地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 40-58.DOI: 10.13745/j.esf.sf.2023.5.30
支倩1,2(), 任蕊1, 段丰浩3, 黄家瑄2, 朱钊2, 张新远2, 李永军2,*(
)
收稿日期:
2022-11-30
修回日期:
2023-04-28
出版日期:
2024-05-25
发布日期:
2024-05-25
通信作者:
*李永军(1961—),男,教授,博士生导师,主要从事区域地质学及地球化学教学与科研工作。E-mail: 作者简介:
支倩(1994—),女,博士,工程师,主要从事区域地质及地球化学研究。E-mail: qzhichd@163.com
基金资助:
ZHI Qian1,2(), REN Rui1, DUAN Fenghao3, HUANG Jiaxuan2, ZHU Zhao2, ZHANG Xinyuan2, LI Yongjun2,*(
)
Received:
2022-11-30
Revised:
2023-04-28
Online:
2024-05-25
Published:
2024-05-25
摘要:
西准噶尔地区广泛分布石炭纪岩浆岩类,了解它们的成因和形成机制可为揭示准噶尔洋盆晚古生代构造格局和发展演化以及约束古大洋闭合时限提供重要依据。本文报道了西准噶尔南部哈拉阿拉特山地区晚石炭世中-酸性火山岩的岩石学、锆石U-Pb年代学以及地球化学特征。岩石学研究表明其岩性主要为安山岩、英安质安山岩、流纹英安斑岩和流纹岩。LA-ICP-MS锆石U-Pb定年结果表明哈拉阿拉特山地区中-酸性火山岩年龄为308~305 Ma,为晚石炭世中-晚期。中-酸性火山岩均相对富集轻稀土和大离子亲石元素,亏损Nb、Ta等高场强元素,富钠贫钾,属于低钾拉斑-中钾钙碱性系列岛弧火山岩。其中安山岩和英安质安山岩具有较高SiO2(56.15%~66.13%)、Al2O3(16.03%~17.94%)、Na2O(3.44%~5.59%)、Sr((364~576)×10-6)含量和Na2O/K2O(3.20~6.40)、Sr/Y(33.5~55.6)比值,贫MgO(1.59%~2.68%)、Y((10.0~16.0)×10-6)和Yb((1.08~1.83)×10-6)的特征,并且具有Eu正异常(δEu=1.09~1.22),属于典型的埃达克岩,是经俯冲的洋壳板片在石榴角闪岩相发生部分熔融而成,且熔融产生的埃达克质熔体在上升过程中未与上覆地幔橄榄岩发生明显交代作用;流纹岩和流纹英安斑岩具有高的SiO2(69.59%~75.03%)和全碱(w(Na2O+K2O)=7.81%~8.89%)、极低的TFe2O3(0.94%~1.57%)和MgO(0.12%~0.97%)含量以及弱负Eu异常(δEu=0.63~1.00)等特征,为准铝质I型流纹岩,是下地壳镁铁质岩石部分熔融的产物,很可能有少量幔源岩浆混入。综合本文数据并结合研究区大量前人已发表的岩浆岩类研究成果,认为西准噶尔南部地区在晚石炭世中晚期仍处于岛弧-弧后盆地演化体系,准噶尔洋的闭合时限可能至少推迟至早二叠世早期之后。
中图分类号:
支倩, 任蕊, 段丰浩, 黄家瑄, 朱钊, 张新远, 李永军. 西准噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J]. 地学前缘, 2024, 31(3): 40-58.
ZHI Qian, REN Rui, DUAN Fenghao, HUANG Jiaxuan, ZHU Zhao, ZHANG Xinyuan, LI Yongjun. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean[J]. Earth Science Frontiers, 2024, 31(3): 40-58.
图3 哈拉阿拉特组中-酸性火山岩手标本及岩相学显微照片(正交偏光) a,b—安山岩;c,d—英安质安山岩;e,f—流纹英安斑岩;g,i—流纹岩;Pl—斜长石;Qtz—石英。
Fig.3 Hand specimen and micrograph imagines (orthogonal polarized light) of intermediate-acid volcanic rocks in Hala’alate Formation. a,b—Andesite; c,d—Dacitic andesite; e,f—Rhyolitic dacite porphyry; g,i—Rhyolite; Pl—Plagioclase; Qtz—Quartz.
测点 | 同位素比值及误差 | 同位素年龄及误差/Ma | wB/10-6 | Th/U | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | Th | U | ||
01 | 0.052 35 | 0.001 10 | 0.352 10 | 0.006 95 | 0.048 91 | 0.000 53 | 301 | 26 | 306 | 5 | 308 | 3 | 276 | 351 | 0.79 |
02 | 0.052 01 | 0.001 23 | 0.346 65 | 0.007 75 | 0.048 45 | 0.000 55 | 286 | 31 | 302 | 6 | 305 | 3 | 112 | 261 | 0.43 |
03 | 0.054 50 | 0.000 97 | 0.363 95 | 0.006 05 | 0.048 54 | 0.000 49 | 392 | 20 | 315 | 5 | 306 | 3 | 153 | 465 | 0.33 |
04 | 0.052 34 | 0.001 05 | 0.349 39 | 0.006 53 | 0.048 51 | 0.000 51 | 300 | 24 | 304 | 5 | 305 | 3 | 175 | 369 | 0.47 |
05 | 0.052 34 | 0.001 14 | 0.351 27 | 0.007 19 | 0.048 76 | 0.000 53 | 300 | 27 | 306 | 5 | 307 | 3 | 114 | 280 | 0.41 |
06 | 0.054 32 | 0.000 93 | 0.369 57 | 0.005 87 | 0.049 40 | 0.000 48 | 384 | 38 | 319 | 4 | 311 | 3 | 216 | 531 | 0.41 |
07 | 0.051 95 | 0.000 90 | 0.347 57 | 0.005 58 | 0.048 57 | 0.000 47 | 283 | 39 | 303 | 4 | 306 | 3 | 229 | 631 | 0.36 |
08 | 0.051 61 | 0.001 00 | 0.347 16 | 0.006 27 | 0.048 84 | 0.000 50 | 268 | 44 | 303 | 5 | 307 | 3 | 162 | 421 | 0.38 |
09 | 0.052 82 | 0.000 87 | 0.361 67 | 0.005 45 | 0.049 70 | 0.000 47 | 321 | 37 | 314 | 4 | 313 | 3 | 253 | 601 | 0.42 |
10 | 0.052 83 | 0.001 15 | 0.358 45 | 0.007 29 | 0.049 24 | 0.000 52 | 322 | 49 | 311 | 5 | 310 | 3 | 72.0 | 310 | 0.23 |
11 | 0.053 08 | 0.001 24 | 0.362 43 | 0.007 94 | 0.049 55 | 0.000 54 | 332 | 52 | 314 | 6 | 312 | 3 | 85.8 | 243 | 0.35 |
12 | 0.052 62 | 0.000 87 | 0.359 19 | 0.005 44 | 0.049 54 | 0.000 47 | 313 | 37 | 312 | 4 | 312 | 3 | 340 | 637 | 0.53 |
13 | 0.053 67 | 0.001 10 | 0.361 74 | 0.006 90 | 0.048 91 | 0.000 50 | 357 | 46 | 314 | 5 | 308 | 3 | 95.3 | 295 | 0.32 |
14 | 0.053 32 | 0.001 07 | 0.364 92 | 0.006 82 | 0.049 66 | 0.000 51 | 343 | 45 | 316 | 5 | 313 | 3 | 201 | 418 | 0.48 |
15 | 0.052 54 | 0.001 06 | 0.353 76 | 0.006 64 | 0.048 86 | 0.000 50 | 309 | 45 | 308 | 5 | 308 | 3 | 138 | 366 | 0.38 |
16 | 0.053 35 | 0.000 84 | 0.366 97 | 0.005 23 | 0.049 92 | 0.000 46 | 344 | 35 | 317 | 4 | 314 | 3 | 454 | 927 | 0.49 |
表1 哈拉阿拉特组流纹岩LA-ICP-MS锆石U-Pb分析结果
Table 1 Zircon LA-ICP-MS U-Pb isotopic analysis of rhyolite in Hala’alate Formation
测点 | 同位素比值及误差 | 同位素年龄及误差/Ma | wB/10-6 | Th/U | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | Th | U | ||
01 | 0.052 35 | 0.001 10 | 0.352 10 | 0.006 95 | 0.048 91 | 0.000 53 | 301 | 26 | 306 | 5 | 308 | 3 | 276 | 351 | 0.79 |
02 | 0.052 01 | 0.001 23 | 0.346 65 | 0.007 75 | 0.048 45 | 0.000 55 | 286 | 31 | 302 | 6 | 305 | 3 | 112 | 261 | 0.43 |
03 | 0.054 50 | 0.000 97 | 0.363 95 | 0.006 05 | 0.048 54 | 0.000 49 | 392 | 20 | 315 | 5 | 306 | 3 | 153 | 465 | 0.33 |
04 | 0.052 34 | 0.001 05 | 0.349 39 | 0.006 53 | 0.048 51 | 0.000 51 | 300 | 24 | 304 | 5 | 305 | 3 | 175 | 369 | 0.47 |
05 | 0.052 34 | 0.001 14 | 0.351 27 | 0.007 19 | 0.048 76 | 0.000 53 | 300 | 27 | 306 | 5 | 307 | 3 | 114 | 280 | 0.41 |
06 | 0.054 32 | 0.000 93 | 0.369 57 | 0.005 87 | 0.049 40 | 0.000 48 | 384 | 38 | 319 | 4 | 311 | 3 | 216 | 531 | 0.41 |
07 | 0.051 95 | 0.000 90 | 0.347 57 | 0.005 58 | 0.048 57 | 0.000 47 | 283 | 39 | 303 | 4 | 306 | 3 | 229 | 631 | 0.36 |
08 | 0.051 61 | 0.001 00 | 0.347 16 | 0.006 27 | 0.048 84 | 0.000 50 | 268 | 44 | 303 | 5 | 307 | 3 | 162 | 421 | 0.38 |
09 | 0.052 82 | 0.000 87 | 0.361 67 | 0.005 45 | 0.049 70 | 0.000 47 | 321 | 37 | 314 | 4 | 313 | 3 | 253 | 601 | 0.42 |
10 | 0.052 83 | 0.001 15 | 0.358 45 | 0.007 29 | 0.049 24 | 0.000 52 | 322 | 49 | 311 | 5 | 310 | 3 | 72.0 | 310 | 0.23 |
11 | 0.053 08 | 0.001 24 | 0.362 43 | 0.007 94 | 0.049 55 | 0.000 54 | 332 | 52 | 314 | 6 | 312 | 3 | 85.8 | 243 | 0.35 |
12 | 0.052 62 | 0.000 87 | 0.359 19 | 0.005 44 | 0.049 54 | 0.000 47 | 313 | 37 | 312 | 4 | 312 | 3 | 340 | 637 | 0.53 |
13 | 0.053 67 | 0.001 10 | 0.361 74 | 0.006 90 | 0.048 91 | 0.000 50 | 357 | 46 | 314 | 5 | 308 | 3 | 95.3 | 295 | 0.32 |
14 | 0.053 32 | 0.001 07 | 0.364 92 | 0.006 82 | 0.049 66 | 0.000 51 | 343 | 45 | 316 | 5 | 313 | 3 | 201 | 418 | 0.48 |
15 | 0.052 54 | 0.001 06 | 0.353 76 | 0.006 64 | 0.048 86 | 0.000 50 | 309 | 45 | 308 | 5 | 308 | 3 | 138 | 366 | 0.38 |
16 | 0.053 35 | 0.000 84 | 0.366 97 | 0.005 23 | 0.049 92 | 0.000 46 | 344 | 35 | 317 | 4 | 314 | 3 | 454 | 927 | 0.49 |
图4 哈拉阿拉特组流纹岩(a,b)及安山岩(c,d)锆石U-Pb年龄图(安山岩年龄数据引自文献[37])
Fig.4 Zircon U-Pb diagrams for rhyolite (a,b) and andesite (c,d) in Hala’alate Formation. Age data for andesite are from [37].
![]() |
表2 哈拉阿拉特组中-酸性火山岩主量和微量元素含量分析结果
Table 2 The concentrations of major elements (%) and trace elements (10-6) for intermediate-acid volcanic rocks in Hala’alate Formation
![]() |
图5 哈拉阿拉特组中-酸性火山岩(Na2O+K2O)-SiO2(a)、Zr/TiO2-SiO2(b)和K2O-SiO2(c)图解(a据文献[70];b据文献[71];c据文献[72]。西准南部地区322~312 Ma埃达克质侵入岩数据引自文献[17,49,61⇓⇓-64];320~310 Ma钙碱性I型花岗岩类数据引自文献[23,65⇓⇓⇓-69];图6、图7、图9、图10数据来源同此图)
Fig.5 (Na2O+K2O)-SiO2 (a after [70]), Zr/TiO2-SiO2 (b after [71]) and K2O-SiO2(c after [72]) diagrams for intermediate-acid volcanic rocks in Hala’alate Formation. Data of 322-312 Ma adakitic intrusive rocks in southern West Junggar are from [17,49,61⇓⇓-64]. Data of 320-310 Ma calc-alkalic adakitic I-type granitoids in southern West Junggar are from [23,65⇓⇓⇓-69]. Data sources in flowing Fig.6, Fig.7, Fig.9 and Fig.10 are the same as in this figure.
图6 哈拉阿拉特组中-酸性火山岩球粒陨石标准化稀土元素配分模式图(a,c)和原始地幔标准化微量元素蛛网图(b,d)(标准化值据文献[73])
Fig.6 Chondrite-normalized rare earth element patterns (a, c) and primitive mantle-normalized spider diagrams (b, d) for intermediate-acid volcanic rocks in Hala’alate Formation. Normalization values are from [73].
图7 哈拉阿拉特组中-酸性火山岩Sr/Y-Y图解(据文献[74])
Fig.7 Sr/Y-Y discrimination diagram for intermediate-acid volcanic rocks in Hala’alate Formation. Adapted from [74].
图8 哈拉阿拉特组中-酸性火山岩Dy/Yb-SiO2(a)、Sr/Y-SiO2(b)、La-SiO2(c)和La/Yb-La(d)图解(西准噶尔南部晚石炭世玄武岩数据引自文献[36,60])
Fig.8 Diagrams of Dy/Yb (a), Sr/Y (b), La (c) against SiO2 and La/Yb-La (d) for intermediate-acid volcanic rocks in Hala’alate Formation. Data of Late Carboniferous basalts in southern West Junggar are from [36,60].
图9 哈拉阿拉特组埃达克岩Al2O3-SiO2(a)、Yb-SiO2(b)、K2O/Na2O-K2O(c)和Sr/Y-(La/Yb)N(d)图解(底图a-c据文献[87-88],d据文献[89])
Fig.9 Diagrams of Al2O3-SiO2 (a), Yb-SiO2 (b), K2O/Na2O-K2O (c) and Sr/Y-(La/Yb)N (d) for adakites in Hala’alate Formation. Base maps of a-c are modified after [87-88]; Base map of (d) is modified after [89].
图10 哈拉阿拉特组中-酸性火山岩Ta-Yb(a)和La/Nb-La(b)图解(a据文献[109],b据文献[110])
Fig.10 Ta-Yb (a after [109]) and La/Nb-La (b after [110]) diagrams for intermediate-acid volcanic rocks in Hala’alate Formation
图11 西准噶尔南部地区晚石炭世—早二叠世I型和A型花岗岩类相关图解(底图a据文献[123];数据来源见文献[23,54])
Fig.11 Diagrams for Late Carboniferous to Early Permian I- and A-type granites in the southern West Junggar. Base map of (a) modified after [123]; See [23,54] for data sources.
[1] | XIAO W J, HAN C M, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 102-117. |
[2] | XIAO W J, HUANG B, HAN C M, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18(2/3): 253-273. |
[3] | XU X W, JIANG N, LI X H, et al. Spatial-temporal framework for the closure of the Junggar Ocean in Central Asia: new SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar[J]. Journal of Asian Earth Sciences, 2015, 111: 470-491. |
[4] | HAN Y G, ZHAO G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: constraints on the closure of the paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. |
[5] | FENG Y M, COLEMAN R G, TILTON G, et al. Tectonic evolution of the West Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 729-752. |
[6] | 龙晓平, 孙敏, 袁超, 等. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J]. 岩石学报, 2006, 22(1): 31-40. |
[7] |
焦小芹, 张关龙, 牛花朋, 等. 准噶尔盆地东北缘石炭系火山岩形成机制: 对准噶尔洋盆闭合时限的新启示[J]. 地学前缘, 2022, 29(4): 385-402.
DOI |
[8] | 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086. |
[9] | 徐新, 周可法, 王煜. 西准噶尔晚古生代残余洋盆消亡时间与构造背景研究[J]. 岩石学报, 2010, 26(11): 3206-3214. |
[10] | 吴琪, 屈迅, 常国虎, 等. 红柳峡韧性剪切带形成时代及其对准噶尔洋盆闭合时限的约束[J]. 岩石学报, 2012, 28(8): 2331-2339. |
[11] | BUCKMAN S, AITCHISON J C. Tectonic evolution of Palaeozoic terranes in West Junggar, Xinjiang, NW China[J]. Geological Society, London, Special Publications, 2004, 226(1): 101-129. |
[12] | SU Y P, ZHENG J P, GRIFFIN W L, et al. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: implication for a tectonic transition[J]. Gondwana Research, 2012, 22(3/4): 1009-1029. |
[13] | 张峰, 陈建平, 徐涛, 等. 东准噶尔晚古生代依旧存在俯冲消减作用: 来自石炭纪火山岩岩石学、地球化学及年代学证据[J]. 大地构造与成矿学, 2014, 38(1): 140-156. |
[14] | LIU B, HAN B F, CHEN J F, et al. Closure time of the Junggar-Balkhash ocean: constraints from Late Paleozoic volcano-sedimentary sequences in the Barleik mountains, West Junggar, NW China[J]. Tectonics, 2017, 36(12): 2823-2845. |
[15] | ZHANG P, WANG G C, SHEN T Y, et al. Paleozoic convergence processes in the southwestern Central Asian Orogenic Belt: insights from U-Pb dating of detrital zircons from West Junggar, northwestern China[J]. Geoscience Frontiers, 2021, 12(2): 531-548. |
[16] | GENG H Y, SUN M, YUAN C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4): 364-389. |
[17] | TANG G J, WANG Q, WYMAN D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China)[J]. Chemical Geology, 2010, 277(3/4): 281-300. |
[18] | YIN J Y, LONG X P, YUAN C, et al. A Late Carboniferous-Early Permian slab window in the West Junggar of NW China: geochronological and geochemical evidence from mafic to intermediate dikes[J]. Lithos, 2013, 175/176: 146-162. |
[19] | YIN J Y, CHEN W, XIAO W J, et al. Petrogenesis of Early-Permian sanukitoids from West Junggar, Northwest China: implications for Late Paleozoic crustal growth in Central Asia[J]. Tectonophysics, 2015, 662: 385-397. |
[20] | LI D, HE D F, QI X F, et al. How was the Carboniferous Balkhash-West Junggar remnant ocean filled and closed? Insights from the Well Tacan-1 strata in the Tacheng Basin, NW China[J]. Gondwana Research, 2015, 27(1): 342-362. |
[21] |
李永军, 徐倩, 杨高学, 等. 陆内“滞后”弧岩浆岩特征及其地质意义: 来自西准噶尔乌尔禾北早二叠世岩浆作用的证据[J]. 地学前缘, 2016, 23(4): 190-199.
DOI |
[22] | 段丰浩, 李永军, 支倩, 等. 新疆西准噶尔庙尔沟地区赞岐岩地球化学特征、成因机制及其地质意义[J]. 大地构造与成矿学, 2018, 42(4): 759-776. |
[23] | DUAN F H, LI Y J, ZHI Q. Late Paleozoic multi-stage subduction accretion of the southwestern Central Asian Orogenic Belt: insights from the Late Carboniferous-Early Permian granites in the southern West Junggar, NW China[J]. International Geology Review, 2022, 64(14): 2051-2073. |
[24] | WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. |
[25] | XU Z, HAN B F, REN R, et al. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: implications for Paleozoic intra-oceanic subduction-accretion process[J]. Lithos, 2012, 132/133: 141-161. |
[26] | CHOULET F, FAURE M, CLUZEL D, et al. Toward a unified model of Altaids geodynamics: insight from the Palaeozoic polycyclic evolution of West Junggar (NW China)[J]. Science China Earth Sciences, 2016, 59(1): 25-57. |
[27] | DUAN F H, LI Y J, ZHI Q, et al. Petrogenesis and geodynamic implications of Late Carboniferous sanukitic dikes from the Bieluagaxi area of West Junggar, NW China[J]. Journal of Asian Earth Sciences, 2019, 175: 158-177. |
[28] | ZHI Q, LI Y J, DUAN F H, et al. Geochronology and geochemistry of Early Carboniferous basalts from Baogutu Formation in West Junggar, Northwest China: evidence for a back-arc extension[J]. International Geology Review, 2021, 63(12): 1521-1539. |
[29] | 马宝林. 新疆哈拉阿拉特山地区的地层和沉积环境[J]. 沉积学报, 1987, 5(4): 66-77. |
[30] | 王玉净, 金玉玕, 江纳言. 论哈拉阿拉特组的时代及古环境特征[J]. 地层学杂志, 1987, 11(1): 53-57. |
[31] |
纵瑞文, 龚一鸣, 王国灿. 西准噶尔南部石炭纪地层层序及古地理演化[J]. 地学前缘, 2014, 21(2): 216-233.
DOI |
[32] | 李甘雨, 李永军, 向坤鹏, 等. 西准噶尔哈拉阿拉特组的重新厘定及区域对比[J]. 地层学杂志, 2016, 40(1): 76-84. |
[33] | 彭湘萍, 李永军, 李卫东, 等. 西准哈拉阿拉特山一带阿腊德依克赛组层序、化石组合及沉积环境[J]. 新疆地质, 2016, 34(3): 297-301. |
[34] | 许锋, 马明, 吴承美, 等. 新疆西准噶尔上石炭统哈拉阿拉特组泥岩物源及源区构造背景[J]. 天然气地球科学, 2021, 32(10): 1489-1500. |
[35] | 覃建华, 李永军, 王盼龙, 等. 西准噶尔乌尔禾地区哈拉阿拉特组火山碎屑复理石的发现及地质意义[J]. 西北地质, 2022, 55(3): 274-285. |
[36] | 向坤鹏. 新疆西准噶尔包古图-哈拉阿拉特山一带石炭纪沉积盆地分析及构造意义[D]. 西安: 长安大学, 2015: 1-279. |
[37] | 李甘雨, 李永军, 王冉, 等. 西准噶尔哈拉阿拉特组火山岩LA-ICP-MS锆石U-Pb年龄[J]. 西北地质, 2015, 48(3): 12-21. |
[38] | 李甘雨, 李永军, 王冉, 等. 西准噶尔哈拉阿拉特山一带晚石炭世赞岐岩的发现及其地质意义[J]. 岩石学报, 2017, 33(1): 16-30. |
[39] | 朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006, 22(12): 2833-2842. |
[40] | 张元元, 郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 2010, 26(2): 421-430. |
[41] | ZHAO L, HE G Q. Geochronology and geochemistry of the Cambrian (-518 Ma) Chagantaolegai ophiolite in northern West Junggar (NW China): constraints on spatiotemporal characteristics of the Chingiz-Tarbagatai megazone[J]. International Geology Review, 2014, 56(10): 1181-1196. |
[42] | ZHENG R G, ZHAO L, YANG Y Q. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China[J]. Gondwana Research, 2019, 74: 237-250. |
[43] | SHEN P, SHEN Y C, LIU T B, et al. Geology and geochemistry of the Early Carboniferous eastern Sawur Caldera complex and associated gold epithermal mineralization, Sawur Mountains, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 259-279. |
[44] | ZHOU T F, YUAN F, FAN Y, et al. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008, 106(3/4): 191-206. |
[45] | CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115(1/2/3/4): 137-152. |
[46] | YIN J Y, CHEN W, XIAO W J, et al. Late Silurian-Early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: partial melting of mafic lower crust and implications for slab roll-back[J]. Gondwana Research, 2017, 43: 55-73. |
[47] | REN R, HAN B F, XU Z, et al. When did the subduction first initiate in the southern Paleo-Asian Ocean: new constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China[J]. Earth and Planetary Science Letters, 2014, 388: 222-236. |
[48] | ZHENG B, HAN B F, LIU B, et al. Ediacaran to Paleozoic magmatism in West Junggar Orogenic Belt, NW China, and implications for evolution of Central Asian Orogenic Belt[J]. Lithos, 2019, 338/339: 111-127. |
[49] | SHEN P, SHEN Y C, LIU T B, et al. Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China[J]. Gondwana Research, 2009, 16(2): 227-242. |
[50] | GAO R, XIAO L, PIRAJNO F, et al. Carboniferous-Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis[J]. Lithos, 2014, 204: 125-143. |
[51] | 段丰浩. 新疆西准噶尔南部哈图—包古图地区石炭纪—二叠纪岩浆作用与构造演化[D]. 西安: 长安大学, 2019: 1-209. |
[52] | 支倩, 李永军, 段丰浩, 等. 新疆西准噶尔乌尔禾地区早二叠世A1型花岗岩成因及其地质意义[J]. 地质学报, 2021, 95(8): 2453-2470. |
[53] | 马飞宙, 陈宣华, 徐盛林, 等. 西准噶尔红山地区晚古生代赞岐岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 地质学报, 2020, 94(5): 1462-1481. |
[54] | 支倩. 西准噶尔包古图构造岩浆带晚古生代俯冲增生过程及其地球化学约束[D]. 西安: 长安大学, 2022: 1-182. |
[55] | SHEN P, PAN H D, XIAO W J, et al. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China[J]. International Geology Review, 2013, 55(16): 1991-2007. |
[56] | GENG H Y, SUN M, YUAN C, et al. Geochemical and geochronological study of Early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2011, 42(5): 854-866. |
[57] | YANG G X, LI Y J, TONG L L, et al. Petrogenesis and tectonic implications of Early Carboniferous alkaline volcanic rocks in Karamay region of West Junggar, Northwest China[J]. International Geology Review, 2016, 58(10): 1278-1293. |
[58] | 郭丽爽, 刘玉琳, 王政华, 等. 西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究[J]. 岩石学报, 2010, 26(2): 471-477. |
[59] | 李永军, 佟丽莉, 张兵, 等. 论西准噶尔石炭系希贝库拉斯组与包古图组的新老关系[J]. 新疆地质, 2010, 28(2): 130-136. |
[60] | ZHI Q, LI Y J, DUAN F H, et al. Geochemical, Sr-Nd-Pb and zircon U-Pb-Hf isotopic constraints on the Late Carboniferous back-arc basin basalts from the Chengjisihanshan Formation in West Junggar, NW China[J]. Geological Magazine, 2020, 157(11): 1781-1799. |
[61] | 张连昌, 万博, 焦学军, 等. 西准包古图含铜斑岩的埃达克岩特征及其地质意义[J]. 中国地质, 2006, 33(3): 626-631. |
[62] | SHEN P, PAN H D. Country-rock contamination of magmas associated with the Baogutu porphyry Cu deposit, Xinjiang, China[J]. Lithos, 2013, 177: 451-469. |
[63] | 段丰浩, 李永军, 王冉, 等. 西准噶尔托里县都伦河东岩体埃达克岩特征及其地质意义[J]. 矿物岩石, 2015, 35(4): 8-16. |
[64] | DUAN F H, LI Y J, YANG G X, et al. Late Carboniferous adakitic porphyries in the Huangliangzi pluton, West Junggar (Xinjiang), NW China: petrogenesis and their tectonic implications[J]. Geological Journal, 2018, 53: 97-113. |
[65] | 贺敬博, 陈斌. 西准噶尔克拉玛依岩体的成因: 年代学、岩石学和地球化学证据[J]. 地学前缘, 2011, 18(2): 191-211. |
[66] | 杨钢, 肖龙, 王国灿, 等. 西准噶尔别鲁阿嘎希花岗闪长岩年代学、地球化学特征及岩石成因[J]. 地球科学: 中国地质大学学报, 2015, 40(5): 810-823. |
[67] | 段丰浩, 李永军, 陈荣光, 等. 新疆西准噶尔库尔尕克希岩体年代学、地球化学特征及岩石成因[J]. 岩石矿物学杂志, 2017, 36(3): 295-311. |
[68] | 段丰浩, 李永军, 王冉, 等. 新疆西准噶尔塔斯阔腊岩体LA-ICP-MS锆石U-Pb年代学、地球化学特征及地质意义[J]. 地质学报, 2018, 92(7): 1401-1417. |
[69] | 段丰浩, 支倩, 李永军, 等. 西准噶尔南部庙尔沟岩体晚石炭世花岗闪长斑岩岩石成因及其动力学背景[J]. 岩石学报, 2021, 37(4): 1159-1176. |
[70] | LE BAS M J, LE MAITRE R W, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745-750. |
[71] | WINCHESTER J A, FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. |
[72] | GILL J B. Orogenic andesite and plate tectonics[M]. Berlin: Springer-Verlag, 1981: 1-390. |
[73] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[74] | DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. |
[75] | YOGODZINSKI G M, LEES J M, CHURIKOVA T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001, 409(6819): 500-504. |
[76] | CASTILLO P R, JANNEY P E, SOLIDUM R U. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 1999, 134: 33-51. |
[77] | MACPHERSON C G, DREHER S T, THIRLWALL M F. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 581-593. |
[78] | XU J F, SHINJO R, DEFANT M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12): 1111-1114. |
[79] | CHUNG S L, LIU D Y, JI J Q, et al. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. |
[80] | WANG Q, WYMAN D A, ZHAO Z H, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt[J]. Chemical Geology, 2007, 236(1/2): 42-64. |
[81] | ROLLINSON H R. Using geochemical data:evaluation, presentation, interpretation[M]. London: Longman Scientific & Technical, 1993: 1-284. |
[82] | WILSON M. Magmatism and the geodynamics of basin formation[J]. Sedimentary Geology, 1993, 86(1/2): 5-29. |
[83] | SHINJO R, KATO Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4): 117-137. |
[84] | YOGODZINSKI G M, KAY R W, VOLYNETS O N, et al. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge[J]. Geological Society of America Bulletin, 1995, 107(5): 505-519. |
[85] | MARTIN H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429. |
[86] | CASTILLO P R. Adakite petrogenesis[J]. Lithos, 2012, 134/135: 304-316. |
[87] | WANG Q, XU J F, JIAN P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. |
[88] | YANG D B, XU W L, ZHAO G C, et al. Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton[J]. Gondwana Research, 2016, 38: 220-237. |
[89] | LING M X, LI Y, DING X, et al. Destruction of the North China Craton induced by ridge subductions[J]. The Journal of Geology, 2013, 121(2): 197-213. |
[90] | HU Z L, YANG X Y, DUAN L A, et al. Geochronological and geochemical constraints on genesis of the adakitic rocks in Outang, South Tan-Lu Fault Belt (northeastern Yangtze Block)[J]. Tectonophysics, 2014, 626: 86-104. |
[91] | RAPP R P, WATSON E B, MILLER C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 1991, 51(1/2/3/4): 1-25. |
[92] | FOLEY S, TIEPOLO M, VANNUCCI R. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 2002, 417(6891): 837-840. |
[93] | BACON C R, DRUITT T H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 224-256. |
[94] | BONIN B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78(1/2): 1-24. |
[95] |
BERGANTZ G W. Underplating and partial melting: implications for melt generation and extraction[J]. Science, 1989, 245(4922): 1093-1095.
PMID |
[96] |
BEARD J S, LOFGREN G E. Effect of water on the composition of partial melts of greenstone and amphibolite[J]. Science, 1989, 244(4901): 195-197.
PMID |
[97] | RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[98] | BEN OTHMAN D, WHITE W M, PATCHETT J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth and Planetary Science Letters, 1989, 94(1/2): 1-21. |
[99] | STOLZ A J, JOCHUM K P, SPETTEL B, et al. Fluid-and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island-arc basalts[J]. Geology, 1996, 24(7): 587-590. |
[100] | TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 1-312. |
[101] | BEA F, ARZAMASTSEV A, MONTERO P, et al. Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy and Petrology, 2001, 140(5): 554-566. |
[102] | RAJESH H M. The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India[J]. Contributions to Mineralogy and Petrology, 2004, 147(3): 346-362. |
[103] | RAPP R P, SHIMIZU N, NORMAN M D, et al. Reaction between slab derived melts and peridotite in the mantle wedge: experimental constraints at 3. 8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. |
[104] | YOSHIYUKI T. Melting experiments on a high-magnesian andesite[J]. Earth and Planetary Science Letters, 1981, 54(2): 357-365. |
[105] | TAYLOR B, MARTINEZ F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 481-497. |
[106] | 晋慧娟, 李育慈. 准噶尔盆地西北缘石炭纪生物成因的沉积构造研究[J]. 科学通报, 1998, 43(17): 1888-1891. |
[107] | XU Y X, YANG B, ZHANG S, et al. Magnetotelluric imaging of a fossil Paleozoic intraoceanic subduction zone in western Junggar, NW China[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4103-4117. |
[108] | ZHENG Q F, XU X, ZHANG W, et al. A fossil Paleozoic subduction-dominated trench-arc-basin system revealed by airborne magnetic gravity imaging in West Junggar, NW China[J]. Frontiers in Earth Science, 2021, 9: 760305. |
[109] | PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. |
[110] | 李曙光. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报, 1993, 9(2): 146-157. |
[111] | 辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 2009, 25(6): 1364-1372. |
[112] | YANG G X, LI Y J, GU P Y, et al. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012, 21: 1037-1049. |
[113] | ZHU Y F, CHEN B, QIU T. Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges: implications for geological evolution of West Junggar, Xinjiang, NW China[J]. Geological Magazine, 2015, 152(1): 41-69. |
[114] | ZONG R W, WANG Z Z, JIANG T, et al. Late Devonian radiolarian-bearing siliceous rocks from the Karamay ophiolitic mélange in western Junggar: implications for the evolution of the Paleo-Asian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 266-278. |
[115] | 毛新军, 段丰浩, 郑孟林, 等. 西准噶尔太勒古拉蛇绿构造混杂岩地质特征: 兼论“太勒古拉组”的废弃[J]. 新疆地质, 2021, 39(3): 365-371. |
[116] | YANG G X, LI Y J, XIAO W J, et al. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts[J]. Earth-Science Reviews, 2015, 150: 477-496. |
[117] | 翁凯, 徐学义, 马中平, 等. 西准噶尔吾尔喀什尔地区泥盆纪火山岩锆石U-Pb年代学和地球化学研究[J]. 地质学报, 2013, 87(4): 515-524. |
[118] | 向坤鹏, 李永军, 杨洋, 等. 新疆吾尔喀什尔地区晚泥盆世铁列克提组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及构造意义[J]. 岩石学报, 2015, 31(2): 534-544. |
[119] | MCKENZIE D, BICKLE M J. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 1988, 29(3): 625-679. |
[120] | ZHENG Y F, XU Z, CHEN L, et al. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Sciences, 2020, 194: 104185. |
[121] | NIU Y L, O’HARA M J. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2209. |
[122] | TANG G J, WANG Q, WYMAN D A, et al. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth[J]. Lithos, 2012, 140/141: 86-102. |
[123] | 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269. |
[124] | 唐增才, 周汉文, 胡开明, 等. 浙西北地区晚中生代花岗岩的岩石成因[J]. 地球科学, 2019, 44(4): 1278-1295. |
[125] | WANG D B, WANG B D, YIN F G, et al. Petrogenesis and tectonic implications of Late Mesoproterozoic A1- and A2-type felsic lavas from the Huili Group, southwestern Yangtze Block[J]. Geological Magazine, 2019, 156: 1425-1439. |
[1] | 朱强, 施珂, 吴礼彬, 江来利, 胡召齐, 徐生发, 翁望飞. 扬子板块新元古代中期的持续俯冲作用:来自南华纪岛弧火山岩年代学和岩石地球化学新证据[J]. 地学前缘, 2020, 27(4): 17-32. |
[2] | 韦天伟,康志强,杨锋,冉孟兰,李强,韦乃韶,刘迪, 曹延,陈欢,李岱鲜. 西藏拉萨地块西部赛利普地区捷嘎组火山岩的年代学、地球化学及地质意义 [J]. 地学前缘, 2019, 26(2): 157-168. |
[3] | 邵济安, 田伟, 唐克东, 王友. 内蒙古晚石炭世高镁玄武岩的成因和构造背景[J]. 地学前缘, 2015, 22(5): 171-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||