健, 等. 南海陆坡高速堆积体的物质来源[J]. 中国科学 D辑: 地球科学, 2001(10): 828-833. |
[47] | BHATIA M R, CROOK K. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. |
[48] | BHATIA M. Petrology geochemistry and tectonic setting of some flysch deposits[D]. Canberra: Australian National University, 1981. |
[49] | SHAO H B, YANG S Y, WANG Q, et al. Discriminating hydrothermal and terrigenous clays in the Okinawa Trough, East China Sea: evidences from mineralogy and geochemistry[J]. Chemical Geology, 2015, 398: 85-96. |
[50] | DEFANT M J, MAURY RENÉ C, RIPLEY E M, et al. An example of island-arc petrogenesis: geochemistry and petrology of the Southern Luzon Arc, Philippines[J]. Journal of Petrology, 1991(3): 455-500. |
[51] | ZHANG C S, WANG L J. Multi-element geochemistry of sediments from the Pearl River system, China[J]. Applied Geochemistry, 2001, 16(9): 1251-1259. |
[52] | GE L, JIANG S Y, SWENNEN R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1/2/3/4): 21-30. |
[53] | SHAO H B, YANG S Y, HUMPHRIS S, et al. The origin of hydrothermal chlorite-and anhydrite-rich sediments in the middle Okinawa Trough, East China Sea[J]. Chemical Geology, 2017, 465: 35-51. |
[54] | WAN S M, TOUCANNE S, CLIFT P D, et al. Human impact overwhelms long-term climate control of weathering and erosion in southwest China[J]. Geology, 2015, 43(5): 439-442. |
[55] |
COLIN C, TURPIN L, BLAMART D, et al. Evolution of weathering patterns in the Indo-Burman Ranges over the last 280 kyr: effects of sediment provenance on 87Sr/86Sr ratios tracer[J]. Geochemistry, Geophysics, Geosystems, 2006, 7: Q03007. DOI: 10.1029/2005GC000962.
DOI URL |
[56] | GOLDSTEIN S J, JACOBSEN S B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution[J]. Earth and Planetary Science Letters, 1988, 87: 249-265. |
[57] | 万世明, 秦琳, 杨守业, 等. 南海冰期陆架风化与碳循环[J]. 第四纪研究, 2020, 40(6): 1531-1549. |
[58] | 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011. |
[59] | FENG D, QIU J W, HU Y, et al. Cold seep systems in the South China Sea: an overview[J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. |
[60] | 韩喜球, 杨克红, 黄永样. 南海东沙东北冷泉流体的来源和性质: 来自烟囱状冷泉碳酸盐岩的证据[J]. 科学通报, 2013, 58(19): 1865-1873. |
[61] | SCHRAG D P, DEPAOLO D J, RICHTER F M. Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate[J]. Geochimica et Cosmochimica Acta, 1995, 59(11): 2265-2278. |
[62] | 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72-80. |
[63] | 吴雪停, 刘丽华, 吴能友, 等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿, 2015, 31(12): 17-26. |
[64] | 汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标: 进展、 问题与展望[J]. 现代地质, 2015, 29(1): 1-13. |
[65] | TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24. |
[66] | 颜佳新, 张海清. 古氧相: 一个新的沉积学研究领域[J]. 地质科技情报, 1996, 15(3): 8-14. |
[67] | 董宏坤, 万世明, 刘喜停. 海洋沉积物早期成岩作用研究进展[J/OL]. 沉积学报, 2021: 1-22. https://doi.org/10.14027/j.issn.1000-0550.2021.038. |
[68] | LOVELEY M R, MARCANTONIO F, WISLER M M, et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100000 years[J]. Nature Geoscience, 2017, 10: 1-5. |
[69] | TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[70] | ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. |
[71] | ZHAI L N, WAN S M, COLIN C, et al. Deep-water formation in the North Pacific during the Late Miocene global cooling[J]. Paleoceanography and Paleoclimatology, 2021, 36: e2020PA003946. https://doi.org/10.1029/2020PA003946. |
[72] | SCHOEPFER S D, SHEN J, WEI H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52. |
[73] | SCHENAU S J, PRINS M A, LANGE G D, et al. Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1545-1556. |
[74] | WANG P X, SUN X J. Last Glacial Maximum in China: comparison between land and sea[J]. Catena, 1994, 23: 341-353. |
[75] | WAN S M, CLIFT P D, ZHAO D B, et al. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: a sink for atmospheric CO2[J]. Geochimica et Cosmochimica Acta, 2017, 200: 123-144. |
[76] | 翦知湣, 田军, 黄维, 等. 南海海盆演变与深部海流[J]. 科技导报, 2020, 38(18): 52-56. |
[77] | MOLENGRAAFF G, WEBER M. On the relation between the pleistocene glacial period and the origin of the Sunda sea (Java and South China-sea), and its influence on the distribution of coralreefs and on the land-and freshwater fauna[J]. Koninklijke Nederlandse Akademie Van Wetenschappen Proceedings, 1920, 23: 394-428. |
[78] | GIBBS S J, SHACKLETON N J, YOUNG J R. Identification of dissolution patterns in nannofossil assemblages: a high-resolution comparison of synchronous records from Ceara Rise, ODP Leg 154[J]. Paleoceanography, 2004, 19(1): 1-12. https://doi.org/10.1029/2003PA000958. |
[79] | SUN Z, STOCK J, KLAUS A, and the Expedition 367 Scientists. Expedition 367 preliminary report: South China Sea rifted margin[R]. College Station, TX: International Ocean Discovery Program, 2018. https://doi.org/10.14379/iodp.pr.367.2018. |
[1] | 李佩, 张春霞, 罗浩, 刘志成, 高战武. 青藏高原东南缘昭通盆地晚中新世到上新世古环境演化过程[J]. 地学前缘, 2024, 31(4): 326-339. |
[2] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[3] | 刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95. |
[4] | 季春生, 贾永刚, 朱俊江, 胡乃利, 范智涵, 胡聪, 冯学志, 余和雨, 刘博. 深海海底边界层原位观测系统研发与应用[J]. 地学前缘, 2022, 29(5): 265-274. |
[5] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[6] | 王明健, 潘军, 高红芳, 黄龙, 李霞. 南海北部—东海南部中生代盆地演化与油气资源潜力[J]. 地学前缘, 2022, 29(2): 294-302. |
[7] | 孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270. |
[8] | 茅晟懿,朱小畏,贾国东,吴能友. 长链烷基二醇及其指标在南海北部粤东沿海上升流地区的环境指示[J]. 地学前缘, 2018, 25(4): 285-298. |
[9] | 雷开宇,刘池洋,张龙,李被. 鄂尔多斯盆地南部中侏罗统直罗组沉积物源:来自古流向与碎屑锆石U-Pb年代学的证据[J]. 地学前缘, 2017, 24(6): 254-276. |
[10] | 马云,孔亮,梁前勇,林进清,李三忠. 南海北部东沙陆坡主要灾害地质因素特征[J]. 地学前缘, 2017, 24(4): 102-111. |
[11] | 张光学,陈芳,沙志彬,梁金强,苏新,陆红锋. 南海东北部天然气水合物成藏演化地质过程[J]. 地学前缘, 2017, 24(4): 15-23. |
[12] | 梁静之, 黄宝琦, 董轶婷, 贾文博, 周彦希. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4): 292-300. |
[13] | 张劼, 雷怀彦, 汪卫国, 郝赛赛, 龚楚君. 南海北部陆坡沉积物中硫酸盐浓度变化模型与硫酸盐甲烷界面(SMI)的计算[J]. 地学前缘, 2015, 22(4): 290-298. |
[14] | 赵红格, 刘池洋, 王海然, 高少华, 李蒙, 卓鱼周, 乔建新, 张孙玄琦, 蒋盛. 鄂尔多斯盆地西北缘早—中侏罗世延安期碎屑锆石LA-ICP-MS定年及其物源意义[J]. 地学前缘, 2015, 22(3): 184-193. |
[15] | 陈建军,马艳萍,陈建中,孙贵宾. 南海北部陆缘盆地形成的构造动力学背景[J]. 地学前缘, 2015, 22(3): 38-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||