地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 237-257.DOI: 10.13745/j.esf.sf.2024.2.15
刘伟1,2(), 张洪瑞3,*(
), 罗迪柯3, 贾鹏飞3, 靳立杰1,2, 周永刚1, 梁云汉1, 王子圣1, 李春稼1
收稿日期:
2023-06-25
修回日期:
2024-01-16
出版日期:
2024-07-25
发布日期:
2024-07-10
通信作者:
* 张洪瑞(1982—),男,博士,研究员,主要从事非洲地质调查及矿产勘查工作。E-mail: 作者简介:
刘 伟(1989—),男,高级工程师,主要从事区域地质调查与矿产勘查工作。E-mail: 534681467@qq.com
基金资助:
LIU Wei1,2(), ZHANG Hongrui3,*(
), LUO Dike3, JIA Pengfei3, JIN Lijie1,2, ZHOU Yonggang1, LIANG Yunhan1, WANG Zisheng1, LI Chunjia1
Received:
2023-06-25
Revised:
2024-01-16
Online:
2024-07-25
Published:
2024-07-10
摘要:
安哥拉西部地区广泛发育古元古代Eburnean造山期花岗岩,是研究安哥拉地块构造岩浆作用特征的理想场所。本文对安哥拉地块北部Dondo地区大面积出露的花岗岩开展系统的岩相学、岩石地球化学和锆石U-Pb年代学研究。结果显示:Dondo地区斑状黑云母二长花岗岩与黑云母二长花岗岩的侵位年龄分别为(1 983.3±7.7) Ma和(1 956.6±7.5) Ma,均为古元古代中期岩浆活动的产物。全岩样品具有高SiO2含量、富碱、高104Ga/Al值、高FeOT/(FeOT+MgO)值和Zr+Nb+Ce+Y含量,低MgO、TiO2、CaO和P2O5含量的特征;微量元素富集Rb、K、Th、U、Zr和Hf,亏损Sr、Nb、Ta、P和Ti;稀土元素总量较高,轻稀土富集,重稀土亏损,整体不具有显著的负Eu异常;锆饱和温度计算所有花岗岩的结晶温度为757~889 ℃;以上这些岩石地球化学特征与A2型花岗岩一致。岩相学及地球化学的数据表明,两种花岗岩可能由来源于下地壳物质与地幔来源基性岩浆混合所形成。两种花岗岩具有相似的形成时代、矿物组成和连续的主微量元素变化趋势,这些特征表明它们的原始岩浆来自同一岩浆房,而二者之间特征的差别是由岩浆房内的晶体-熔体分异所主导。据此,本文认为:产生钾长石斑晶的岩浆曾经在地壳深部作过长时间滞留,导致钾长石稳定结晶,增加了岩浆的黏度和密度,使岩浆处于冻结状态;随后在幔源岩浆注入带来的热扰动和富集挥发分的作用下,冻结岩浆房迅速活化,从而发生晶体-熔体的分离,抽离的熔体形成了黑云母二长花岗岩,而混有先存晶体的岩浆则形成了斑状黑云母二长花岗岩。综合区域和全球构造演化历史,本次研究认为Dondo地区花岗岩形成于巴西São Francisco克拉通和Congo克拉通后碰撞的构造环境,该期岩浆活动可能是Columbia超大陆的碰撞造山事件在安哥拉地块的响应。
中图分类号:
刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257.
LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent[J]. Earth Science Frontiers, 2024, 31(4): 237-257.
图1 撒哈拉以南非洲地质简图(a)、安哥拉大地构造位置图(b)和Dondo地区地质简图(c)(图a据文献[32]修改;图b据文献[33]修改)
Fig.1 Simplified geological map of Sub-Saharan Africa: (a) tectonic map of Angola; (b) geological map of Dondo region (c). a modified after [32]; b modified from [33].
图2 Dondo地区花岗岩野外照片及显微镜下照片 a—二长花岗岩似斑状结构及钾长石聚合斑晶现象;b—斑状黑云母二长花岗岩内部暗色包体;c—钾长石斑晶熔蚀现象;d—黑云母二长花岗岩的块状构造;e—斑状黑云母二长花岗岩基质镜下特征;f—钾长石发育格子双晶。Qz—石英; Kf—钾长石; Pl—斜长石; Bi—黑云母。
Fig.2 Field photographs and microphotographs of granites in Dondo area
图3 安哥拉地块北部Dondo地区花岗岩代表性锆石阴极发光图像和锆石U-Pb年龄图
Fig.3 CL images of representative zircon grains and zircon U-Pb age diagram from the granites in Dondo area, northern Angola Block
样品编号 | 岩性 | 主量元素wB/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O | FeO | MnO | MgO | CaO | Na2O | K2O | ||||||
C33I-5-GS1 | 斑状黑云母 | 69.78 | 0.573 | 14.44 | 3.07 | 1.27 | 0.072 | 0.609 | 1.63 | 3.57 | 5.44 | ||||
C33I-5-GS4 | 二长花岗岩 | 67.25 | 0.673 | 15.46 | 3.3 | 1.28 | 0.112 | 0.709 | 1.74 | 4.07 | 5.68 | ||||
C33I-5-GS10 | 71.77 | 0.413 | 13.98 | 2.41 | 1.05 | 0.074 | 0.538 | 1.25 | 3.67 | 5.3 | |||||
C33I-5-GS11 | 63.53 | 0.773 | 16.5 | 4.37 | 2.31 | 0.07 | 0.877 | 2.52 | 2.62 | 7.35 | |||||
C33I-1-GS2 | 黑云母二 | 75.57 | 0.108 | 12.85 | 0.873 | 0.63 | 0.022 | 0.14 | 0.491 | 3.32 | 5.64 | ||||
C33I-7-GS1 | 长花岗岩 | 71.04 | 0.481 | 13.56 | 3.19 | 1.39 | 0.039 | 0.494 | 0.993 | 2.75 | 5.84 | ||||
C33J-3-GS1 | 74.97 | 0.161 | 13.02 | 1.67 | 0.7 | 0.015 | 0.128 | 0.578 | 3.41 | 5.31 | |||||
样品编号 | 岩性 | 主量元素wB/% | A/NK | A/CNK | K2O/Na2O | FeOT/(FeOT+MgO) | TZr/℃ | ||||||||
K2O+Na2O | P2O5 | H2O+ | LOI | Total | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 9.01 | 0.257 | <0.10 | 0.46 | 99.9 | 1.23 | 0.98 | 1.52 | 0.83 | 877 | ||||
C33I-5-GS4 | 二长花岗岩 | 9.75 | 0.36 | <0.10 | 0.54 | 99.89 | 1.2 | 0.96 | 1.4 | 0.81 | 889 | ||||
C33I-5-GS10 | 8.97 | 0.163 | <0.10 | 0.43 | 99.99 | 1.19 | 1 | 1.45 | 0.81 | 835 | |||||
C33I-5-GS11 | 9.98 | 0.236 | 0.55 | 1.07 | 99.92 | 1.34 | 0.98 | 2.81 | 0.83 | 874 | |||||
C33I-1-GS2 | 黑云母二 | 8.96 | 0.04 | 0.3 | 0.85 | 99.9 | 1.11 | 1.03 | 1.7 | 0.86 | 757 | ||||
C33I-7-GS1 | 长花岗岩 | 8.59 | 0.155 | 0.59 | 1.4 | 99.95 | 1.25 | 1.07 | 2.12 | 0.86 | 862 | ||||
C33J-3-GS1 | 8.72 | 0.03 | 0.22 | 0.61 | 99.9 | 1.15 | 1.05 | 1.56 | 0.99 | 790 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Rb | Ba | Th | U | Nb | Ta | Sr | Sc | V | Cr | ||||||
C33I-5-GS1 | 斑状黑云母 | 145 | 1945 | 10.6 | 1.73 | 28.4 | 1.3 | 255 | 9.29 | 40.3 | 126 | ||||
C33I-5-GS4 | 二长花岗岩 | 171 | 1099 | 12.6 | 2.83 | 37 | 2.61 | 188 | 6.49 | 22.7 | 197 | ||||
C33I-5-GS10 | 141 | 2531 | 10.9 | 1.33 | 35.8 | 1.96 | 400 | 13.8 | 20.5 | 190 | |||||
C33I-5-GS11 | 135 | 1834 | 7.05 | 0.738 | 39.8 | 2.66 | 339 | 7.14 | 18.7 | 184 | |||||
C33I-1-GS2 | 黑云母二 | 92.1 | 262 | 4.49 | 1.2 | 7.2 | 0.406 | 66 | 2.18 | 5.45 | 218 | ||||
C33I-7-GS1 | 长花岗岩 | 190 | 1146 | 35.3 | 2.56 | 21.7 | 1.11 | 163 | 7.35 | 20.4 | 168 | ||||
C33J-3-GS1 | 195 | 750 | 24.7 | 3.78 | 16.8 | 1.13 | 74.6 | 4.5 | 5.36 | 270 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Co | Ni | Ga | Cs | Pb | Zr | Hf | La | Ce | Pr | ||||||
C33I-5-GS1 | 斑状黑云母 | 6.49 | 8.82 | 24.3 | 0.402 | 25.4 | 520.1 | 16.6 | 100 | 188 | 20.2 | ||||
C33I-5-GS4 | 二长花岗岩 | 2.52 | 5.64 | 21.3 | 1.12 | 39.9 | 295.7 | 9.82 | 106 | 197 | 20.3 | ||||
C33I-5-GS10 | 3.23 | 6.61 | 25 | 0.406 | 42.7 | 578.1 | 21.3 | 202 | 423 | 47.1 | |||||
C33I-5-GS11 | 3.01 | 7.01 | 21.9 | 0.21 | 35.3 | 473.5 | 18.5 | 141 | 274 | 34.6 | |||||
C33I-1-GS2 | 黑云母二 | 0.62 | 3.67 | 19.4 | 0.551 | 32.8 | 110 | 3.84 | 28.6 | 51.7 | 6.07 | ||||
C33I-7-GS1 | 长花岗岩 | 3.76 | 5.25 | 20.7 | 1.5 | 30.9 | 351 | 9.49 | 100 | 346 | 23.2 | ||||
C33J-3-GS1 | 1.05 | 20.6 | 16 | 1.31 | 23.4 | 160.4 | 5.74 | 69.9 | 129 | 14.5 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | ||||||
C33I-5-GS1 | 斑状黑云母 | 74.4 | 12.1 | 4.38 | 11.5 | 1.83 | 8.42 | 1.51 | 5.8 | 0.644 | 4.12 | ||||
C33I-5-GS4 | 二长花岗岩 | 74.4 | 11.8 | 3.11 | 12 | 1.93 | 9.27 | 1.75 | 6.73 | 0.899 | 5.77 | ||||
C33I-5-GS10 | 184 | 29.5 | 8.45 | 27.1 | 4.34 | 20.5 | 3.79 | 13.9 | 1.7 | 10.9 | |||||
C33I-5-GS11 | 137 | 24 | 6.04 | 20.2 | 3.73 | 18.9 | 3.73 | 12.9 | 1.78 | 11.2 | |||||
C33I-1-GS2 | 黑云母二 | 21.1 | 3.37 | 0.745 | 3 | 0.453 | 2.23 | 0.379 | 1.42 | 0.184 | 1.3 | ||||
C33I-7-GS1 | 长花岗岩 | 76.8 | 11.9 | 2.63 | 11.7 | 1.64 | 7.33 | 1.22 | 4.56 | 0.542 | 3.42 | ||||
C33J-3-GS1 | 57 | 8.36 | 0.869 | 7.52 | 1.22 | 6.05 | 1.18 | 3.53 | 0.562 | 3.67 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | LREE/HREE | δEu | (La/Yb)N | Nb/Ta | Rb/Nb | ||||||||
Lu | Y | ∑REE | LREE | HREE | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 0.599 | 38.8 | 433.5 | 399.08 | 34.42 | 11.59 | 1.12 | 17.41 | 21.85 | 5.11 | ||||
C33I-5-GS4 | 二长花岗岩 | 0.843 | 49.7 | 451.8 | 412.61 | 39.19 | 10.53 | 0.79 | 13.18 | 14.18 | 4.62 | ||||
C33I-5-GS10 | 1.66 | 116 | 977.94 | 894.05 | 83.89 | 10.66 | 0.9 | 13.29 | 18.27 | 3.94 | |||||
C33I-5-GS11 | 1.55 | 113 | 690.63 | 616.64 | 73.99 | 8.33 | 0.82 | 9.03 | 14.96 | 3.39 | |||||
C33I-1-GS2 | 黑云母二 | 0.224 | 10 | 120.78 | 111.59 | 9.19 | 12.14 | 0.7 | 15.78 | 17.73 | 12.79 | ||||
C33I-7-GS1 | 长花岗岩 | 0.476 | 26.4 | 591.42 | 560.53 | 30.89 | 18.15 | 0.67 | 20.97 | 19.55 | 8.76 | ||||
C33J-3-GS1 | 0.522 | 34.2 | 303.88 | 279.63 | 24.25 | 11.53 | 0.33 | 13.66 | 14.87 | 11.61 |
表2 Dondo地区花岗岩主量元素和微量元素分析结果
Table 2 Major and trace element concentrations of the granites from the the Dondo area
样品编号 | 岩性 | 主量元素wB/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O | FeO | MnO | MgO | CaO | Na2O | K2O | ||||||
C33I-5-GS1 | 斑状黑云母 | 69.78 | 0.573 | 14.44 | 3.07 | 1.27 | 0.072 | 0.609 | 1.63 | 3.57 | 5.44 | ||||
C33I-5-GS4 | 二长花岗岩 | 67.25 | 0.673 | 15.46 | 3.3 | 1.28 | 0.112 | 0.709 | 1.74 | 4.07 | 5.68 | ||||
C33I-5-GS10 | 71.77 | 0.413 | 13.98 | 2.41 | 1.05 | 0.074 | 0.538 | 1.25 | 3.67 | 5.3 | |||||
C33I-5-GS11 | 63.53 | 0.773 | 16.5 | 4.37 | 2.31 | 0.07 | 0.877 | 2.52 | 2.62 | 7.35 | |||||
C33I-1-GS2 | 黑云母二 | 75.57 | 0.108 | 12.85 | 0.873 | 0.63 | 0.022 | 0.14 | 0.491 | 3.32 | 5.64 | ||||
C33I-7-GS1 | 长花岗岩 | 71.04 | 0.481 | 13.56 | 3.19 | 1.39 | 0.039 | 0.494 | 0.993 | 2.75 | 5.84 | ||||
C33J-3-GS1 | 74.97 | 0.161 | 13.02 | 1.67 | 0.7 | 0.015 | 0.128 | 0.578 | 3.41 | 5.31 | |||||
样品编号 | 岩性 | 主量元素wB/% | A/NK | A/CNK | K2O/Na2O | FeOT/(FeOT+MgO) | TZr/℃ | ||||||||
K2O+Na2O | P2O5 | H2O+ | LOI | Total | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 9.01 | 0.257 | <0.10 | 0.46 | 99.9 | 1.23 | 0.98 | 1.52 | 0.83 | 877 | ||||
C33I-5-GS4 | 二长花岗岩 | 9.75 | 0.36 | <0.10 | 0.54 | 99.89 | 1.2 | 0.96 | 1.4 | 0.81 | 889 | ||||
C33I-5-GS10 | 8.97 | 0.163 | <0.10 | 0.43 | 99.99 | 1.19 | 1 | 1.45 | 0.81 | 835 | |||||
C33I-5-GS11 | 9.98 | 0.236 | 0.55 | 1.07 | 99.92 | 1.34 | 0.98 | 2.81 | 0.83 | 874 | |||||
C33I-1-GS2 | 黑云母二 | 8.96 | 0.04 | 0.3 | 0.85 | 99.9 | 1.11 | 1.03 | 1.7 | 0.86 | 757 | ||||
C33I-7-GS1 | 长花岗岩 | 8.59 | 0.155 | 0.59 | 1.4 | 99.95 | 1.25 | 1.07 | 2.12 | 0.86 | 862 | ||||
C33J-3-GS1 | 8.72 | 0.03 | 0.22 | 0.61 | 99.9 | 1.15 | 1.05 | 1.56 | 0.99 | 790 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Rb | Ba | Th | U | Nb | Ta | Sr | Sc | V | Cr | ||||||
C33I-5-GS1 | 斑状黑云母 | 145 | 1945 | 10.6 | 1.73 | 28.4 | 1.3 | 255 | 9.29 | 40.3 | 126 | ||||
C33I-5-GS4 | 二长花岗岩 | 171 | 1099 | 12.6 | 2.83 | 37 | 2.61 | 188 | 6.49 | 22.7 | 197 | ||||
C33I-5-GS10 | 141 | 2531 | 10.9 | 1.33 | 35.8 | 1.96 | 400 | 13.8 | 20.5 | 190 | |||||
C33I-5-GS11 | 135 | 1834 | 7.05 | 0.738 | 39.8 | 2.66 | 339 | 7.14 | 18.7 | 184 | |||||
C33I-1-GS2 | 黑云母二 | 92.1 | 262 | 4.49 | 1.2 | 7.2 | 0.406 | 66 | 2.18 | 5.45 | 218 | ||||
C33I-7-GS1 | 长花岗岩 | 190 | 1146 | 35.3 | 2.56 | 21.7 | 1.11 | 163 | 7.35 | 20.4 | 168 | ||||
C33J-3-GS1 | 195 | 750 | 24.7 | 3.78 | 16.8 | 1.13 | 74.6 | 4.5 | 5.36 | 270 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Co | Ni | Ga | Cs | Pb | Zr | Hf | La | Ce | Pr | ||||||
C33I-5-GS1 | 斑状黑云母 | 6.49 | 8.82 | 24.3 | 0.402 | 25.4 | 520.1 | 16.6 | 100 | 188 | 20.2 | ||||
C33I-5-GS4 | 二长花岗岩 | 2.52 | 5.64 | 21.3 | 1.12 | 39.9 | 295.7 | 9.82 | 106 | 197 | 20.3 | ||||
C33I-5-GS10 | 3.23 | 6.61 | 25 | 0.406 | 42.7 | 578.1 | 21.3 | 202 | 423 | 47.1 | |||||
C33I-5-GS11 | 3.01 | 7.01 | 21.9 | 0.21 | 35.3 | 473.5 | 18.5 | 141 | 274 | 34.6 | |||||
C33I-1-GS2 | 黑云母二 | 0.62 | 3.67 | 19.4 | 0.551 | 32.8 | 110 | 3.84 | 28.6 | 51.7 | 6.07 | ||||
C33I-7-GS1 | 长花岗岩 | 3.76 | 5.25 | 20.7 | 1.5 | 30.9 | 351 | 9.49 | 100 | 346 | 23.2 | ||||
C33J-3-GS1 | 1.05 | 20.6 | 16 | 1.31 | 23.4 | 160.4 | 5.74 | 69.9 | 129 | 14.5 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | |||||||||||||
Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | ||||||
C33I-5-GS1 | 斑状黑云母 | 74.4 | 12.1 | 4.38 | 11.5 | 1.83 | 8.42 | 1.51 | 5.8 | 0.644 | 4.12 | ||||
C33I-5-GS4 | 二长花岗岩 | 74.4 | 11.8 | 3.11 | 12 | 1.93 | 9.27 | 1.75 | 6.73 | 0.899 | 5.77 | ||||
C33I-5-GS10 | 184 | 29.5 | 8.45 | 27.1 | 4.34 | 20.5 | 3.79 | 13.9 | 1.7 | 10.9 | |||||
C33I-5-GS11 | 137 | 24 | 6.04 | 20.2 | 3.73 | 18.9 | 3.73 | 12.9 | 1.78 | 11.2 | |||||
C33I-1-GS2 | 黑云母二 | 21.1 | 3.37 | 0.745 | 3 | 0.453 | 2.23 | 0.379 | 1.42 | 0.184 | 1.3 | ||||
C33I-7-GS1 | 长花岗岩 | 76.8 | 11.9 | 2.63 | 11.7 | 1.64 | 7.33 | 1.22 | 4.56 | 0.542 | 3.42 | ||||
C33J-3-GS1 | 57 | 8.36 | 0.869 | 7.52 | 1.22 | 6.05 | 1.18 | 3.53 | 0.562 | 3.67 | |||||
样品编号 | 岩性 | 微量元素wB/10-6 | LREE/HREE | δEu | (La/Yb)N | Nb/Ta | Rb/Nb | ||||||||
Lu | Y | ∑REE | LREE | HREE | |||||||||||
C33I-5-GS1 | 斑状黑云母 | 0.599 | 38.8 | 433.5 | 399.08 | 34.42 | 11.59 | 1.12 | 17.41 | 21.85 | 5.11 | ||||
C33I-5-GS4 | 二长花岗岩 | 0.843 | 49.7 | 451.8 | 412.61 | 39.19 | 10.53 | 0.79 | 13.18 | 14.18 | 4.62 | ||||
C33I-5-GS10 | 1.66 | 116 | 977.94 | 894.05 | 83.89 | 10.66 | 0.9 | 13.29 | 18.27 | 3.94 | |||||
C33I-5-GS11 | 1.55 | 113 | 690.63 | 616.64 | 73.99 | 8.33 | 0.82 | 9.03 | 14.96 | 3.39 | |||||
C33I-1-GS2 | 黑云母二 | 0.224 | 10 | 120.78 | 111.59 | 9.19 | 12.14 | 0.7 | 15.78 | 17.73 | 12.79 | ||||
C33I-7-GS1 | 长花岗岩 | 0.476 | 26.4 | 591.42 | 560.53 | 30.89 | 18.15 | 0.67 | 20.97 | 19.55 | 8.76 | ||||
C33J-3-GS1 | 0.522 | 34.2 | 303.88 | 279.63 | 24.25 | 11.53 | 0.33 | 13.66 | 14.87 | 11.61 |
图4 安哥拉地块北部Dondo地区花岗岩的化学分类图解 a—侵入岩TAS图解(底图据文献[38]);b—SiO2-K2O图解(底图据文献[39]);c—A/NK-A/CNK图解(底图据文献[40]);d—FeOT/(FeOT+MgO)-SiO2图解(底图据文献[41])。
Fig.4 Chemical classification diagrams of granites from the Dondo area, northern Angola Block
图6 安哥拉地块北部Dondo地区花岗岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)(标准化值据文献[43])
Fig.6 Primitive mantle-normalized trace element spider diagram (a) and chondrite-normalized REE patterns (b) of the granites from Dondo area, northern Angola Block. Normalization values adapted from [43].
图7 安哥拉地块古元古代造山纪花岗岩年龄分布图(前人数据引自文献[46⇓⇓-49])
Fig.7 The age spectra for Paleoproterozoic Orosirian granites in Angola Block. Previous data adapted from [46⇓⇓-49].
图8 安哥拉地块北部Dondo地区花岗岩成因类型判别图解(底图a,b,c据文献[42];底图d据文献[61])
Fig.8 Discrimination diagrams for the genetic types of the granites from Dondo area, northern Angola Block. a,b,c adapted from [42];d adapted from [61].
图10 安哥拉地块北部Dondo地区花岗岩的Nb-Y-Ce(a)和Nb-Y-3Ga(b)三角图解(据文献[101])
Fig.10 Plots of Nb-Y-Ce (a) and Nb-Y-3Ga (b) of the granite from Dondo area, northern Angola Block. Adapted from [101].
图11 安哥拉地块北部Dondo地区花岗岩构造环境判别图(底图据文献[102]) ORG—洋脊花岗岩;WPG—板内花岗岩;VAG—火山弧花岗岩;syn-COLG—同碰撞花岗岩;post-COLG—后碰撞花岗岩。
Fig.11 Discriminant diagrams of the of the granite from Dondo area, northern Angola Block. Adapted from [102].
[93] | HILDRETH W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems[J]. Journal of Volcanology and Geothermal Research, 2004, 136(3/4): 169-198. |
[94] | COOPER K M, KENT A J R. Rapid remobilization of magmatic crystals kept in cold storage[J]. Nature, 2014, 506(7489): 480-483. |
[95] |
COOPER G F, BLUNDY J D, MACPHERSON C G, et al. Evidence from plutonic xenoliths for magma differentiation, mixing and storage in a volatile-rich crystal mush beneath St. Eustatius, Lesser Antilles[J]. Contributions to Mineralogy and Petrology, 2019, 174(5): 39.
DOI PMID |
[96] |
HARTUNG E, WEBER G, CARICCHI L. The role of H2O on the extraction of melt from crystallising magmas[J]. Earth and Planetary Science Letters, 2019, 508: 85-96.
DOI |
[97] | JIANG Y H, LING H F, JIANG S Y, et al. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China[J]. Journal of Petrology, 2005, 46(6): 1121-1154. |
[98] | 刘璐璐, 苏尚国, 侯建光, 等. 河北武安坦岭多斑斜长斑岩的成因: 冻结岩浆房活化机制[J]. 岩石学报, 2017, 33(1): 204-220. |
[99] | CHEN J Y, YANG J H, ZHANG J H. Origin of Cretaceous aluminous and peralkaline A-type granitoids in northeastern Fujian, coastal region of southeastern China[J]. Lithos, 2019, 340: 223-238. |
[100] | CHEN J Y, YANG J H, ZHANG J H, et al. Construction of a highly silicic upper crust in southeastern China: insights from the Cretaceous intermediate-to-felsic rocks in eastern Zhejiang[J]. Lithos, 2021, 402: 106012. |
[101] | EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. |
[102] | PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. |
[103] | MAHÉO G, BLICHERT-TOFT J, PIN C, et al. Partial melting of mantle and crustal sources beneath South Karakorum, Pakistan: implications for the Miocene geodynamic evolution of the India-Asia convergence zone[J]. Journal of Petrology, 2009, 50(3): 427-449. |
[104] | 罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、 岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241. |
[105] | VON BLANCKENBURG F, DAVIES J H. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14(1): 120-131. |
[106] | ALTUNKAYNAK Ş. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey[J]. The Journal of Geology, 2007, 115(1): 63-82. |
[107] | NEILSON, KOKELAAR, CROWLEY. Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland[J]. Journal of the Geological Society, 2009, 166: 545-561. |
[108] | DURETZ T, GERYA T V, MAY D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1/2): 244-256. |
[109] | ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162. |
[110] | ALKMIM F F, MARSHAK S. Transamazonian orogeny in the Southern Sao Francisco Craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrıfero[J]. Precambrian Research, 1998, 90(1/2): 29-58. |
[111] | HOLZER L, FREI R, BARTON J M, et al. Unraveling the record of successive high grade events in the Central Zone of the Limpopo Belt using Pb single phase dating of metamorphic minerals[J]. Precambrian Research, 1998, 87(1/2): 87-115. |
[112] | 古阿雷, 王杰, 任军平, 等. 赞比亚北部卡帕图地区古元古代花岗岩成因: 岩石地球化学、 锆石年代学及Hf同位素约束[J]. 地质学报, 2021, 95(4): 999-1018. |
[113] | 沈莽庭, 徐鸣, 高天山, 等. 巴西圣弗朗西斯科克拉通Ibitiara岩体的锆石U-Pb年代学、 地球化学特征及地质意义[J]. 世界地质, 2020, 39(1): 1-15. |
[1] | ZHAO G C, SUN M, WILDE S A, et al. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123. |
[2] | NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: a retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29. |
[3] | MINTS M V. A neoarchean-Proterozoic supercontinent (-2.8-0.9 Ga): an alternative to the model of supercontinent cycles[J]. Doklady Earth Sciences, 2018, 480(1): 555-558. |
[4] | 邓奇, 汪正江, 任光明, 等. 扬子地块西北缘-2.09 Ga和-1.76 Ga花岗质岩石: Columbia超大陆聚合-裂解的岩浆记录[J]. 地球科学, 2020, 45(9): 3295-3312. |
[5] | 张永旺, 刘汇川, 于志琪, 等. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 2021, 37(4): 1122-1138. |
[6] |
HOFFMAN P F. Did the breakout of laurentia turn Gondwanaland inside-out?[J]. Science, 1991, 252(5011): 1409-1412.
PMID |
[7] | ROGERS J J W, SANTOSH M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 5-22. |
[8] | LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. |
[9] | CAWOOD P A, ZHAO G C, YAO J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194. |
[10] | EVANS D A D, MITCHELL R N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 2011, 39(5): 443-446. |
[11] | 张少兵, 吴鹏, 郑永飞. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录[J]. 地球科学, 2019, 44(12): 4157-4166. |
[12] | SEARS J W, PRICE R A. The hypothetical Mesoproterozoic supercontinent Columbia: implications of the Siberian-West Laurentian connection[J]. Gondwana Research, 2002, 5(1): 35-39. |
[13] | EGLINGTON B M, PEHRSSON S J, ANSDELL K M, et al. A domain-based digital summary of the evolution of the Palaeoproterozoic of North America and Greenland and associated unconformity-related uranium mineralization[J]. Precambrian Research, 2013, 232: 4-26. |
[14] | MEDIG K P R, TURNER E C, THORKELSON D J, et al. Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: the Mesoproterozoic Pinguicula Group of northern Yukon, Canada[J]. Precambrian Research, 2016, 278: 179-206. |
[15] | WANG W, CAWOOD P A, ZHOU M F, et al. Paleoproterozoic magmatic and metamorphic events link Yangtze to Northwest Laurentia in the Nuna supercontinent[J]. Earth and Planetary Science Letters, 2016, 433: 269-279. |
[16] | HAN Q S, PENG S B, KUSKY T, et al. A Paleoproterozoic ophiolitic mélange, Yangtze Craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 2017, 293: 13-38. |
[17] | CUI X Z, WANG J, SUN Z M, et al. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 2019, 169: 308-322. |
[18] | QIU X F, JIANG T, ZHAO X M, et al. Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze Block, South China[J]. Precambrian Research, 2020, 337: 105537. |
[19] | DE CARVALHO H, TASSINARI C, ALVES P H, et al. Geochronological review of the Precambrian in western Angola: links with Brazil[J]. Journal of African Earth Sciences, 2000, 31(2): 383-402. |
[20] | FEYBESSE J L, JOHAN V, TRIBOULET C, et al. The West Central African belt: a model of 2.5-2.0 Ga accretion and two-phase orogenic evolution[J]. Precambrian Research, 1998, 87(3/4): 161-216. |
[21] | DE ASSIS JANASI V, DE FREITAS V A, HEAMAN L H. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: a precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 147-153. |
[22] | WEBER F, GAUTHIER-LAFAYE F, WHITECHURCH H, et al. The 2 Ga Eburnean Orogeny in Gabon and the opening of the Francevillian intracratonic basins: a review[J]. Comptes Rendus Géoscience, 2016, 348(8): 572-586. |
[23] | SCHANNOR M, LANA C, FONSECA M A. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt[J]. Geoscience Frontiers, 2019, 10(2): 611-628. |
[24] | DE WAELE B, JOHNSON S P, PISAREVSKY S A. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: its role in the Rodinia puzzle[J]. Precambrian Research, 2008, 160(1/2): 127-141. |
[25] | DANDERFER A, DE WAELE B, PEDREIRA A J, et al. New geochronological constraints on the geological evolution of Espinhaço Basin within the São Francisco Craton—Brazil[J]. Precambrian Research, 2009, 170(1/2): 116-128. |
[26] | ERNST R E, PEREIRA E, HAMILTON M A, et al. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions[J]. Precambrian Research, 2013, 230: 103-118. |
[27] | SILVEIRA E M, SÖDERLUND U, OLIVEIRA E P, et al. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 2013, 174: 144-156. |
[28] | SALMINEN J M, EVANS D A D, TRINDADE R I F, et al. Paleogeography of the Congo/São Francisco Craton at 1.5 Ga: expanding the core of Nuna supercontinent[J]. Precambrian Research, 2016, 286: 195-212. |
[29] | MEERT J G, SANTOSH M. The Columbia supercontinent revisited[J]. Gondwana Research, 2017, 50: 67-83. |
[30] | CARVALHO H, CRASTO J P, SILVA Z C G, et al. The Kibaran cycle in Angola: a discussion[J]. Geological Journal, 1987, 22(Suppl 2): 85-102. |
[31] | 胡鹏, 任军平, 向鹏, 等. 非洲大陆构造单元划分[J]. 地质通报, 2022, 41(1): 1-18. |
[32] | 古阿雷, 任军平, 王杰, 等. 赞比亚东北部陇都地区首次发现中元古代辉长岩: 哥伦比亚超大陆裂解在班韦乌卢地块的响应[J]. 地质通报, 2022, 41(1): 34-47. |
[33] | DE CARVALHO H, ALVES P. The precambrian of SW Angola and NW Namibia. General remarks. Correlation analysis[C]// International colloquium on Africa geology. Mbabane: Geological Survey and Mines, 1993: 73-76. |
[34] | YUAN H L, GAO S, DAI M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2): 100-118. |
[35] | 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418. |
[36] | ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. |
[37] | LUDWIG K R. A geochronological toolkit for Microsoft Excel[J]. Isoplot, 2003, 3: 1-70. |
[38] | MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. |
[39] | RICKWOOD P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. |
[40] | MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. |
[41] | FROST C D, FROST B R. On ferroan (A-type) granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1): 39-53. |
[42] | WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. |
[43] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[44] | SILVA A T S F, KAWASHITA K. Evolução geológica da Faixa dobrada Cela-Cariango (Angola)[J]. Boletim Sociedade Geológica de Portugal XXI (Fasc.l), 1978, 21: 5-21. |
[45] | TORQUATO J R, SILVA A T S, CORDANI U G, et al. Evolução geológica do Cinturão móvel do Quipungo no Ocidente de Angola[J]. Anais da Academia Brasileira de Ciências, 1979, 51(1): 133-144. |
[46] | JELSMA H A, PERRITT S H A, ARMSTRONG R A, et al. SHRIMP U-Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola[C]// Proceedings of the 23rd CAG, Johannesburg. Pretoria: Council for Geoscience, 2011: 203. |
[47] | JELSMA H, KRISHNAN U, PERRITT S, et al. Kimberlites from central Angola: a case study of exploration findings[C]// Proceedings of 10th international kimberlite conference. New Delhi: Springer, 2013: 173-190. |
[48] | JELSMA H A, MCCOURT S, PERRITT S H, et al. The geology and evolution of the Angolan shield, Congo craton[M]// SIEGESMUNDS, BASEIM A S, OYHANTÇABALP, et al. Regional geology reviews. Cham: Springer International Publishing, 2018: 217-239. |
[49] | MCCOURT S, ARMSTRONG R A, JELSMA H, et al. New U-Pb SHRIMP ages from the Lubango Region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa[J]. Journal of the Geological Society, 2013, 170(2): 353-363. |
[50] | DELOR C, LAFON J M, ROSSI P, et al. Unravelling Precambrian crustal growth of central west Angola: neoarchaean to Siderian inheritance, main Orosirian accretion and discovery of the ‘Angolan’Pan African Belt[C]// Abstract Volume, 21st colloquium of African geology. Maputo: Geological Mining Association of Mozambique, 2006: 40-41. |
[51] | MILANI L, LEHMANN J, BYBEE G M, et al. Geochemical and geochronological constraints on the Mesoproterozoic red granite suite, Kunene amcg complex of Angola and Namibia[J]. Precambrian Research, 2022, 379: 106821. |
[52] | KRÖNER A, ROJAS-AGRAMONTE Y, HEGNER E, et al. SHRIMP zircon dating and Nd isotopic systematics of Palaeoproterozoic migmatitic orthogneisses in the Epupa Metamorphic Complex of northwestern Namibia[J]. Precambrian Research, 2010, 183(1): 50-69. |
[53] | SETH B, KRÖNER A, MEZGER K, et al. Archaean to Neoproterozoic magmatic events in the Kaoko belt of NW Namibia and their geodynamic significance[J]. Precambrian Research, 1998, 92(4): 341-363. |
[54] | SETH B, ARMSTRONG R A, BÜTTNER A, et al. Time constraints for Mesoproterozoic upper amphibolite facies metamorphism in NW Namibia: a multi-isotopic approach[J]. Earth and Planetary Science Letters, 2005, 230(3/4): 355-378. |
[55] | FERREIRA E, LEHMANN J, FELICIANO RODRIGUES J, et al. Zircon U-Pb and Lu-Hf isotopes reveal the crustal evolution of the SW Angolan Shield (Congo Craton)[J]. Gondwana Research, 2024, 131: 317-342. |
[56] | KRÖNER A, ROJAS-AGRAMONTE Y, WONG J, et al. Zircon reconnaissance dating of Proterozoic gneisses along the Kunene River of northwestern Namibia[J]. Tectonophysics, 2015, 662: 125-139. |
[57] | LEHMANN J, BYBEE G M, HAYES B, et al. Emplacement of the giant Kunene AMCG complex into a contractional ductile shear zone and implications for the Mesoproterozoic tectonic evolution of SW Angola[J]. International Journal of Earth Sciences, 2020, 109(4): 1463-1485. |
[58] | 任军平, 左立波, 许康康, 等. 赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J]. 地质论评, 2016, 62(4): 979-996. |
[59] | CAMPENY M, PROENZA J A, CASTILLO-OLIVER M, et al. Petrology, metallogeny and U-Pb geochronology of the Paleoproterozoic mafic-ultramafic Hamutenha intrusion, Angolan Shield[J]. Journal of African Earth Sciences, 2023, 197: 104733. |
[60] | 任军平, 王杰, 左立波, 等. 赞比亚北部省卡萨马西部石英闪长岩锆石U-Pb和Lu-Hf同位素及地球化学特征[J]. 地质学报, 2019, 93(11): 2832-2846. |
[61] | EBY G N. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134. |
[62] | WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433. |
[63] | TURNER S P, FODEN J D, MORRISON R S. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. |
[64] | MUSHKIN A, NAVON O, HALICZ L, et al. The petrogenesis of A-type magmas from the Amram massif, southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. |
[65] | SHELLNUTT J G, ZHOU M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 2007, 243(3/4): 286-316. |
[66] | LITVINOVSKY B A, JAHN B M, ZANVILEVICH A N, et al. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas[J]. Chemical Geology, 2002, 189(1/2): 105-133. |
[67] | KING P L, WHITE A J R, CHAPPELL B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. |
[68] | CREASER R A, PRICE R C, WORMALD R J. A-type granites revisited: assessment of a residual-source model[J]. Geology, 1991, 19(2): 163. |
[69] | SKJERLIE K P, JOHNSTON A D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites[J]. Geology, 1992, 20(3): 263. |
[70] | KERR A, FRYER B J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 1993, 104(1/2/3/4): 39-60. |
[71] | YANG J H, WU F Y, CHUNG S L, et al. A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106. |
[72] | COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. |
[73] | 姜雨奇, 程志国, 魏博雯. 乌兹别克斯坦中天山Kattasay地区A型花岗岩的岩石成因和构造意义[J]. 岩石学报, 2023, 39(11): 3284-3306. |
[74] | NIU X L, CHEN B, MA X. Petrogenesis of the Dengzhazi A-type pluton from the Taihang-Yanshan Mesozoic orogenic belts, North China Craton[J]. Journal of Asian Earth Sciences, 2011, 41(2): 133-146. |
[75] | PATIÑO D A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. |
[76] | CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. |
[77] | TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell, 1985: 1-328. |
[78] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 1-51. |
[79] | MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. |
[80] | 刘志超, 吴福元, 刘小驰, 等. 喜马拉雅淡色花岗岩结晶分异机制概述[J]. 岩石学报, 2020, 36(12): 3551-3571. |
[81] | 杨志国, 陈璟元, 杨进辉, 等. 赣-杭带早白垩世A型花岗岩成因: 浅部地壳岩浆储库活化的产物[J]. 岩石学报, 2023, 39(1): 37-54. |
[82] | LEE C T A, MORTON D M. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409: 23-31. |
[83] | DEERING C D, KELLER B, SCHOENE B, et al. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution[J]. Geology, 2016, 44(4): 267-270. |
[84] | HARTUNG E, CARICCHI L, FLOESS D, et al. Evidence for residual melt extraction in the Takidani pluton, central Japan[J]. Journal of Petrology, 2017, 58(4): 763-788. |
[85] | SCHAEN ALLEN J, COTTLE JOHN M, SINGER BRAD S, et al. Complementary crystal accumulation and rhyolite melt segregation in a late Miocene Andean pluton[J]. Geology, 2017, 45(9): 835-838. |
[86] | DEERING C D, BACHMANN O. Trace element indicators of crystal accumulation in silicic igneous rocks[J]. Earth and Planetary Science Letters, 2010, 297(1/2): 324-331. |
[87] | LIPMAN P W, ZIMMERER M J, MCINTOSH W C. An ignimbrite caldera from the bottom up: exhumed floor and fill of the Resurgent Bonanza Caldera, Southern Rocky Mountain volcanic field, Colorado[J]. Geosphere, 2015, 11(6): 1902-1947. |
[88] | FORNI F, BACHMANN O, MOLLO S, et al. The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy)[J]. Earth and Planetary Science Letters, 2016, 449: 259-271. |
[89] | 罗照华, 邓晋福, 赵国春, 等. 太行山造山带岩浆活动特征及其造山过程反演[J]. 地球科学: 中国地质大学学报, 1997, 22(3): 279-284. |
[90] | MILLER C F, WARK D A. Supervolcanoes and their explosive supereruptions[J]. Elements, 2008, 4(1): 11-15. |
[91] | 罗照华, 周久龙, 黑慧欣, 等. 超级喷发(超级侵入)后成矿作用[J]. 岩石学报, 2014, 30(11): 3131-3154. |
[92] | BLUNDY J, CASHMAN K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631-650. |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[3] | 魏春景, 赵亚男, 初航. 冀北红旗营杂岩多期变质作用:古元古代俯冲/碰撞—晚古生代伸展—早中生代挤压的记录[J]. 地学前缘, 2024, 31(1): 95-110. |
[4] | 黄春梅, 李光明, 付建刚, 梁维, 张志, 王艺云. 藏南错那洞中新世早期淡色花岗岩岩石成因:全岩地球化学、矿物学特征约束[J]. 地学前缘, 2023, 30(5): 74-92. |
[5] | 焦小芹, 张关龙, 牛花朋, 王圣柱, 于洪洲, 熊峥嵘, 周健, 谷文龙. 准噶尔盆地东北缘石炭系火山岩形成机制:对准噶尔洋盆闭合时限的新启示[J]. 地学前缘, 2022, 29(4): 385-402. |
[6] | 寇彩化, 刘燕学, 李江, 李廷栋, 丁孝忠, 刘勇, 靳胜凯. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘, 2022, 29(2): 218-233. |
[7] | 万渝生, 董春艳, 李鹏川, 苗培森, 王惠初, 李建荣. 五台地区高凡群形成时代新证据:锆石SHRIMP U-Pb定年[J]. 地学前缘, 2022, 29(2): 45-55. |
[8] | 张继彪, 丁孝忠, 刘燕学. 扬子西缘洋岛型与岛弧型火山岩岩石成因与构造意义:从板内裂谷到洋-陆俯冲[J]. 地学前缘, 2021, 28(4): 250-266. |
[9] | 张晓旭, 苏尚国, 刘美玉, 王为柱. 甘肃金川早古生代正长花岗岩锆石SHRIMP U-Pb年代学、岩石学、地球化学特征及其构造意义[J]. 地学前缘, 2021, 28(4): 283-298. |
[10] | 裴圣良, 丁汝福, 单立华, 杨武生. 新疆富蕴科克别克提基性杂岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地学前缘, 2020, 27(4): 184-198. |
[11] | 李刚, 蒋职权, 邵学峰, 高万里, 刘正宏. 医巫闾山中—晚侏罗世构造变形与同构造花岗岩的耦合关系[J]. 地学前缘, 2019, 26(2): 72-91. |
[12] | 赵远方, 胡健民, 公王斌, 陈虹. 华北克拉通中部带中段古元古代构造格架与主要变形事件研究 [J]. 地学前缘, 2019, 26(2): 104-119. |
[13] | 魏启荣,赵闪,王健,张敏,许欢,欧波,徐长君,金磊. 西藏南木林县秦马弄地区二长花岗岩体岩石成因[J]. 地学前缘, 2018, 25(6): 136-151. |
[14] | 张健,李怀坤,张传林,田辉,钟焱,叶现韬. 塔里木克拉通东北缘Columbia超大陆裂解事件:库鲁克塔格地区辉绿岩床的地球化学、锆石U-Pb年代学和Hf-O同位素证据[J]. 地学前缘, 2018, 25(6): 106-123. |
[15] | 欧波,魏启荣,许欢,王健,张敏,徐长君,金磊. 西藏南木林县格张地区早白垩世火山岩岩石成因[J]. 地学前缘, 2018, 25(6): 165-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||