地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 81-95.DOI: 10.13745/j.esf.sf.2022.2.67
刘晓磊1,2(), 李伟甲1, 陆杨1, 李星宇1, 张淑玉1, 余和雨1
收稿日期:
2022-01-24
修回日期:
2022-03-21
出版日期:
2023-03-25
发布日期:
2023-01-05
作者简介:
刘晓磊(1985—),男,教授,博士生导师,主要从事海洋工程地质相关教学与科研工作。E-mail: xiaolei@ouc.edu.cn
基金资助:
LIU Xiaolei1,2(), LI Weijia1, LU Yang1, LI Xingyu1, ZHANG Shuyu1, YU Heyu1
Received:
2022-01-24
Revised:
2022-03-21
Online:
2023-03-25
Published:
2023-01-05
摘要:
深海沉积物波形成过程研究对于重建古气候、古海洋、古构造以及海洋油气、天然气水合物等资源开发均具有重要意义,而南海北部大陆边缘因其复杂的构造沉积体系、独特的地形地貌以及丰富的矿产资源,是深海沉积物波形成演化研究的热点海域。本文系统总结了当前南海北部大陆边缘沉积物波相关研究进展,通过梳理前人关于南海沉积物波重点发育区域的系列工作,分析了自琼东南海域至台西南海域沉积物波的发育水深、坡度、波长、波高及波峰特征等内容,并讨论了不同区域沉积物波的成因机制与主控因素。其中台湾造山运动及北太平洋深部底流对台西南海域沉积物波影响强烈,珠江口海域则以内波作用为特点,同时发现南海沉积物波具有天然气水合物聚集的优越地质条件。但现有研究多局限于单一因素影响,缺少南海西南部沉积物波发育现状,缺乏海底原位观测手段。因此,后续研究应重视沉积物波形成的多因素动力过程耦合机制,深化南海南部沉积物波发育研究,同时加强海底地球物理探测技术和原位综合长期观测技术研究,为深入认识深海沉积物波形成演化过程提供技术支撑,助力海洋开发工程的安全建设。
中图分类号:
刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95.
LIU Xiaolei, LI Weijia, LU Yang, LI Xingyu, ZHANG Shuyu, YU Heyu. Distribution characteristics and formation mechanism of sediment waves on the continental margin of the northern South China Sea—a literature research[J]. Earth Science Frontiers, 2023, 30(2): 81-95.
研究区 | 水深/m | 波长/km | 波高/m | 发育坡度/(°) | 波峰特征 | 数据来源 |
---|---|---|---|---|---|---|
台西南 海域 | 3 000~3 200 | 0.5~4(平均2.6) | 7~117(平均28) | 1.6 | SW-NE | 文献[ |
3 200~3 400 | 1.5~5.4(平均1.9) | 平均80 | 0.3 | 整体平行等深线 | ||
2 400~2 680 | 2~27 | 35 | 平均0.28 | NEE-SWW | 文献[ | |
2 230~2 820 | 3.9~14 | 36 | 平均0.31 | NEE-SWW | ||
2 920~3 350 | 5.5~27.8 | 30 | 平均0.46 | NEE-SWW | ||
2 950~3 250 | 7.2~11 | 60 | 平均0.51 | NNE-SSW | ||
2 700~3 400 | 0.3~5.5(平均3.2) | 5~50 | 0.57 | NEE-SWW | 文献[ | |
2 800~3 700 | 0.46~5.8(平均3.5) | 3.43 | 近E-W | |||
2 250~2 840 | 1.2~3.7 | 30~47 | 平均0.5 | 近W-E | 文献[ | |
3 150~3 500 | 1.5~5.4 | 50~110 | 0.57 | |||
珠江口 海域 | 600~900 | 1~2 | 20~50 | 1~5 | 整体平行等深线 | 文献[ |
<1 300 | 1.3~3.6 | 50~80 | 大约2 | |||
500~900 | 1.4~2 | 30~50 | 3~5 | NE-SW | 文献[ | |
160~600 | 0.016 | 0.35 | 0.65 | 文献[ | ||
琼东南海域 | 2 200~3 400 | 4 | 30 | 0.5~1 | 文献[ |
表1 南海北部大陆边缘沉积物波发育特征概况
Table 1 Characteristics of sediment-wave development in the northern continental margin of the South China Sea
研究区 | 水深/m | 波长/km | 波高/m | 发育坡度/(°) | 波峰特征 | 数据来源 |
---|---|---|---|---|---|---|
台西南 海域 | 3 000~3 200 | 0.5~4(平均2.6) | 7~117(平均28) | 1.6 | SW-NE | 文献[ |
3 200~3 400 | 1.5~5.4(平均1.9) | 平均80 | 0.3 | 整体平行等深线 | ||
2 400~2 680 | 2~27 | 35 | 平均0.28 | NEE-SWW | 文献[ | |
2 230~2 820 | 3.9~14 | 36 | 平均0.31 | NEE-SWW | ||
2 920~3 350 | 5.5~27.8 | 30 | 平均0.46 | NEE-SWW | ||
2 950~3 250 | 7.2~11 | 60 | 平均0.51 | NNE-SSW | ||
2 700~3 400 | 0.3~5.5(平均3.2) | 5~50 | 0.57 | NEE-SWW | 文献[ | |
2 800~3 700 | 0.46~5.8(平均3.5) | 3.43 | 近E-W | |||
2 250~2 840 | 1.2~3.7 | 30~47 | 平均0.5 | 近W-E | 文献[ | |
3 150~3 500 | 1.5~5.4 | 50~110 | 0.57 | |||
珠江口 海域 | 600~900 | 1~2 | 20~50 | 1~5 | 整体平行等深线 | 文献[ |
<1 300 | 1.3~3.6 | 50~80 | 大约2 | |||
500~900 | 1.4~2 | 30~50 | 3~5 | NE-SW | 文献[ | |
160~600 | 0.016 | 0.35 | 0.65 | 文献[ | ||
琼东南海域 | 2 200~3 400 | 4 | 30 | 0.5~1 | 文献[ |
图1 南海北部大陆边缘海域沉积物波分布及成因图(据文献[19,36]修改,底图引自文献[37])
Fig.1 Distribution and genesis of sediment waves in the northern continental margin of the South China Sea. Modified after [19,36]. Basemap from [37].
沉积物波区 | 地理位置/代号 | 波域面积/km2 | 物源 | 成因控制因素 |
---|---|---|---|---|
台西南海域 | 东沙陆坡东南翼的下陆坡/B1 | 263 | 台湾岛南部及滨海地区 狭窄的陆架; 西侧的东沙隆起 | 浊流、北太平洋底流、台湾造山运动以及水合物分解 |
台湾峡谷两侧与澎湖峡谷西侧/T2 | 4 240 | |||
马尼拉海沟的北端/T2 | 12 500 | |||
Damuth[ | 25 000 | |||
珠江口海域 | 珠江海谷下陆坡段的东翼/T3 | 3 640 | 白云凹陷陆坡区;古珠江 | 浊流、底流、沉积变形(气体渗漏、底辟活动以及存在水合物)及内波 |
神狐海域的中陆坡— | 670 | |||
神狐海域中、下陆坡的过渡区位/B2 | 2 707 | |||
神狐海域上、中陆坡,毗邻峡谷/D1 | 1 940 | |||
东沙群岛的西南翼,毗邻峡谷/D2 | 259 | |||
中下陆坡,珠江海谷的西翼和南翼/C1 | 1 387 | |||
琼东南海域 | 西沙海槽陆坡的中下陆坡/— | 2 350 | 中央峡谷浊流 | 浊流、底流 |
琼东南盆地长昌凹陷北部斜坡/T5 | 400 |
表2 南海北部大陆边缘沉积物波物源与成因控制因素(引自文献[14,19,45-46])
Table 2 Provenance of and genetic factors controlling sediment waves in the northern continental margin of the South China Sea. Adapted from [14,19,45-46].
沉积物波区 | 地理位置/代号 | 波域面积/km2 | 物源 | 成因控制因素 |
---|---|---|---|---|
台西南海域 | 东沙陆坡东南翼的下陆坡/B1 | 263 | 台湾岛南部及滨海地区 狭窄的陆架; 西侧的东沙隆起 | 浊流、北太平洋底流、台湾造山运动以及水合物分解 |
台湾峡谷两侧与澎湖峡谷西侧/T2 | 4 240 | |||
马尼拉海沟的北端/T2 | 12 500 | |||
Damuth[ | 25 000 | |||
珠江口海域 | 珠江海谷下陆坡段的东翼/T3 | 3 640 | 白云凹陷陆坡区;古珠江 | 浊流、底流、沉积变形(气体渗漏、底辟活动以及存在水合物)及内波 |
神狐海域的中陆坡— | 670 | |||
神狐海域中、下陆坡的过渡区位/B2 | 2 707 | |||
神狐海域上、中陆坡,毗邻峡谷/D1 | 1 940 | |||
东沙群岛的西南翼,毗邻峡谷/D2 | 259 | |||
中下陆坡,珠江海谷的西翼和南翼/C1 | 1 387 | |||
琼东南海域 | 西沙海槽陆坡的中下陆坡/— | 2 350 | 中央峡谷浊流 | 浊流、底流 |
琼东南盆地长昌凹陷北部斜坡/T5 | 400 |
图2 浊流沉积物波体系图 (a)广义大陆边缘浊流沉积体系图(据文献[9]修改);(b)水跃模式图(据文献[47]修改);几何结构由水跃长 Ljump,迎流面波长 Lstoss ,背流面波长 Llee,背流面坡度α,迎流面坡度β确定;(c)浊流实验产生的一系列旋回坎(据文献[48]修改);(d)沉积物波几何参数示意图(据文献[51]修改);(e)水道-朵体过渡态示意图(据文献[9]修改);(f)被底流改变后的水道-朵体过渡带内粗粒沉积物波的分布(引自文献[52])。
Fig.2 Schematic illustration of sediment-wave development in a canyon system. (a) Generalized continental margin turbidite sedimentary system (modified after [9]). (b) Hydraulic jump of a single cyclic step (modified after [47]). (c) Flow pattern over a series of cyclic steps generated by turbidity currents (modified after [48]). (d) Geometric parameters for sediment waves (modified after [51]). (e) Map view of channel-lobe transition zone (modified after [9]). (f) Re-distribution of coarse sediment waves in channel-lobe transition zone due to underflow (adapted from [52]).
图3 南海东北坡峡谷多波束测深图(据文献[54]修改),其中灰色区域为Kuang等[17]发现的4个沉积物波区(据文献[17]修改) (a)台湾峡谷旋回坎区;(b)西澎湖峡谷旋回坎区。
Fig.3 Multi-beam bathymetric map of the northeastern slope canyon of the South China Sea (modified after [54]), with insert maps showing the Taiwan Canyon (a) and Western Penghu Canyon (b) cyclic step areas. Gray areas outline the four sediment-wave areas discovered by Kuang et al. (modified after [17]).
图4 沉积物波波长/波高与坡度、水深及粒径之间的关系(据文献[13,55]修改)
Fig.4 Relationship between sediment wave length/height and slope, water depth or particle size. Modified after [13,55].
图5 底流沉积物波与地震剖面 (a)背流波(Lee波)模式图(据文献[43]修改);(b)琼东南盆地北礁凹陷底流沉积物波二维地震剖面(据文献[61]修改)。
Fig.5 (a) Lee-wave model for sediment wave propagation (modified after [43]), and (b) two-dimensional seismic profile of bottom-current sediment waves in Beijiao Sag, Qiongdongnan Basin (modified after [61]).
图6 两种密度水层界面上理想行进的内波运动情况(据文献[64]修改)
Fig.6 Movements of ideal traveling internal waves at the interface between low- and high-density water layers. Modified after [64].
图7 沉积变形成因沉积物波与地震剖面 (a)沉积物蠕动变形可形成沉积物波,槽谷常见内部断层;由于地震等外部因素,沉积物蠕变在缓坡(<0.5°)上发生(据文献[13]修改);(b)珠江口盆地白云凹陷沉积物波地震剖面:黄色线为沉积物波组界面;蓝色线表示BSR(似海底反射)(引自文献[72])。
Fig.7 Formation of sediment waves by sediment deformation. (a) Sediment waves with broad peaks and narrow troughs with commonly occurring faults, formed by creep deformation initiated on gentle slopes (< 0.5°) by external triggers such as earthquakes (modified after [13]). (b) Seismic profile (adapted from [72]) of sediment waves in Baiyun Sag, Pearl River Mouth Basin (yellow lines indicate interfaces between sediment-wave groups; blue line indicates BSR (bottom simulating reflector)).
图8 重力流和等深流共同作用所形成的复合成因沉积物波(珠江海谷的西翼和南翼C1,引自文献[13])
Fig.8 Composite sediment waves formed by interaction of gravity and contour currents on the west and south wings of the Pearl River Valley. Adapted from [13].
图9 台西南海域复合成 因沉积物波 (a)台湾/澎湖峡谷周边沉积物波域三维测深图;(b)台西南海域主要沉积过程示意图;(c)和(d)高分辨率地震剖面显示了1和2场沉积物波在几何形状、形态和地震反射配置上的差异(据文献[24]修改)。
Fig.9 Distribution of sediment waves in the South China Sea. (a) Three dimensional bathymetric map of sediment waves around the Taiwan and Penghu Canyons. (b) Schematic diagram summarizing the major depositional processes in diferent regions of the southwestern Taiwan. (c,d) High- resolution seismic profiles showing the differences in geometry,morphology and seismic reflection configuration between sediment waves in fields 1 and 2. Modified after [24].
[1] |
WYNN R B, STOW D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1/2/3): 7-22.
DOI URL |
[2] | 马永. 南海台西南盆地沉积物波特征及其成因机制研究[D]. 南京: 南京大学, 2016. |
[3] | 李华, 马良涛, 严世帮, 等. 深水大型沉积物波的成因机制[J]. 海洋地质动态, 2007, 23(12): 1-7. |
[4] | 高平, 何幼斌. 深海大型沉积物波的研究现状与展望[J]. 海洋科学, 2009, 33(5): 92-97. |
[5] |
钟广法, 李前裕, 郝沪军, 等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
DOI |
[6] |
ZHANG G X, CHEN F, YANG S X, et al. Accumulation and exploration of gas hydrate in deep-sea sediments of northern South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 876-888.
DOI URL |
[7] |
BAI C Y, ZHANG G X, LU J A, et al. Deep-water sediment waves as a special gas hydrate reservoirs in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2019, 101: 476-485.
DOI URL |
[8] |
WYNN R B, HUVENNE V A I, LE BAS T P, et al. Autonomous Underwater Vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352: 451-468.
DOI URL |
[9] |
COVAULT J A, KOSTIC S, PAULL C K, et al. Cyclic steps and related supercritical bedforms: building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20.
DOI URL |
[10] |
DAMUTH J E. Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology, 1979, 7(11): 520.
DOI URL |
[11] |
REEDER D B, MA B B, YANG Y J. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves[J]. Marine Geology, 2011, 279: 12-18.
DOI URL |
[12] |
DROGHEI R, FALCINI F, CASALBORE D, et al. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait[J]. Scientific Reports, 2016, 6: 36376.
DOI PMID |
[13] |
SYMONS W O, SUMNER E J, TALLING P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
DOI URL |
[14] | 王海荣, 王英民, 邱燕, 等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展, 2007, 17(9): 1235-1243. |
[15] | 王海荣, 王英民, 邱燕, 等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 2008, 26(1): 39-45. |
[16] |
FOX P J, HEEZEN B C, HARIAN A M. Abyssalanti-dunes[J]. Nature, 1968, 220(5166): 470-472.
DOI URL |
[17] |
KUANG Z G, ZHONG G F, WANG L L, et al. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 540-551.
DOI URL |
[18] | 丁巍伟, 李家彪, 韩喜球, 等. 南海东北部海底沉积物波的形态、 粒度特征及物源、 成因分析[J]. 海洋学报, 2010, 32(2): 96-105. |
[19] |
JIANG T, XIE X N, WANG Z F, et al. Seismic features and origin of sediment waves in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 281-294.
DOI URL |
[20] | SARNTHEIN M, PFLAUMANN U, WANG P X, et al. Preliminary report on SONNE-95 Cruise ‘Monitor Monsoon’ to the South China Sea[R]. Germany: Kiel University, 1994. |
[21] | LÜDMANN T, WONG H K, BERGLAR K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 2005, 32(5): L05614. |
[22] | SHAO L, LI X H, WEI G J, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 919-925. |
[23] |
HSIUNG K H, YU H S. Morpho-sedimentary evidence for a canyon-channel-trench interconnection along the Taiwan-Luzon plate margin, South China Sea[J]. Geo-Marine Letters, 2011, 31(4): 215-226.
DOI URL |
[24] |
GONG C L, WANG Y M, PENG X C, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: implications for the intrusion of the Northern Pacific Deep Water into the South China Sea[J]. Marine and Petroleum Geology, 2012, 32(1): 95-109.
DOI URL |
[25] | DING W W, LI J B, HAN X Q, et al. Morphotectonics and formation of the Taiwan Bank Canyon, Southwest offshore Taiwan Island[J]. Journal of Oceanography and Marine Science, 2010, 1(4): 65-78. |
[26] | 殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 2015, 45(3): 275-289. |
[27] |
LI W, LI S, ALVES T M, et al. The role of sediment gravity flows on the morphological development of a large submarine canyon (Taiwan Canyon), northeast South China Sea[J]. Sedimentology, 2021, 68(3): 1091-1108.
DOI URL |
[28] |
QIAO S H, SU M, KUANG Z G, et al. Canyon-related undulation structures in the Shenhu area, northern South China Sea[J]. Marine Geophysical Research, 2015, 36(2/3): 243-252.
DOI URL |
[29] |
CHEN H J, ZHAN W H, LI L Q, et al. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea[J]. Journal of Earth System Science, 2017, 126(5): 1-28.
DOI URL |
[30] |
SU M, XIE X N, LI J L, et al. Gravity flow on slope and abyssal systems in the Qiongdongnan Basin, northern South China Sea[J]. Acta Geologica Sinica: English Edition, 2011, 85(1): 243-253.
DOI URL |
[31] |
王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
DOI |
[32] | 许小勇, 吕福亮, 王大伟, 等. 周期性阶坎的特征及其对深水沉积研究的意义[J]. 海相油气地质, 2018, 23(4): 1-14. |
[33] |
KOSTIC S. Modeling of submarine cyclic steps: controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304.
DOI URL |
[34] |
WYNN R B, PIPER D J W, GEE M J R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones[J]. Marine Geology, 2002, 192(1/2/3): 59-78.
DOI URL |
[35] | 李俞锋, 蒲仁海, 张功成. 琼东南盆地晚中新世以来底流流向及沉积侵蚀特征[J]. 地球物理学进展, 2018, 33(6): 2546-2554. |
[36] |
WANG H R, YU C Q, HUO Z P. Origin of deep-water sediment wave fields in the Northern Continental Slope, South China Sea[J]. Arabian Journal of Geosciences, 2021, 14(13): 1-16.
DOI URL |
[37] | GEBCO Bathymetric Compilation Group 2021. The GEBCO_2021 Grid: a continuous terrain model of the global oceans and land[Z]. British: NERC EDS British Oceanographic Data Centre NOC, 2021. |
[38] |
LI H, WANG Y M, ZHU W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea[J]. Marine and Petroleum Geology, 2013, 43: 370-380.
DOI URL |
[39] | 王龙樟, 姚永坚, 林卫兵, 等. 南海南部沉积物波: 软变形及其触发机制[J]. 地球科学, 2018, 43(10): 3462-3470. |
[40] |
CHEN H, XIE X N, MAO K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea margin[J]. Journal of Earth Science, 2020, 31(4): 808-819.
DOI URL |
[41] | 王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3): 1-15. |
[42] |
FAUGÈRES J C, GONTHIER E, MULDER T, et al. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[J]. Marine Geology, 2002, 182(3/4): 279-302.
DOI URL |
[43] |
FLOOD R D. A lee wave model for deep-sea mudwave activity[J]. Deep Sea Research Part A Oceanographic Research Papers, 1988, 35(6): 973-983.
DOI URL |
[44] |
KARL H A, CACCHIONE D A, CARLSON P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, Bering Sea[J]. Journal of Sedimentary Research, 1986, 58(4): 769-773.
DOI URL |
[45] | 李占东, 赵佳彬, 张日新, 等. 台湾大地构造格局及其对油气的地质意义[J]. 地球物理学进展, 2019, 34(5): 1776-1784. |
[46] |
丁巍伟, 李家彪, 李军, 等. 南海珠江口外海底峡谷形成的控制因素及过程[J]. 热带海洋学报, 2013, 32(6): 63-72.
DOI |
[47] |
CARTIGNY M J B, POSTMA G, VAN DEN BERG J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56.
DOI URL |
[48] |
SEQUEIROS O E, SPINEWINE B, GARCIA M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. part I. documentation of the flow[J]. Journal of Sedimentary Research, 2009, 79(8): 593-607.
DOI URL |
[49] | 余和雨, 刘晓磊, 陆杨. 海底碎屑流运动特性研究的若干进展[J]. 地质科技情报, 2019, 38(6): 25-32. |
[50] |
PARKER G, GARCIA M, FUKUSHIMA Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
DOI URL |
[51] |
RIBÓ M, PUIG P, MUÑOZ A, et al. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)[J]. Geomorphology, 2016, 253: 22-37.
DOI URL |
[52] | 孙辉, 刘少治, 马宏霞, 等. 东非鲁武马盆地海底水道—朵体体系粗粒浊流沉积物波特征及主控因素[J]. 沉积学报, 2017, 35(4): 763-771. |
[53] |
NORMARK W R, HESS G R, STOW D A V, et al. Sediment waves on the Monterey fan levee: a preliminary physical interpretation[J]. Marine Geology, 1980, 37(1/2): 1-18.
DOI URL |
[54] |
ZHONG G F, CARTIGNY M J B, KUANG Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. Geological Society of America Bulletin, 2015, 127(5/6): 804-824.
DOI URL |
[55] |
DIETRICH P, GHIENNE J F, NORMANDEAU A, et al. Upslope-migrating bedforms in A proglacial sandur delta: cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(2): 113-123.
DOI URL |
[56] |
操应长, 杨田, 王艳忠, 等. 超临界沉积物重力流形成演化及特征[J]. 石油学报, 2017, 38(6): 607-621.
DOI |
[57] |
CASTRO I P, SNYDER W H. Experiments on wave breaking in stratified flow over obstacles[J]. Journal of Fluid Mechanics, 1993, 255: 195.
DOI URL |
[58] |
NAKAJIMA T, SATOH M. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan Sea[J]. Sedimentology, 2001, 48(2): 435-463.
DOI URL |
[59] |
MANLEY P L, FLOOD R D. Paleoflow history determined from mudwave migration: Argentine Basin[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(4/5): 1033-1055.
DOI URL |
[60] |
BLUMSACK S L, WEATHERLY G L. Observations of the nearby flow and a model for the growth of mudwaves[J]. Deep Sea Research Part A Oceanographic Research Papers, 1989, 36(9): 1327-1339.
DOI URL |
[61] |
LI Y F, PU R H, ZHANG G C, et al. Characteristics and origins of ridges and troughs on the top of the Middle Miocene strata in the Beijiao Sag of the Qiongdongnan Basin, northern South China Sea[J]. Interpretation, 2021, 9(2): SB1-SB15.
DOI URL |
[62] |
田壮才, 郭秀军, 余乐, 等. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
DOI |
[63] | 黄晓冬. 南海内孤立波的空间分布与时间变化特征研究[D]. 青岛: 中国海洋大学, 2013. |
[64] | 方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005. |
[65] | LAFOND E L. Internal waves, part 1[J]. Physical Oceanography, 1962, 1: 731-763. |
[66] |
MUENCH R D, LEBLOND P H, HACHMEISTER L E. On some possible interactions between internal waves and sea ice in the marginal ice zone[J]. Journal of Geophysical Research Atmospheres, 1983, 88(C5): 2819.
DOI URL |
[67] |
HE Y B, GAO Z Z, LUO J X, et al. Characteristics of internal-wave and internal-tide deposits and their hydrocarbon potential[J]. Petroleum Science, 2008, 5(1): 37-44.
DOI URL |
[68] | GAO Z Z, HE Y B, LI X D, et al. Review of research in internal-wave and internal-tide deposits of China[J]. Journal of Palaeogeography, 2013, 2(1): 56-65. |
[69] | ZHANG Y P, ZANG Z P, YI Q, et al. Simulation of Migration of Sand Waves Under Currents Induced by Internal Waves[C]//Proceedings of the 10th International Conference on Asian and Pacific Coasts. Hanoi: Thuyloi University, 2020: 457-462. |
[70] |
KARL H A, CARLSON P R. Large sand waves in Navarinsky Canyon head, Bering Sea[J]. Geo-Marine Letters, 1982, 2(3/4): 157-162.
DOI URL |
[71] | 高胜美, 卓海腾, 王英民, 等. 南海北部白云峡谷群富有孔虫砂层沉积特征及发育机制[J]. 沉积学报, 2019, 37(4): 798-811. |
[72] | 王真真. 南海北部白云凹陷陆坡迁移峡谷沉积体系特征及对天然气水合物成藏的影响[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014. |
[73] |
LEE H J, SYVITSKI J P M, PARKER G, et al. Distinguishing sediment waves from slope failure deposits: field examples, including the ‘Humboldt slide’, and modelling results[J]. Marine Geology, 2002, 192(1/2/3): 79-104.
DOI URL |
[74] |
COVAULT J A, KOSTIC S, PAULL C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
DOI URL |
[75] |
HOLBROOK W S, LIZARRALDE D, PECHER I A, et al. Escape of methane gas through sediment waves in a large methane hydrate Province[J]. Geology, 2002, 30(5): 467.
DOI URL |
[76] | 邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学D辑: 地球科学, 2007, 37(6): 771-777. |
[77] | 汪品先, 赵泉鸿, 翦知湣, 等. 南海三千万年的深海记录[J]. 科学通报, 2003, 48(21): 2206-2215. |
[78] |
TIAN Z C, JIA Y G, CHEN J X, et al. Internal solitary waves induced deep-water nepheloid layers and seafloor geomorphic changes on the continental slope of the northern South China Sea[J]. Physics of Fluids, 2021, 33(5): 053312.
DOI URL |
[79] |
XIE X N, MÜLLER R D, REN J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144.
DOI URL |
[80] | 田媛媛. 珠江口盆地荔湾凹陷中新统丘形反射的成因探讨[D]. 西安: 西北大学, 2012. |
[81] | 陈天, 贾永刚, 刘涛, 等. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J]. 地学前缘, 2021, 5(1): 1-16. |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 刘艳祥, 吕文雅, 曾联波, 李睿琦, 董少群, 王兆生, 李彦录, 王磊飞, 冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘, 2024, 31(5): 103-116. |
[3] | 潘磊, 杜红权, 李雷涛, 龙涛, 殷雪峰. 川东北元坝地区上三叠统须家河组天然裂缝发育特征与主控因素[J]. 地学前缘, 2024, 31(5): 156-165. |
[4] | 高玉巧, 花彩霞, 蔡潇, 白鸾羲, 卢葭. 苏北盆地溱潼凹陷阜宁组二段页岩油储层裂缝形成机制及对烃类赋存的影响[J]. 地学前缘, 2024, 31(5): 35-45. |
[5] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[6] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[7] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[8] | 张家志, 姜在兴, 徐杰, 魏思源, 宋立舟, 刘桐, 沈志晗, 姜晓龙, 李永飞, 张玺. 朝阳盆地白垩系九佛堂组火山沉积作用及其对有机质富集的影响[J]. 地学前缘, 2024, 31(3): 284-297. |
[9] | 张健, 何雨蓓, 范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘, 2024, 31(3): 392-401. |
[10] | 杨怡青, 陶士振, 陈悦. 美国典型富氦无机成因气田中氦气地质特征与聚集机制[J]. 地学前缘, 2024, 31(1): 327-339. |
[11] | 陈泽亚, 陈践发, 黎茂稳, 付娆, 师肖飞, 徐学敏, 伍建军. 塔里木台盆区下古生界天然气甲烷氢同位素组成特征及地质意义[J]. 地学前缘, 2023, 30(6): 232-246. |
[12] | 曾帅, 邱楠生, 李慧莉, 马安来, 朱秀香, 贾京坤, 张梦霏. 塔里木盆地顺托果勒地区奥陶系碳酸盐岩超压差异分布研究[J]. 地学前缘, 2023, 30(6): 305-315. |
[13] | 孙科, 刘慧卿, 王敬, 刘人杰, 冯亚斌, 康志江, 张允. 深层碳酸盐岩缝洞介质应力敏感特性研究[J]. 地学前缘, 2023, 30(6): 351-364. |
[14] | 韩月卿, 张军涛, 潘磊, 李慧莉, 刘光祥, 李让彬, 武重阳, 郝运轻, 何治亮, 黄振凯. 川东南中二叠统茅口组白云岩特征与成因机理[J]. 地学前缘, 2023, 30(6): 45-56. |
[15] | 刘雨晴, 邓尚, 张继标, 邱华标, 韩俊, 何松高. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘, 2023, 30(6): 95-109. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||