地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 15-27.DOI: 10.13745/j.esf.sf.2023.10.7
收稿日期:
2023-10-05
修回日期:
2023-11-22
出版日期:
2024-01-25
发布日期:
2024-01-25
作者简介:
李曙光(1941—),男,教授,中国科学院院士,地球化学专业。E-mail: lsg@ustc.edu.cn
基金资助:
LI Shuguang1,2(), WANG Yang1, LIU Sheng’ao1
Received:
2023-10-05
Revised:
2023-11-22
Online:
2024-01-25
Published:
2024-01-25
摘要:
本文总结评述了西太平洋板块深俯冲及在东亚地幔过渡带滞留和与之相关的晚白垩世和新生代东亚板内玄武岩共同构成的大地幔楔板内深部碳循环圈存在的证据;探讨了大地幔楔板内碳循环圈与岛弧系统碳循环圈在地幔碳酸盐化交代介质、碳酸盐种属、氧化还原反应及碳酸盐化地幔部分熔融发生机制等方面的差异和对显生宙大气氧含量保持稳定及温室效应周期性变化的影响;并指出了定量估计深俯冲碳酸盐歧化反应还原成金刚石而留在地幔过渡带和通过板内玄武质火山返还大气的碳各自所占有比例应是未来需研究的重要课题。
中图分类号:
李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27.
LI Shuguang, WANG Yang, LIU Sheng’ao. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability[J]. Earth Science Frontiers, 2024, 31(1): 15-27.
图1 (a)地震波速层析成像显示西太平洋俯冲板片在地幔过渡带滞留形成的大地幔楔结构(据文献[1]修改);(b)东亚大地幔楔两个深部碳循环圈模型卡通图(据文献[2]修改)
Fig.1 (a) Seismic wave velocity tomography showing the big mantle wedge structure formed by the stagnation of the Western Pacific slab in the mantle transition zone (modified after [1]), and (b) cartoon model showing two modes of deep carbon cycling in the big mantle wedge in East Asia (modified after [2])
图2 中国东部晚白垩世和新生代板内玄武岩的δ26Mg值与MgO(a,c)、Cr(b,d)含量关系图(样品数据点引自文献[4],本文给出Cr尖晶石或橄榄石+Cr尖晶石的分离结晶模拟计算曲线) 解释详见正文。不同颜色的实线和虚线分别代表按不同矿物比例计算的分离结晶和堆晶模拟线。每条模拟线中的方块代表5%的增量,每个菱形代表1%的增量。橄榄石与熔体间的分配系数:D(Mg)=5.89[14],D(Cr)=0.85[15]。尖晶石与熔体间的分配系数:D(Mg)=1.8[14],D(Cr)≈760[14]。矿物与熔体间的Mg同位素分馏系数:Δ26Mg橄榄石-熔体≈0‰,Δ26Mg铬铁矿-熔体=1.18‰[4]。实心黑色圆圈(a, b)是为拟合数据假设的初始熔体MgO含量(约17%)和Cr含量(800×10-6),灰色圆圈(c, d)为文献常用的初始玄武岩熔体MgO含量(约11%)和Cr含量(700×10-6)[16]。
Fig.2 Plots of δ26Mg vs. MgO (a, c) and Cr (b, d) for Late Cretaceous and Cenozoic intraplate basalts from eastern China. Data are adapted from [4]. The calculated fractional crystallization lines for spinel or spinel + olivine are from this study. The solid and dashed lines with different colors represent the modeling results for fractional crystallization and accumulation with different mineral proportions, respectively. Squares and diamonds in each line represent 5% and 1% increments, respectively. The Mg and Cr partition coefficients between olivine and melt are 5.89 (after [14]) and 0.85 (after [15]), respectively, and between spinel and melt are 1.8 (after [14]) and 760 (after [14]), respectively. The Δ26Mgolivine-melt and Δ26Mgchromite-melt values are ~0‰ and 1.18‰, respectively (after [4]). Solid black circles in (a, b) are the assumed initial melt (MgO 17% and Cr 800×10-6, mass fraction) in this study, and gray circles in (c, d) are the initial basaltic melt (MgO 11% and Cr 700×10-6, mass fraction) commonly used in the literature (after [16]).
图3 δ26Mg与MgO(a)和Cr(b)的三端员混合的示意图。模拟计算的端员中心值:俯冲富镁碳酸盐w(MgO)=13%,w(Cr)=10×10-6,δ26Mg=-2.0‰[12];地幔橄榄岩w(MgO)=45%,w(Cr)=2 200×10-6,δ26Mg=-0.25‰[20-21];俯冲洋壳熔融的富硅熔体w(MgO)=2.5%,w(Cr)=26×10-6,δ26Mg=-0.25‰[22]。 (中国东部晚白垩世和新生代板内玄武岩数据据文献[4],混合线为本文计算)
Fig.3 Three end-member mixing plots. (a) δ26Mg vs. MgO. (b) δ26Mg vs. Cr. Data are adapted from [4], and the calculated mixing lines are from this study. The MgO, Cr, δ26Mg values for subducting Mg-rich carbonates are 13%, 10×10-6, and -2.0‰, respectively (after [12]), for mantle peridotites are 45%, 2200×10-6, and -0.25‰, respectively (after [20-21]), and for silicate-rich melts from subducted oceanic crust are 2.5%, 26×10-6, and 0.25‰, respectively (after [22]).
图4 含水地幔和含水+CO2地幔的固相线的压力-温度图(据文献[30]修改)
Fig.4 Pressure-temperature (P-T) diagram showing the solidus for hydrated mantle and hydrated mantle with CO2. Modified after [30].
图5 东亚大地幔楔软流圈地幔大尺度轻Mg同位素异常与地幔过渡带600 km地震波层析成像高速体(滞留俯冲板片)分布区的空间重合(资料据文献[1,6,32]修改)
Fig.5 Spatial overlay. The area with large-scale light Mg isotope anomaly in the asthenospheric mantle in the big mantle wedge beneath East Asia (left) overlaps with high velocity anomaly (with stagnant plates) imaged by seismic tomography at 600 km depth in the mantle transition zone (middle, right). Modified from [1,6,32].
图6 橄榄岩及石榴子石辉石岩(相当深俯冲洋壳)和碳酸盐化橄榄岩及碳酸盐化榴辉岩(相当碳酸盐化深俯冲洋壳)的固相线T-P图及含CO2超碱性霞石岩类熔体产生的T-P条件(据文献[13]修改)。该图显示对流上地幔的“洋中脊绝热线”与橄榄岩+CO2固相线相交于约300 km深度。因此,地幔过渡带上覆的碳酸盐化对流上地幔(深度约400 km)仅在上涌至300 km才开始发生部分熔融。
Fig.6 P-T diagram showing the solidus for peridotite, garnet pyroxenite (representing deep subducting oceanic crust), carbonated peridotite, and carbonated eclogite (representing deep subducting carbonated oceanic crust) and P-T conditions for the formation of CO2-bearing, strongly alkaline nephelinitic melt. The convective upper mantle mid-ocean ridge adiabatic line intersects the solidus for peridotite + CO2 at ~300-km depth, therefore, the carbonated convective upper mantle (at ~400 km depth) overlying the mantle transition zone starts to undergo partial melting only after upwelling to ~300 km depth.
图7 菱镁矿、金刚石、初始参考地球模型(PREM)和橄榄岩熔体的密度随深度的变化(据文献[36]修改)
Fig.7 Pressure and density depth profiles for magnesite, diamond, the Preliminary Reference Earth model (PREM), and peridotite melt. Modified from [36].
图9 (a)中国东部大陆区年龄小于110 Ma的玄武岩年龄统计直方图(据文献[6]);(b)中生代以来不同时代全球大陆裂谷长度统计图,图中L1和L2是两种统计方法的结果(详见文献[38])
Fig.9 Statistical evidence. (a) A compilation of ages (<110 Ma) of basalts from eastern China (adapted from [6]). (b) A compilation of global continental rift lengths since the Mesozoic using two different statistical methods (adapted from [38]).
图11 自早白垩世以来,海底水温(a)和大气CO2分压(b)的演化(据文献[42]修改)
Fig.11 Evolution of (a) seafloor water temperature and (b) atmospheric CO2 partial pressure since the Early Cretaceous. Modified after [42].
图12 地幔碳的板块输入和输出通量估计,碳输出的蓝色标记与俯冲板块输入碳有关(据文献[43]修改)。本文指出板内玄武岩火山可分为“大地幔楔”和“地幔柱”两类,大地幔楔板内火山释放的碳与俯冲板片输入地幔的碳有关。
Fig.12 Estimates of carbon inputs/outputs to the mantle. Carbon output from island arc (blue box) is related to carbon inputs to subduction zones (modified from [43]). According this study, intraplate basaltic volcanoes can be divided into “big mantle wedge” and “mantle plume” types. Carbon released from volcanoes in a big mantle wedge is related to carbon inputs from the subducting plate.
[1] | HUANG J, ZHAO D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B09305. |
[2] | 李曙光, 汪洋. 中国东部大地幔楔形成时代和华北克拉通岩石圈减薄新机制: 深部再循环碳的地球动力学效应[J]. 中国科学: 地球科学, 2018, 48(7): 809-824. |
[3] |
SU B X, HU Y, TENG F Z, et al. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism[J]. Earth and Planetary Science Letters, 2019, 522: 79-86.
DOI URL |
[4] | XIAO Y, YUAN M, SU B X, et al. The chromite crisis in the evolution of continental magmas and the initial high δ26Mg reservoir[J]. Journal of Petrology, 2023, 64: 1-18. |
[5] |
HUANG J, LI S G, XIAO Y L, et al. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications[J]. Geochimica et Cosmochimica Acta, 2015, 164: 298-317.
DOI URL |
[6] |
LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111-120.
DOI URL |
[7] |
LIU S A, QU Y R, WANG Z Z, et al. The fate of subducting carbon tracked by Mg and Zn isotopes:a review and new perspectives[J]. Earth-Science Reviews, 2022, 228: 104010.
DOI URL |
[8] |
TIAN H C, YANG W, LI S G, et al. Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere[J]. Geochimica et Cosmochimica Acta, 2016, 188: 93-105.
DOI URL |
[9] |
YANG W, TENG F Z, ZHANG H F, et al. Magnesium isotopic systematics of continental basalts from the North China Craton: implications for tracing subducted carbonate in the mantle[J]. Chemical Geology, 2012, 328: 185-194.
DOI URL |
[10] |
李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159.
DOI |
[11] |
LIU S A, WANG Z Z, LI S G, et al. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China[J]. Earth and Planetary Science Letters, 2016, 444: 169-178.
DOI URL |
[12] | WANG S J, LI S G. Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones[J]. National Science Review, 2022, 9(6): 18-28. |
[13] |
DASGUPTA R, HIRSCHMANN M M, SMITH N D. Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts[J]. Journal of Petrology, 2007, 48(11): 2093-2124.
DOI URL |
[14] |
ROEDER P E, GOFTON E, THORNBER C. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes[J]. Journal of Petrology, 2006, 47(5): 883-900.
DOI URL |
[15] |
MALLMANN G, O’NEILL H S C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9): 1765-1794.
DOI URL |
[16] |
SHEN J, XIA J X, QIN L P, et al. Stable chromium isotope fractionation during magmatic differentiation: insights from Hawaiian basalts and implications for planetary redox conditions[J]. Geochimica et Cosmochimica Acta, 2020, 278: 289-304.
DOI URL |
[17] | SHEN J, ZUO Z W, HE Y S, et al. Chromium isotope system of intraplate basaltic lavas: implication for recycling materials into mantle[J]. Lithos, 2023, 454/455: 107264. DOI: 10.1016/j.lithos.2023.107264. |
[18] |
YANG C, LIU S A, ZHANG L, et al. Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation[J]. Geochimica et Cosmochimica Acta, 2021, 313: 277-294.
DOI URL |
[19] |
WANG Z X, LIU S A, YANG C, et al. Diffusion-driven Zn and Mg isotope fractionation in magmatic Fe-Ti-Cr oxides and implications for timescales of magmatic processes[J]. Geochimica et Cosmochimica Acta, 2023, 352: 107-121.
DOI URL |
[20] | BONDINIER J L, GODARD M. Orogenic, ophiolitic and abyssal peridotites[J]. Treatise on Geochemistry, 2014, 2: 103-167. |
[21] |
TENG F Z, LI W Y, KE S, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166.
DOI URL |
[22] |
LIU S A, LI S G, HE Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7160-7178.
DOI URL |
[23] |
HE Y S, MENG X N, KE S, et al. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle[J]. Earth and Planetary Science Letters, 2019, 512: 175-183.
DOI URL |
[24] |
LIU S A, WU T H, LI S G, et al. Contrasting fates of subducting carbon related to different oceanic slabs in East Asia[J]. Geochimica et Cosmochimica Acta, 2022, 324: 156-173.
DOI URL |
[25] |
QU Y R, LIU S A, WU T C, et al. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2022, 319: 56-72.
DOI URL |
[26] |
SHEN J, LI S G, WANG S J, et al. Subducted Mg-rich carbonates into the deep mantle wedge[J]. Earth and Planetary Science Letters, 2018, 503: 118-130.
DOI URL |
[27] | SHU Z T, LIU S A, PRELEVIC D, et al. Recycling of carbonates into the deep mantle beneath central Balkan Peninsula: Mg-Zn isotope evidence[J]. Lithos, 2022, 432: 106899. |
[28] | SHU Z T, LIU S A, PRELEVIC D, et al. Recycled carbonate-bearing silicate sediments in the sources of Circum-Mediterranean K-rich lavas: evidence from Mg-Zn isotopic decoupling[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025135. |
[29] |
WANG Z X, LIU S A, LI S G, et al. Linking deep CO2 outgassing to cratonic destruction[J]. National Science Review, 2022, 9(6): nwac001.
DOI URL |
[30] |
GREEN D H. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle[J]. Physics and Chemistry of Minerals, 2015, 42(2): 95-122.
DOI URL |
[31] |
THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79.
DOI |
[32] |
CAI R H, XU S, IONOV D A, et al. Carbonated big mantle wedge extending to the NE edge of the stagnant Pacific slab: constraints from Late Mesozoic-Cenozoic basalts from Far Eastern Russia[J]. Journal of Earth Science, 2022, 33(1): 121-132.
DOI |
[33] |
STAGNO V, OJWANG D O, MCCAMMON C A, et al. The oxidation state of the mantle and the extraction of carbon from Earth's interior[J]. Nature, 2013, 493(7430): 84-88.
DOI |
[34] |
SOBOLEV N V, SHATSKY V S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation[J]. Nature, 1990, 343(6260): 742-746.
DOI |
[35] |
XU S T, OKAY A I, JI S Y, et al. Diamond from the Dabieshan metamorphic rocks and its implication for tectonic setting[J]. Science, 1992, 256(5053): 80-82.
DOI URL |
[36] |
SUN W D, HAWKESWORTH C J, YAO C, et al. Carbonated mantle domains at the base of the Earth's transition zone[J]. Chemical Geology, 2018, 478: 69-75.
DOI URL |
[37] |
ZHAO D P, TIAN Y, LEI J S, et al. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 197-206.
DOI URL |
[38] |
BRUNE S, WILLIAMS S E, MULLER R D, et al. Potential links between continental rifting, CO2 degassing and climate change through time[J]. Nature Geoscience, 2017, 10(12): 941-946.
DOI URL |
[39] | YANG G, ZHAO L F, XIE X B, et al. “Double Door” opening of the Japan Sea inferred by Pn attenuation tomography[J]. Geophysical Research Letters, 2022, 49(16): e2022GL099886. |
[40] |
DONG Y, XIONG S, WANG F, et al. Triggering of episodic back-arc extensions in the Northeast Asian continental margin by deep mantle flow[J]. Geology, 2023, 51(2): 193-198.
DOI URL |
[41] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
DOI |
[42] |
KENT D V, MUTTONI G. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt[J]. Climate of the Past, 2013, 9(2): 525-546.
DOI URL |
[43] |
PLANK T, MANNING C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343-352.
DOI |
[44] |
GOES S, AGRUSTA R, VAN HUNEN J, et al. Subduction-transition zone interaction:a review[J]. Geosphere, 2017, 13(3): 644-664.
DOI URL |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319. |
[3] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[4] | 李云涛, 丁文龙, 韩俊, 黄诚, 王来源, 孟庆修. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[5] | 童馗, 李智武, 刘树根, I.Tonguç UYSAL, 施泽进, 李金玺, Andrew TODD, 武文慧, 王自剑, 刘升武, 李轲, 华天. 始新世中期安宁河断裂冲断变形特征及其构造意义:来自断层泥自生伊利石K-Ar定年的证据[J]. 地学前缘, 2024, 31(4): 297-313. |
[6] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[7] | 何建华, 李勇, 邓虎成, 王园园, 马若龙, 唐建明. 川东南永川地区龙马溪组页岩储层构造裂缝特征及期次演化研究[J]. 地学前缘, 2024, 31(3): 298-311. |
[8] | 徐继山, 彭建兵, 隋旺华, 安海波, 李作栋, 徐文杰, 董培杰. 郯庐断裂转换段新沂地裂缝成生机理及构造意义[J]. 地学前缘, 2024, 31(3): 470-481. |
[9] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[10] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[11] | 成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14. |
[12] | 张进江, 郑剑磊, 王海滨, 郭磊, 刘江, 戚国伟. 内蒙古大青山-盘羊山晚中生代-早新生代构造事件及其对华北北缘构造演化的启示[J]. 地学前缘, 2024, 31(1): 127-141. |
[13] | 任纪舜, 刘建辉, 朱俊宾. 中国东部中生代上叠造山系[J]. 地学前缘, 2024, 31(1): 142-153. |
[14] | 王瑞, 张京渤, 罗晨皓, 周秋石, 夏文杰, 赵云. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制:以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
[15] | 魏春景, 赵亚男, 初航. 冀北红旗营杂岩多期变质作用:古元古代俯冲/碰撞—晚古生代伸展—早中生代挤压的记录[J]. 地学前缘, 2024, 31(1): 95-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||