地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 385-402.DOI: 10.13745/j.esf.sf.2021.12.2
焦小芹1,2(), 张关龙3, 牛花朋1,2,*(
), 王圣柱3, 于洪洲3, 熊峥嵘3, 周健3, 谷文龙1,2
收稿日期:
2021-07-29
修回日期:
2021-12-12
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
牛花朋
作者简介:
焦小芹(1995—),女,博士研究生,岩石学与储层地质学专业。E-mail: jiaoxiaoqin0109@163.com
基金资助:
JIAO Xiaoqin1,2(), ZHANG Guanlong3, NIU Huapeng1,2,*(
), WANG Shengzhu3, YU Hongzhou3, XIONG Zhengrong3, ZHOU Jian3, GU Wenlong1,2
Received:
2021-07-29
Revised:
2021-12-12
Online:
2022-07-25
Published:
2022-07-28
Contact:
NIU Huapeng
摘要:
准噶尔古大洋作为古亚洲洋北部的重要分支及阶段性演化产物,其洋盆的俯冲、闭合时限以及盆地基底属性一直存在分歧。本文选取准噶尔盆地东北缘(乌伦古地区)石炭系火山岩来说明其岩浆来源及成因机制,通过主微量元素、Sr-Nd同位素分析结果,进一步阐明准噶尔洋盆在晚古生代的闭合时限。本次研究包括玄武岩、玄武质安山岩和安山岩三类火山岩,岩体显示低TiO2(0.60%~0.84%)、较高的全碱K2O+Na2O含量(1.18%~8.59%),玄武岩为岛弧拉斑系列,安山岩类的钙碱元素含量高,具有火山弧火山岩特征。中-低87Sr/86Sr(i)(0.703 250~0.704 559)、相对亏损的Nd同位素(+4.8~+6.8)以及tDM2(483~625 Ma)值表明玄武岩、玄武质安山岩和安山岩同为亏损地幔熔融岩浆分异结晶的产物,安山岩为地幔熔融岩浆后期分离结晶形成;微量元素与同位素地球化学示踪暗示玄武岩、玄武质安山岩和安山岩含有洋壳俯冲过程的脱水流体交代上覆地幔楔的消减组分,安山岩在深部岩浆房经历了壳-幔混合作用,受地壳成分的混染程度更大。大离子亲石元素(LILE)Ba、Sr和轻稀土元素、不相容元素(Th、U、K)相对富集,高场强元素(HFSE)Nb、Ta相对亏损,以及Pb、Zr、Hf的富集,说明该区属于与俯冲消减带相关的构造背景;结合本套火山岩高Ba/La(30.14~208.86)值、低TiO2(0.60%~0.84%)值,以及Ce/Nb比(8.71~12.05)、Th/Nb比(0.93~1.74)等,表明准噶尔洋盆于石炭纪沿着大陆板块下部持续俯冲,洋壳板片的俯冲脱水流体交代地幔楔后增生岛弧。该套中-基性火山岩建造佐证了准噶尔洋盆闭合时限为晚石炭世(ca. 305.5±4.4 Ma),结合区域地质资料分析,提出与俯冲带有关的岩浆通过岛弧拼贴增生到大陆地壳上,进一步为准噶尔盆地基底的岛弧拼贴成因提供了新依据。
中图分类号:
焦小芹, 张关龙, 牛花朋, 王圣柱, 于洪洲, 熊峥嵘, 周健, 谷文龙. 准噶尔盆地东北缘石炭系火山岩形成机制:对准噶尔洋盆闭合时限的新启示[J]. 地学前缘, 2022, 29(4): 385-402.
JIAO Xiaoqin, ZHANG Guanlong, NIU Huapeng, WANG Shengzhu, YU Hongzhou, XIONG Zhengrong, ZHOU Jian, GU Wenlong. Genesis of Carboniferous volcanic rocks in northeastern Junggar Basin: New insights into the Junggar Ocean closure[J]. Earth Science Frontiers, 2022, 29(4): 385-402.
图1 研究区地质简图 (a)—中国西北缘地质概况图;(b)—准噶尔盆地构造单元划分简图 (据文献[42-43]修改);(c)—乌伦古地区地质概况图。
Fig.1 Simplified geological maps of the study area. (a) Geological sketch map of northwestern China, (b) tectonic sketch map of Junggar Basin (modified after [42-43]), and (c) geological sketch map of Wulungu
图2 乌伦古地区中-基性火山岩类矿物组成特征 (a)—玄武岩,Zb2,3 964 m(+)×50;(b)—玄武岩,Zb2,3 964 m(-)×50;(c)—玄武质安山岩,Zb3,3 676 m(+)×50;(d)—安山岩,Y2,4 627.03 m(+)×50. Pl—斜长石;Aug—辉石;Hbl—角闪石;Mag—磁铁矿。
Fig.2 Compositions and structural characteristics of intermediate-basic volcanic rocks of Wulungu
图3 乌伦古地区石炭系火山岩分类图 (a)—火山岩TAS判别图 (边界据文献[50]);(b)—Zr/TiO2-Nb/Y判别图 (边界据文献[51]); (c)—K2O-SiO2图解 (边界据文献[52]);(d)—AFM图解 (边界据文献[53])。
Fig.3 Classification diagrams for Carboniferous volcanic rocks of Wulungu. (a) (K2O+Na2O) vs. SiO2 diagram (adapted from [50]). (b) Zr/TiO2 vs. Nb/Y diagram (adapted from [51]). (c) K2O vs. SiO2 diagram (adapted from [52]). (d) AFM diagram (adapted from [53]).
图4 乌伦古地区石炭系火山岩稀土元素球粒陨石标准化配分图(a)(标准化值据文献[56]) 和微量元素原始地幔标准化蛛网图(b)(标准化值据文献[56])
Fig.4 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams for Carboniferous volcanic rocks of Wulungu (b). Chondrite-normalized and primitive mantle-normalized values from [56].
样品号 | 岩性 | Age/ Ma | wB/10-6 | 87Rb/86Sr | 87Sr/86Sr | ±2σ | (87Sr/86Sr)i | wB/10-6 | 147Sm/144Nd | 143Nd/144Nd | ±2σ | (143Nd/144Nd)t | εNd(t) | tDM1/ Ma | tDM2/ Ma | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Sr | Sm | Nd | ||||||||||||||
WG-2 | 玄武岩 | 305 | 9.8 | 306 | 0.09 | 0.704 875 | 0.000 009 | 0.704 474 | 1.64 | 5.70 | 0.174 0 | 0.512 939 | 0.000 009 | 0.512 939 | 6.8 | 810 | 483 |
WG-3 | 玄武岩 | 305 | 6.5 | 235 | 0.08 | 0.704 904 | 0.000 007 | 0.704 559 | 1.62 | 5.52 | 0.177 4 | 0.512 932 | 0.000 003 | 0.512 932 | 6.5 | 916 | 502 |
WG-4 | 玄武质安山岩 | 332 | 88.6 | 480 | 0.53 | 0.706 109 | 0.000 010 | 0.703 586 | 4.26 | 18.80 | 0.137 0 | 0.512 830 | 0.000 003 | 0.512 830 | 6.3 | 637 | 540 |
WG-5 | 玄武质安山岩 | 332 | 73.6 | 506 | 0.42 | 0.705 517 | 0.000 006 | 0.703 529 | 4.27 | 19.50 | 0.132 4 | 0.512 842 | 0.000 007 | 0.512 842 | 6.7 | 578 | 510 |
WG-6 | 安山岩 | 312 | 48.8 | 360 | 0.39 | 0.706 081 | 0.000 009 | 0.704 340 | 3.21 | 16.80 | 0.115 5 | 0.512 779 | 0.000 004 | 0.512 779 | 6.0 | 577 | 543 |
WG-7 | 安山岩 | 312 | 66.4 | 265 | 0.72 | 0.707 399 | 0.000 009 | 0.704 180 | 4.55 | 21.30 | 0.129 1 | 0.512 746 | 0.000 004 | 0.512 746 | 4.8 | 729 | 625 |
WG-1 | 安山岩 | 312 | 244.0 | 244 | 2.90 | 0.716 107 | 0.000 007 | 0.703 250 | 6.45 | 31.00 | 0.125 8 | 0.512 831 | 0.000 005 | 0.512 831 | 6.6 | 554 | 501 |
表2 乌伦古地区石炭系火山岩Sr-Nd同位素组成分析结果
Table 2 Sr-Nd isotope compositions of Carboniferous volcanic rocks of Wulungu
样品号 | 岩性 | Age/ Ma | wB/10-6 | 87Rb/86Sr | 87Sr/86Sr | ±2σ | (87Sr/86Sr)i | wB/10-6 | 147Sm/144Nd | 143Nd/144Nd | ±2σ | (143Nd/144Nd)t | εNd(t) | tDM1/ Ma | tDM2/ Ma | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Sr | Sm | Nd | ||||||||||||||
WG-2 | 玄武岩 | 305 | 9.8 | 306 | 0.09 | 0.704 875 | 0.000 009 | 0.704 474 | 1.64 | 5.70 | 0.174 0 | 0.512 939 | 0.000 009 | 0.512 939 | 6.8 | 810 | 483 |
WG-3 | 玄武岩 | 305 | 6.5 | 235 | 0.08 | 0.704 904 | 0.000 007 | 0.704 559 | 1.62 | 5.52 | 0.177 4 | 0.512 932 | 0.000 003 | 0.512 932 | 6.5 | 916 | 502 |
WG-4 | 玄武质安山岩 | 332 | 88.6 | 480 | 0.53 | 0.706 109 | 0.000 010 | 0.703 586 | 4.26 | 18.80 | 0.137 0 | 0.512 830 | 0.000 003 | 0.512 830 | 6.3 | 637 | 540 |
WG-5 | 玄武质安山岩 | 332 | 73.6 | 506 | 0.42 | 0.705 517 | 0.000 006 | 0.703 529 | 4.27 | 19.50 | 0.132 4 | 0.512 842 | 0.000 007 | 0.512 842 | 6.7 | 578 | 510 |
WG-6 | 安山岩 | 312 | 48.8 | 360 | 0.39 | 0.706 081 | 0.000 009 | 0.704 340 | 3.21 | 16.80 | 0.115 5 | 0.512 779 | 0.000 004 | 0.512 779 | 6.0 | 577 | 543 |
WG-7 | 安山岩 | 312 | 66.4 | 265 | 0.72 | 0.707 399 | 0.000 009 | 0.704 180 | 4.55 | 21.30 | 0.129 1 | 0.512 746 | 0.000 004 | 0.512 746 | 4.8 | 729 | 625 |
WG-1 | 安山岩 | 312 | 244.0 | 244 | 2.90 | 0.716 107 | 0.000 007 | 0.703 250 | 6.45 | 31.00 | 0.125 8 | 0.512 831 | 0.000 005 | 0.512 831 | 6.6 | 554 | 501 |
图5 乌伦古地区石炭系火山岩Sr-Nd同位素图解(边界据文献[58]) LC—下地壳;UC—上地壳;DM—亏损地幔。
Fig.5 εNd(t) vs. 87Sr/86Sr(i) plot for Carboniferous volcanic rocks of Wulungu (adapted from [58]). LC—lower crust; UC—upper crust; DM—depleted mantle.
图6 乌伦古地区石炭系火山岩地球化学图解 (a)—87Sr/86Sr(i)-SiO2图解 (边界据文献[60]);(b)—143Nd/144Nd(t)-SiO2图解; (c)—Nb/Zr-Th/Zr图解 (边界据文献[59]);(d)—Th/Yb-Nb/Yb图解 (边界据文献[71])。
Fig.6 Geochemical classification plots for Carboniferous volcanic rocks of Wulungu. (a) 87Sr/86Sr(i) vs. SiO2 (adapted from [60]). (b) 143Nd/144Nd(t) vs. SiO2. (c) Nb/Zr vs. Th/Zr (adapted from [59]);(d) Th/Yb vs. Nb/Yb (adapted from [71]).
图8 乌伦古地区石炭系火山岩构造判别图解 (a)—TiO2-Zr图解 (边界据文献[54],陆梁隆起带火山岩据文献[10],陆东-五彩湾火山岩据文献[26]);(b)—Ce/Nb-Th/Nb图解 (边界据文献[85],陆梁隆起带火山岩据文献[10],陆东-五彩湾火山岩据文献[26]);(c)—Nb-Zr-Y图解(边界据文献[86]),A1+A2:板内碱性玄武岩,A2+C:板内拉斑玄武岩,B:E-MORB,C+D:火山弧玄武岩;(d)—Hf/3-Th-Ta图解(边界据文献[21])。
Fig.8 Tectonic discrimination diagrams for Carboniferous volcanic rocks from Wulungu. (a) TiO2 vs. Zr (adapted from [54], data partly from [10,26]). (b) Ce/Nb vs. Th/Nb (adapted from [85], data partly from [10,26]).(c) Nb-Zr-Y diagram (adapted from [86]). (A1+A2)—WPB-alkaline basalts; (A2+C)—WPB tholeiite; B—E-MORB; (C+D)—volcanic basalts. (d) Hf/3-Th-Ta diagram (adapted from [21]).
[1] | COLEMAN R G. Continental growth of northwest China[J]. Tectonics, 1989, 8(3): 621-635. |
[2] | 肖序常, 汤耀庆, 李锦铁. 新疆北部及其邻区的构造演化[M]. 北京: 地质出版社, 1992: 1-180. |
[3] | JAHN B M, WINDLEY B, NATAL’IN B, et al. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 23(5): 599-603. |
[4] | 陈发景, 汪新文, 汪新伟. 准噶尔盆地的原型和构造演化[J]. 地学前缘, 2005, 12(3): 77-89. |
[5] | 李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1): 148-168. |
[6] | 朱永峰, 王涛, 徐新. 新疆及邻区地质与矿产研究进展[J]. 岩石学报, 2007, 23(8): 1785-1794. |
[7] | FENG Y, COLEMAN R G, TILTON G, et al. Tectonic evolution of the west Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 729-752. |
[8] | 梁云海, 李文铅, 李卫东. 新疆准噶尔造山带多旋回开合构造特征[J]. 地质通报, 2004, 23(3): 279-285. |
[9] | 肖文交, 韩春明, 袁超, 等. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 2006, 22(5): 1062-1076. |
[10] | 毛治国, 邹才能, 朱如凯, 等. 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义[J]. 岩石学报, 2010, 26(1): 207-216. |
[11] | KOVALENKO V I, YARMOLYUK V V, KOVACH V P, et al. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence[J]. Journal of Asian Earth Sciences, 2004, 23(5): 1-627. |
[12] | 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(8): 2201-2210. |
[13] | 任收麦, 黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J]. 地球物理学进展, 2002, 17(1): 113-120. |
[14] | BUCKMAN S, AITCHISON J C. Tectonic evolution of Palaeozoic terranes in West Junggar, Xinjiang, NW China[J]. Geological Society London Special Publications, 2004, 226(1): 101-129. |
[15] | 雷敏, 赵志丹, 侯青叶, 等. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比[J]. 岩石学报, 2008, 24(4): 661-672. |
[16] | CARROLL A R, LIANG Y, GRAHAM S A, et al. Junggar Basin, northwest China: trapped Late Paleozoic ocean[J]. Tectonophysics, 1990, 181: 1-14. |
[17] | 王方正, 杨梅珍, 郑建平. 准噶尔盆地岛弧火山岩地体拼合基底的地球化学证据[J]. 岩石矿物学杂志, 2002, 21(1): 1-10. |
[18] | 龙晓平, 孙敏, 袁超, 等. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J]. 岩石学报, 2006, 22(1): 31-40. |
[19] | YANG X F, HE DF, WAND Q C, et al. Tectonostraphic evolution of the Carboniferous arc-related basin in the East Junggar Basin, northwest China: insights into its link with the subduction process[J]. Gondwana Research, 2012, 22: 1030-1046. |
[20] | 张峰, 陈建平, 徐涛, 等. 东准噶尔晚古生代依旧存在俯冲消减作用: 来自石炭纪火山岩岩石学、 地球化学及年代学证据[J]. 大地构造与成矿学, 2014, 38(1): 140-156. |
[21] | LI D, HE D F, TANG Y. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): implications for the architecture and evolution of the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2016, 121: 84-107. |
[22] | 王道永, 邓江红. 东准噶尔地区板块构造特征及演化[J]. 成都理工学院学报, 1995, 22(4): 38-45. |
[23] | 韩宝福, 何国琦, 王式洸. 后碰撞幔源岩浆活动、 底垫作用及准噶尔盆地基底的性质[J]. 中国科学D辑: 地球科学, 1999, 29(1): 16-21. |
[24] | 赵泽辉, 郭召杰, 韩宝福, 等. 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义[J]. 岩石学报, 2006, 22(1): 199-214. |
[25] | 赵霞, 贾承造, 张光亚, 等. 准噶尔盆地陆东-五彩湾地区石炭系中、 基性火山岩地球化学及其形成环境[J]. 地学前缘, 2008, 15(2): 272-279. |
[26] | 吴小奇, 刘德良, 魏国齐, 等. 准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造背景[J]. 岩石学报, 2009, 25(1): 55-66. |
[27] | 吴庆福. 论准噶尔中间地块的存在及其在哈萨克斯坦板块构造演化中的位置[C]//《中国北方板块构造论文集》编委会. 中国北方板块构造论文集. 第2辑. 北京: 地质出版社, 1987: 29-38. |
[28] | 杨宗仁, 顾焕明. 准噶尔盆地基底性质及演化: 航磁资料初步处理结果讨论[J]. 新疆石油地质, 1987, 8(2): 37-45. |
[29] | 李天德, POLIYANGSIJI B H. 中国和哈萨克斯坦阿尔泰大地构造及地壳演化[J]. 新疆地质, 2001, 19(1): 27-32. |
[30] | 江远达. 关于准噶尔地区基底问题的初步探讨[J]. 新疆地质, 1984, 2(1): 11-16. |
[31] | ZHENG J P, SUN M, ZHAO G C, et al. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: implications for the formation and evolution of the basin basement[J]. Journal of Asian Earth Sciences, 2007, 29: 778-794. |
[32] | XU X W, JIANG N, LI X H, et al. Tectonic evolution of the East Junggar terrane: evidence from the Taheir tectonic window, Xinjiang, China[J]. Gondwana Research, 2013, 24: 578-600. |
[33] | 李锦轶. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 1995, 11(增刊1): 73-84. |
[34] | 张旗, 周国庆, 王焰. 中国蛇绿岩的分布、 时代及其形成环境[J]. 岩石学报, 2003, 19(1): 1-8. |
[35] | 张元元, 郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、 西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 2010, 26(2): 421-430. |
[36] | 李锦轶, 肖序常, 汤耀庆, 等. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 1990, 36(4): 305-316. |
[37] | 李春昱, 汤耀庆. 亚洲古板块划分以及有关问题[J]. 地质学报, 1983, 4(1): 1-10. |
[38] | SENGOR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. |
[39] | 王方正, 杨梅珍, 郑建平. 准噶尔盆地陆梁地区基底火山岩的岩石地球化学及其构造环境[J]. 岩石学报, 2002, 18(1): 9-16. |
[40] |
何登发, 陈新发, 张义杰, 等. 准噶尔盆地油气富集规律[J]. 石油学报, 2004, 25(3): 1-10.
DOI |
[41] | XIAO W J, HAN C M, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 102-117. |
[42] | 杨朝, 赵淑娟, 李三忠, 等. 准噶尔盆地东北缘乌伦古坳陷油气成藏的构造制约[J]. 地质科学, 2015, 50(2): 536-552. |
[43] | LI D, HE D F, SANTOSH M, et al. Tectonic framework of the northern Junggar Basin Part I: the eastern Luliang Uplift and its link with the east Junggar terrane[J]. Gondwana Research, 2015, 27: 1089-1109. |
[44] | 张朝军, 何登发, 吴晓智, 等. 准噶尔多旋回叠合盆地的形成与演化[J]. 中国石油勘探, 2006, 49(1): 47-58. |
[45] | 吴晓智, 赵永德, 李策. 准噶尔东北缘前陆盆地构造演化与油气关系[J]. 新疆地质, 1996, 14(4): 297-305. |
[46] | 何川. 乌伦古坳陷侏罗系层序地层与沉积特征研究[D]. 青岛: 中国石油大学(华东), 2006: 17-19. |
[47] | 赵卫军, 王小娥, 陈勇, 等. 准噶尔盆地陆梁隆起西部地区油气沿不整合面运移的规律[J]. 天然气勘探与开发, 2007, 31(2): 5-11. |
[48] | LI D, HE D F, SANTOSH M, et al. Tectonic framework of the northern Junggar Basin Part II: the island arc basin system of the western Luliang Uplift and its link with the west Junggar terrane[J]. Gondwana Research, 2015, 27(3): 1110-1130. |
[49] | LIU W G, WEI S, ZHANG J, et al. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 953-960. |
[50] | BAS M J L, MAITRE R W L, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745-750. |
[51] | WINCHESTER J A and FLOYD P A. Geochemical discrimination of different magma series and their differentiation proaucts using immlobile elements[J]. Chemical geology, 1977, 20: 325-347. |
[52] | RICKWOOD P C. Boundary lines within petrological diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. |
[53] | IRVINE T N, BARAGER W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. |
[54] | PEARCE J A, CANN J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 1973, 19(2): 290-300. |
[55] | GREEN D H. Experimental testing of ‘equilibrium’ partial melting of peidotite under water-saturated, high pressure conditions[J]. The Canadian Mineralogist, 1976, 14(3): 255-268. |
[56] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42: 313-345. |
[57] | ROLLINSON H R. Using geochemical data:evaluation, presentation, and interpretation[M]. Singapore: Longman Scientific and Technical, 1993: 352-353. |
[58] | DOSSO L, MURTHY V R. A Nd isotopic study of the Kerguelen Islands: inferences on enriched oceanic mantle sources[J]. Earth & Planetary Science Letters, 1980, 48(2): 268-276. |
[59] | LI D, HE D F, MA D L, et al. Carboniferous-Permian tectonic framework and its later modifications to the area from eastern Kazakhstan to southern Altai: insights from the Zaysan-Jimunai Basin evolution[J]. Journal of Asian Earth Sciences, 2015, 113: 16-35. |
[60] | KAYGUSUZ A, ARSLAN M, SIEBEL W, et al. LA-ICP-MS zircon dating, whole-rock and Sr-Nd-Pb-O isotope geochemistry of the Camiboaz pluton, Eastern Pontides, NE Turkey: implications for lithospheric mantle and lower crustal sources in arc-related I-type magmatism[J]. Lithos, 2014, 192/193/194/195: 271-290. |
[61] | SHINJO R, KATO Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4): 117-137. |
[62] | SAUNDERS A D, STOREY M, KENT R W, et al. Consequences of plume lithosphere interaction[J]. The Geological Society Special Publication, 1992, 68: 41-60. |
[63] | KIEFFER B, ARNDT N, LAPIERRE H, et al. Flood and shield basalts from Ethiopia: magmas from the African superswell[J]. Journal of Petrology, 2004, 45(4): 793-834. |
[64] | REDMAN I S, KEAYS R R. Archean volcanism in the eastern Goldfields province, Western Australia[J]. Precambrian Research, 1985, 30: 113-152. |
[65] | ARNDT N T, JENNER G A. Crustally contaminated komatiites and basalts from Kambalda, Western Australia[J]. Chemical Geology, 1986, 56: 229-255. |
[66] | SAUNDERS A D, TARNEY J. Geochemical characteristics of basaltic volcanism within back-arc basins[J]. Geological Society, 1984, 16(1): 59-76. |
[67] | MCCULLOCH MT, GAMBLE JA. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102: 358-374. |
[68] | BORG L E, NYQUIST L E, TAYLOR L A, et al. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201[J]. Geochimica et Cosmochimica Acta, 1997, 61(22): 4915-4931. |
[69] | SAJONA, FERNANDO G, MAURY R C. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology, 1993, 21(11): 1007-1007. |
[70] | EILER J M, CRAWFORD A, ELLIOTT T, et al. Oxygen isotope geochemistry of oceanic-arc lavas[J]. Journal of Petrology, 2000, 41: 229-256. |
[71] | PEARCE J A, PEATE D W. Tectonic implications for the composition of volcanic arc magmas[J]. Annual Reviews Earth and Planetary Sciences, 1995, 23: 251-285. |
[72] | PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394. |
[73] | HOFMANN A, JOCHUM K, SEUFERT M, et al. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth & Planetary Science Letters, 1986, 33: 33-45. |
[74] | ISHIKAWA T, FUJISAWA S, NAGAISHI K, et al. Trace element characteristics of the fluid liberated from amphibolite-facies slab: inference from the metamorphic sole beneath the Oman ophiolite and implication for boninite genesis[J]. Earth & Planetary Science Letters, 2005, 240(2): 355-377. |
[75] | 王超, 马星华, 陈斌, 等. 新疆哈尔里克山地区晚石炭世火山作用: 锆石U-Pb年代学、 元素地球化学及Sr-Nd同位素研究[J]. 岩石学报, 2017, 33(2): 440-454. |
[76] | CARSTEN M. The Isotope and trace element budget of the Cambrian devil river arc system, New Zealand: identification of four source components[J]. Journal of Petrology, 2000, 41(6): 759-788. |
[77] | ZONENSHAIN L P. The evolution of Central Asiatic geosynclines through sea-floor spreading[J]. Tectonophysics, 1973, 19(3): 213-232. |
[78] | 李锦轶. 试论新疆东准噶尔早古生代岩石圈板块构造演化[J]. 中国地质科学院院报, 1991, 23(2): 1-12. |
[79] | 何国琦, 李茂松, 贾进斗, 等. 论新疆东准噶尔蛇绿岩的时代及其意义[J]. 北京大学学报(自然科学版), 2001, 37(6): 852-858. |
[80] | 杨树德. 新疆北部的古板块构造[J]. 新疆地质, 1994, 12(1): 1-8. |
[81] | 张海祥, 牛贺才, HIROAKI S, 等. 新疆北部晚古生代埃达克岩、 富铌玄武岩组合: 古亚洲板块南向俯冲的证据[J]. 高校地质学报, 2004, 10(1): 106-113. |
[82] | 许继峰, 梅厚钧, 于学元, 等. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物[J]. 科学通报, 2001, 46(8): 684-688. |
[83] | SEGHEDI I, DOWNES H, PECSKAY Z, et al. Magmagenesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians[J]. Lithos, 2001, 57: 237-262. |
[84] | TAMIMOUNT A, DOMINIQUE W, ANDRE G, et al. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence[J]. Lithos, 1998, 45(1/2/3/4): 371-393. |
[85] | SONG X Y, ZHOU M F, CAO Z M, et al. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume[J]. Journal of Geological Society, 2004, 161(5): 773-781. |
[86] | MESCHEDE M A. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. |
[87] | ZHANG J E, XIAO W J, HAN C M, et al. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China[J]. Lithos, 2011, 125: 592-606. |
[88] | CAI K, SUN M, YUAN C, et al. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: implications for geodynamic change of the accretionary orogenic belt[J]. Gondwana Research, 2012, 22: 681-698. |
[89] | SUN M, YUAN C, XIAO W, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 2008, 247: 352-383. |
[90] | ZHANG X, ZHANG H. Geochronological, geochemical, and Sr-Nd-Hf isotopic studies of the Baiyanghe A-type granite porphyry in the Western Junggar: implications for its petrogenesis and tectonic setting[J]. Gondwana Research, 2014, 25: 1554-1569. |
[91] | ZHANG Z C, ZHOU G, KUSKY T M, et al. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 2009, 16: 201-215. |
[92] | KUIBIDA M L, KRUK N N, VLADIMIROV A G, et al. U-Pb isotopic age, composition, and sources of the plagiogranites of the Kalba Range, Eastern Kazakhstan[J]. Doklady Earth Sciences, 2009, 424: 72-76. |
[93] | 宋利宏. 卡拉麦里断裂带形成与演化规律[D]. 合肥: 合肥工业大学, 2015: 64-65. |
[94] | ZHOU T F, YUAN F, FAN Y, et al. Granites in the Saur region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008, 106(3/4): 191-206. |
[95] | CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115: 137-152. |
[96] | 刘家远, 喻亨祥, 吴郭泉. 新疆东准噶尔两类碱性花岗岩及其地质意义[J]. 矿物岩石地球化学通报, 1999, 18(2): 21-26. |
[97] | HE D F, LI D, FAN C, et al. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, Northwest China: insights into the continental growth of Central Asia[J]. Gondwana Research, 2013, 24: 560-577. |
[98] | 郑建平, 王方正, 成中梅, 等. 拼合的准噶尔盆地基底: 基底火山岩Sr-Nd同位素证据[J]. 地球科学, 2000, 25(2): 179-185. |
[99] | 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3): 304-322. |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[3] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[4] | 刘冉, 朱贝, 邱楠生, 李亚, 王尉, 裴森奇. 峨眉山大火成岩省成都-简阳地区火山碎屑岩格架的新类别划分、成因及其油气储集效应[J]. 地学前缘, 2024, 31(3): 337-351. |
[5] | 支倩, 任蕊, 段丰浩, 黄家瑄, 朱钊, 张新远, 李永军. 西准噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J]. 地学前缘, 2024, 31(3): 40-58. |
[6] | 周健, 林承焰, 刘惠民, 张奎华, 张关龙, 王千军, 于洪洲, 倪胜利, 牛花朋, 焦小芹, 刘姗. 准噶尔盆地哈山地区石炭系-二叠系火山岩储层发育机制研究[J]. 地学前缘, 2024, 31(2): 327-342. |
[7] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[8] | 黄春梅, 李光明, 付建刚, 梁维, 张志, 王艺云. 藏南错那洞中新世早期淡色花岗岩岩石成因:全岩地球化学、矿物学特征约束[J]. 地学前缘, 2023, 30(5): 74-92. |
[9] | 李瑞磊, 杨立英, 朱建峰, 刘玉虎, 徐文, 李忠博, 樊薛沛, 冷庆磊, 张婷婷. 松辽盆地南部断陷层火山岩储层特征及油气成藏主控因素[J]. 地学前缘, 2023, 30(4): 100-111. |
[10] | 李文强, 许伟, 田世洪. 俯冲洋壳流体交代岩石圈地幔:西藏中部南羌塘地体钾质火山岩Li-Pb同位素的证据[J]. 地学前缘, 2023, 30(4): 376-388. |
[11] | 王璐琳, 刘晓鸿, 张志光. 香港世界地质公园东平洲平洲组新发现火山岩的锆石U-Pb测年、地球化学及地质意义[J]. 地学前缘, 2023, 30(2): 239-258. |
[12] | 谷文龙, 牛花朋, 张关龙, 王圣柱, 于洪洲, 焦小芹, 熊峥嵘, 周健. 乌伦古地区石炭系火山岩成岩作用及其对储层发育的影响[J]. 地学前缘, 2023, 30(2): 296-305. |
[13] | 王小军, 宋永, 郑孟林, 郭旭光, 吴海生, 任海姣, 王韬, 常秋生, 何文军, 王霞田, 郭建辰, 霍进杰. 准噶尔西部陆内盆地构造演化与油气聚集[J]. 地学前缘, 2022, 29(6): 188-205. |
[14] | 李山, 吴怀春, 房强, 许俊杰, 时美楠. 华南泥盆-石炭系界线剖面旋回地层学研究[J]. 地学前缘, 2022, 29(3): 329-339. |
[15] | 杨雅军, 杨晓平, 江斌, 汪岩, 庞雪娇. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 2022, 29(2): 115-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||