地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 297-313.DOI: 10.13745/j.esf.sf.2023.9.40
童馗1,2,3(), 李智武1,*(
), 刘树根1,4, I.Tonguç UYSAL5, 施泽进1, 李金玺1, Andrew TODD3, 武文慧1, 王自剑6, 刘升武1, 李轲1, 华天1
收稿日期:
2023-04-17
修回日期:
2023-08-30
出版日期:
2024-07-25
发布日期:
2024-07-10
通信作者:
* 李智武(1976—),男,博士,教授,博士生导师,主要从事构造地质与低温热年代学研究工作。E-mail: 作者简介:
童 馗(1991—),男,博士后,主要从事构造地质与构造年代学研究工作。E-mail: t33102@sina.cn
基金资助:
TONG Kui1,2,3(), LI Zhiwu1,*(
), LIU Shugen1,4, I.Tonguç UYSAL5, SHI Zejin1, LI Jinxi1, Andrew TODD3, WU Wenhui1, WANG Zijian6, LIU Shengwu1, LI Ke1, HUA Tian1
Received:
2023-04-17
Revised:
2023-08-30
Online:
2024-07-25
Published:
2024-07-10
摘要:
青藏高原及其周缘褶皱-冲断带变形方式和时限是验证高原形成众多大陆岩石圈变形动力学端员模型的关键。近年发展起来的断层泥自生伊利石K-Ar定年技术为精确限定褶皱-冲断带变形时限提供了有效手段。鲜水河—安宁河—小江断裂系作为伴随印度-欧亚板块碰撞造山和高原物质侧向挤出过程形成的大型左旋走滑断裂系,其变形过程可为解译印度-欧亚板块碰撞远程应力向东传递方式提供关键证据。本文选取安宁河断裂冕宁—西昌段作为研究对象,在详细构造解析以明确其构造运动学特征的基础上,开展了断层泥自生伊利石K-Ar定年研究,以期精确限定安宁河断裂脆性变形的时间。构造解析表明安宁河断裂在近EW向挤压作用下经历了冲断变形,断层带发育碎斑岩和断层泥,指示为脆性变形。安宁河断裂不同粒级断层泥样品的黏土矿物学和伊利石K-Ar定年分析揭示,随着样品粒级减小,高温2M1型伊利石含量相对低温1M/1Md型伊利石含量逐渐减少,其K-Ar年龄总体呈变年轻趋势,表明不同粒级伊利石K-Ar年龄是由碎屑2M1型和自生1M/1Md型两个多型端员组成的混合年龄。伊利石年龄分析获得自生1M/1Md型伊利石的年龄为(42.6±9.4)Ma,表明安宁河断裂经历了始新世中期的冲断变形。结合前人构造变形、沉积学、低温热年代学和古地磁等研究,我们认为始新世中期青藏高原腹地及其周缘褶皱-冲断带发生准同期的构造挤压变形,其动力学机制可能与印度-欧亚板块硬碰撞以及青藏高原地块的陆内俯冲所导致的先存构造带活化有关。始新世中期安宁河断裂发生冲断变形直接证明印度-欧亚板块碰撞初期的远程应力已传递至青藏高原东南缘地区。
中图分类号:
童馗, 李智武, 刘树根, I.Tonguç UYSAL, 施泽进, 李金玺, Andrew TODD, 武文慧, 王自剑, 刘升武, 李轲, 华天. 始新世中期安宁河断裂冲断变形特征及其构造意义:来自断层泥自生伊利石K-Ar定年的证据[J]. 地学前缘, 2024, 31(4): 297-313.
TONG Kui, LI Zhiwu, LIU Shugen, I.Tonguç UYSAL, SHI Zejin, LI Jinxi, Andrew TODD, WU Wenhui, WANG Zijian, LIU Shengwu, LI Ke, HUA Tian. Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge[J]. Earth Science Frontiers, 2024, 31(4): 297-313.
图1 青藏高原区域构造简图(a)和高原东南缘地形-构造图(b)(图1a据文献[37]修改;图1b中青藏高原东南缘断裂分布参考文献[1]) 红色虚线代表活动地块的边界[38]。不同颜色文本框中的低温热年代学年龄代表不同期次的快速隆升-剥露事件。图中GPS速率以稳定的欧亚板块为参考极,数据源自文献[39]。地震数据源自美国地质调查局网站 https://earthquake.usgs.gov/,主要显示1960年以来的5~8级地震。主干断裂等缩写:ALS-RRF—哀牢山—红河断裂;ANHF—安宁河断裂;DLSF—大凉山断裂;GZ-YSF—甘孜—玉树断裂;JH-QHF—金河—箐河断层;JL-PLF—嘉黎—帕龙藏布断裂;JLF—九龙断层;JSJF—金沙江断裂;LCJF—澜沧江断裂;LMSTB—龙门山冲断带;LTF—理塘断层;MLF—木里断层;XJF—小江断裂;XSHF—鲜水河断裂;XAXFS—鲜水河—安宁河—小江断裂系;ZMHF—则木河断裂;EHS—东构造结。
Fig.1 (a) Regional tectonic sketch of the Tibetan Plateau (modified after reference [37]). (b) Regional topography and tectonic map of the southeastern margin of the Tibetan Plateau, showing the distribution of the regional faults (adapted from reference [1]).
图2 研究区地质简图(据1∶200 000地质图修改,位置见图1) F1—小金河断裂;F2—金河—箐河断裂;F3—安宁河断裂;F4—则木河断裂;F5—黑水河断裂;F6,F6’—石棉—昭觉断裂;F7—汉源—甘洛断裂。
Fig.2 Simplified geological map of the study area. Modified after 1∶200000 scaled geological map, see Figure 1 for location.
图3 安宁河断裂构造变形特征(位置见图2) a—冕宁石龙镇东侧震旦系小相岭流纹岩(Zaλ)中发育高角度逆断层f1-f3及断层面与劈理S1赤平投影分析;b—f1断层带由灰白色断层泥带、劈理化带和基岩破碎带组成,断层带内发育劈理S1,与断层面之间的锐夹角指示断层f1运动学性质为逆冲活动;c—西昌礼州鲁基村附近震旦系片理化流纹岩中逆断层f4变形特征,断层带发育构造角砾,指示为脆性变形,断层带内部劈理S1与断层面锐夹角指示断层f4为逆冲性质;d—断层泥MJ12-f显微镜下特征,单偏光下见石英颗粒表面发育破裂纹,正交偏光下可见断层泥中黏土矿物具有明显定向性;e—冕宁县南东国道108旁新元古代花岗岩和第四纪阶地砾石层中见正断层f5发育;f—正断层f5与剪节理J共轭关系以及单偏光显微镜下石英(Qz)碎裂化变形特征。
Fig.3 Structural deformation characteristics of the Anninghe fault. See Figure 2 for locations.
图4 扫描电镜和透射电子显微镜下断层泥MJ12-f 1~>0.5和<0.1 μm粒级黏土矿物学特征 a—扫描电镜下MJ12-f 1~>0.5 μm粒级伊利石黏土颗粒特征,颗粒边缘主体呈浑圆形或波状;b—扫描电镜下MJ12-f <0.1 μm粒级中伊利石矿物颗粒具短柱状、菱形边界特征(红色箭头);c,d—透射电子显微镜观测和能谱元素分析表明MJ12-f <0.1 μm粒级伊利石呈自形板状、短柱状或长柱状(红色箭头),单层结晶厚度约0.5 nm(图d1),反映最小粒级黏土主要由自生伊利石组成。
Fig.4 SEM and TEM images exhibit clay mineralogy of 1->0.5 μm and <0.1 μm grain-size fractions of the fault gouge MJ12-f
图5 安宁河断裂断层泥样品MJ12-f不同粒级黏土自然干燥和乙二醇饱和定向片XRD图谱 a—黑色和红色曲线分别代表<2 μm粒级黏土自然干燥和乙二醇饱和定向片的XRD图谱;b—蓝色、黑色、橙色和红色曲线分别代表1~>0.5、0.5~>0.2、0.2~0.1和<0.1 μm粒级自然干燥定向片的XRD图谱,绿色曲线代表<0.1 μm粒级乙二醇饱和定向片的XRD图谱。矿物缩写:Qz—石英;I—伊利石。I(001)、(002)、(003)、(020)分别代表伊利石(001)、(002)、(003)和(020)晶面的衍射峰。
Fig.5 XRD patterns for air-dried, glycoled oriented preparations of different grain-size fractions for the fault gouge MJ12-f of the Anninghe fault
图6 安宁河断裂断层泥MJ12-f不同粒级黏土样品随机粉末XRD图谱(黑线)及其最佳拟合曲线(红线) 矿物缩写:Qz—石英;I—伊利石;H—石盐。I (002)—伊利石(002)晶面衍射峰;I (020)—伊利石(020)晶面衍射峰。
Fig.6 XRD patterns (black curves) and best matches (red curves) for random powder preparations of different grain-size fractions for the fault gouge MJ12-f of the Anninghe fault
样品 | 粒级/μm | 黏土矿物含量/% | KI(Δ2θ)/(°) | 极低级变质带 | 伊利石多型含量/% | |||
---|---|---|---|---|---|---|---|---|
I | Chl | Kao | 2M1 | 1M/1Md | ||||
MJ12-f | 1~>0.5 | 100 | 0 | 0 | 0.29 | E | 65 | 35 |
0.5~>0.2 | 100 | 0 | 0 | 0.41 | A | 45 | 55 | |
0.2~0.1 | 100 | 0 | 0 | 0.70 | D | 30 | 70 | |
<0.1 | 100 | 0 | 0 | 0.97 | D | 15 | 85 |
表1 安宁河断裂MJ12-f断层泥不同粒级样品黏土矿物特征
Table 1 Clay mineralogy of different grain-size fractions of the fault gouge MJ12-f of the Anninghe fault
样品 | 粒级/μm | 黏土矿物含量/% | KI(Δ2θ)/(°) | 极低级变质带 | 伊利石多型含量/% | |||
---|---|---|---|---|---|---|---|---|
I | Chl | Kao | 2M1 | 1M/1Md | ||||
MJ12-f | 1~>0.5 | 100 | 0 | 0 | 0.29 | E | 65 | 35 |
0.5~>0.2 | 100 | 0 | 0 | 0.41 | A | 45 | 55 | |
0.2~0.1 | 100 | 0 | 0 | 0.70 | D | 30 | 70 | |
<0.1 | 100 | 0 | 0 | 0.97 | D | 15 | 85 |
样品 | 粒级/ μm | K含 量/% | Rad.40Ar含量/ (mol·g-1) | Rad.40Ar 含量/% | K-Ar年龄 (±2σ)/Ma |
---|---|---|---|---|---|
MJ12-f | 1~>0.5 | 8.26 | 2.574×10-9 | 98.8 | 171.3±3.9 |
0.5~>0.2 | 7.72 | 2.951×10-9 | 99.1 | 208.0±4.8 | |
0.2~0.1 | 6.97 | 2.001×10-9 | 97.8 | 158.3±3.6 | |
<0.1 | 5.87 | 1.033×10-9 | 92.1 | 98.7±2.3 |
表2 安宁河断裂MJ12-f断层泥不同粒级样品K-Ar定年结果
Table 2 K-Ar dating results for different grain-size fractions of the fault gouge MJ12-f from the Anninghe fault
样品 | 粒级/ μm | K含 量/% | Rad.40Ar含量/ (mol·g-1) | Rad.40Ar 含量/% | K-Ar年龄 (±2σ)/Ma |
---|---|---|---|---|---|
MJ12-f | 1~>0.5 | 8.26 | 2.574×10-9 | 98.8 | 171.3±3.9 |
0.5~>0.2 | 7.72 | 2.951×10-9 | 99.1 | 208.0±4.8 | |
0.2~0.1 | 6.97 | 2.001×10-9 | 97.8 | 158.3±3.6 | |
<0.1 | 5.87 | 1.033×10-9 | 92.1 | 98.7±2.3 |
图7 安宁河断裂断层泥MJ12-f粒级-年龄关系图(a)及自生伊利石年龄分析(b) a—1~>0.5 μm粒级的伊利石K-Ar年龄为异常年轻年龄;b—蓝线为最佳线性拟合线,灰色区域代表2σ误差范围,MSWD为加权平均误差。
Fig.7 K-Ar age versus grain size spectra (a) and authigenic illite age analysis for the fault gouge MJ12-f of the Anninghe fault (b)
图8 始新世中期青藏高原周缘主要逆冲断裂挤压变形特征 亚洲大陆板块重建据文献[95]修改。地块缩写:LH—拉萨地块;QT—羌塘地块;SG—松潘-甘孜地块;KQQ—昆仑-祁连-秦岭复合体。断层缩写:ANHF—安宁河断裂;CXF—楚雄断层;EKLF—东昆仑断裂;FHF—风火山冲断层;GMF—荣玛断层;LMSTB—龙门山冲断带;LZF—鲁甸—中合江断层;NQF—柴北缘断层;NGF—囊谦—贡觉断层;WQLF—西秦岭断裂;XSHF—鲜水河断裂。
Fig.8 Middle-Eocene contractional deformation of the main thrust faults across the Tibetan Plateau. Modified after [95].
[1] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
PMID |
[2] | 许志琴, 杨经绥, 李海兵, 等. 印度-亚洲碰撞大地构造[J]. 地质学报, 2011, 85(1): 1-33. |
[3] | LI Y L, WANG C S, DAI J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan Orogen: a review[J]. Earth-Science Reviews, 2015, 143: 36-61. |
[4] | 李廷栋. 青藏高原隆升的过程和机制[J]. 中国地质科学院院报, 1995(1): 1-9. |
[5] | WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43. |
[6] | 许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23. |
[7] | DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews: Earth and Environment, 2022, 3(10): 652-667. |
[8] | TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. |
[9] | ENGLAND P, HOUSEMANG. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676. |
[10] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[11] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788-790.
PMID |
[12] | MURPHY M A, YIN A, HARRISON T M, et al. Did the Indo-Asian collision alone create the Tibetan Plateau?[J]. Geology, 1997, 25(8): 719-722. |
[13] | KAPP P, YIN A, HARRISON T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865-878. |
[14] | TONG K, LI Z W, ZHU L D, et al. Fold-and-thrust deformation of the hinterland of Qilian Shan, northeastern Tibetan Plateau since Mesozoic with implications for the plateau growth[J]. Journal of Asian Earth Sciences, 2020, 198: 104131. |
[15] | LAW R, ALLEN M B. Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology[J]. Geology, 2020, 48(3): 263-267. |
[16] | LAI W, HU X M, GARZANTI E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. GSA Bulletin, 2019, 131(11/12): 1823-1836. |
[17] | YIN A, DANG Y Q, ZHANG M, et al. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120(7/8): 847-876. |
[18] | STUDNICKI-GIZBERT C, BURCHFIEL B C, LI Z, et al. Early Tertiary Gonjo Basin, eastern Tibet: sedimentary and structural record of the early history of India-Asia collision[J]. Geosphere, 2008, 4(4): 713-735. |
[19] | TIAN Y T, KOHN B P, GLEADOW A J W, et al. Constructing the Longmen Shan eastern Tibetan Plateau margin: insights from low-temperature thermochronology[J]. Tectonics, 2013, 32(3): 576-592. |
[20] | CAO K, LELOUP P H, WANG G C, et al. Thrusting, exhumation, and basin fill on the western margin of the South China Block during the India-Asia collision[J]. GSA Bulletin, 2021, 133(1/2): 74-90. |
[21] | LI C P, ZHENG D W, ZHOU R J, et al. Late Oligocene tectonic uplift of the East Kunlun Shan: expansion of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2021, 48(3): e91281. |
[22] | VAN DER PLUIJM B A, HALL C M, VROLIJK P J, et al. The dating of shallow faults in the Earth’s crust[J]. Nature, 2001, 412(6843): 172-175. |
[23] | RAHL J M, HAINES S H, VAN DER PLUIJM B A. Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees[J]. Earth and Planetary Science Letters, 2011, 307(1/2): 180-190. |
[24] | ZHENG Y, KONG P, FU B H. Time constraints on the emplacement of Klippen in the Longmen Shan thrust belt and tectonic implications[J]. Tectonophysics, 2014, 634: 44-54. |
[25] | 郑勇, 李海兵, 王世广, 等. 断层泥自生伊利石年龄分析及其在龙门山断裂带的应用[J]. 地球学报, 2019, 40(1): 173-185. |
[26] | UYSAL I T, DELLE PIANE C, TODD A J, et al. Precambrian faulting episodes and insights into the tectonothermal history of North Australia: microstructural evidence and K-Ar, 40Ar-39Ar, and Rb-Sr dating of syntectonic illite from the intracratonic Millungera Basin[J]. Solid Earth, 2020, 11(5): 1653-1679. |
[27] | RING U, UYSAL I T, TONG K, et al. K-Ar fault-gouge dating in the Lower Buller gorge constrains the formation of the Paparoa Trough, West Coast, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2021, 64(1): 49-61. |
[28] | RING U, FASSOULAS C, UYSAL I T, et al. Nappe imbrication within the phyllite-quartzite unit of West Crete: implications for sustained high-pressure metamorphism in the hellenide subduction orogen, Greece[J]. Tectonics, 2022, 41(11): e2022TC007430. |
[29] | HAINES S H, VAN DER PLUIJM B A. Clay quantification and Ar-Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico[J]. Journal of Structural Geology, 2008, 30(4): 525-538. |
[30] | DUVALL A R, CLARK M K, VAN DER PLUIJM B A, et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 520-526. |
[31] | STAISCH L M, NIEMI N A, CLARK M K, et al. The Cenozoic evolution of crustal shortening and left-lateral shear in the central East Kunlun Shan: implications for the uplift history of the Tibetan Plateau[J]. Tectonics, 2020, 39(9): e2020TC006065. |
[32] | STAISCH L M, NIEMI N A, CLARK M K, et al. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau[J]. Tectonics, 2016, 35(4): 862-895. |
[33] | 叶春林. 西藏荣玛乡南新生代逆冲推覆构造变形特征及时代[D]. 北京: 中国地质大学(北京), 2020. |
[34] | WANG E, BURCHFIEL B C, ROYDEN L H, et al. Late Cenozoic Xianshuihe-Xiaojiang, Red river, and Dali fault systems of southwestern Sichuan and central Yunnan, China[J]. Geological Society of America Special Paper, 1998, 327: 1-108. |
[35] | 张岳桥, 杨农, 孟晖, 等. 四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J]. 中国地质, 2004, 31(1): 23-33. |
[36] |
李海龙, 张岳桥, 张长厚, 等. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义[J]. 地学前缘, 2016, 23(2): 222-237.
DOI |
[37] | 白明坤, CHEVALIER M L, 李海兵, 等. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究[J]. 地质学报, 2022, 96(7): 2312-2332. |
[38] | 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学D辑: 地球科学, 2003(B4): 12-20. |
[39] | GAN W J, ZHANG P Z, SHEN Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): B08416. |
[40] | LI Z W, KAMP P J J, LIU S G, et al. Late Cretaceous-Cenozoic thermal structure and exhumation of the Eastern Tibetan Plateau margin: a doubly-vergent orogenic wedge[J]. Earth-Science Reviews, 2023, 238: 104319. |
[41] | LIU Z J, ZHANG J Y, MCPHILLIPS D, et al. Multiple episodes of fast exhumation since Cretaceous in Southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 2018, 490: 62-76. |
[42] | CAO K, TIAN Y T, VAN DER BEEK P, et al. Southwestward growth of plateau surfaces in eastern Tibet[J]. Earth-Science Reviews, 2022, 232: 104160. |
[43] | ZHANG H P, OSKIN M E, JING L Z, et al. Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185. |
[44] | ZHANG G H, TIAN Y T, LI R, et al. Progressive tectonic evolution from crustal shortening to mid-lower crustal expansion in the southeast Tibetan Plateau: a synthesis of structural and thermochronological insights[J]. Earth-Science Reviews, 2022, 226: 103951. |
[45] | 刘方斌. 青藏高原东南缘新生代剥露历史的热年代学约束: 以临沧花岗岩地区为例[D]. 兰州: 兰州大学, 2021. |
[46] | WANG E, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645. |
[47] | TIAN Y T, KOHN B P, GLEADOW A J W, et al. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(1): 676-698. |
[48] | ZHU C Y, WANG G C, LELOUP P H, et al. Role of the Early Miocene Jinhe-Qinghe Thrust Belt in the building of the Southeastern Tibetan Plateau topography[J]. Tectonophysics, 2021, 811: 228871. |
[49] | WANG H, LI K J, TIAN Y T, et al. Oligocene-Early Miocene exhumation and shortening along the Anninghe fault in the southeastern Tibetan Plateau: insights from zircon and apatite (U-Th)/He thermochronology[J]. International Geology Review, 2022, 64(3): 390-404. |
[50] | CAO K, WANG G C, LELOUP P H, et al. Oligocene-early Miocene topographic relief generation of southeastern Tibet triggered by thrusting[J]. Tectonics, 2019, 38(1): 374-391. |
[51] | WANG Y, WANG Y J, SCHOENBOHM L M, et al. Cenozoic exhumation of the Ailaoshan-red River shear zone: new insights from low-temperature thermochronology[J]. Tectonics, 2020, 39(9): e2020TC006151. |
[52] | CLARK M K, HOUSE M A, ROYDEN L H, et al. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 2005, 33(6): 525-528. |
[53] | OUIMET W, WHIPPLE K, ROYDEN L, et al. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere, 2010, 2(1): 50-63. |
[54] | ZHANG Y Z, REPLUMAZ A, WANG G C, et al. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet[J]. Tectonics, 2015, 34(6): 1219-1243. |
[55] | ZHANG Y Z, REPLUMAZ A, LELOUP P H, et al. Cooling history of the Gongga batholith: implications for the Xianshuihe Fault and Miocene kinematics of SE Tibet[J]. Earth and Planetary Science Letters, 2017, 465: 1-15. |
[56] | YANG R, SUHAIL H A, GOURBET L, et al. Early Pleistocene drainage pattern changes in Eastern Tibet: constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 2020, 531: 115955. |
[57] | DENG B, LIU S G, ENKELMANN E, et al. Late Miocene accelerated exhumation of the Daliang Mountains, southeastern margin of the Tibetan Plateau[J]. International Journal of Earth Sciences, 2015, 104(4): 1061-1081. |
[58] | REPLUMAZ A, JOSÉ M S, MARGIRIER A, et al. Tectonic control on rapid late Miocene: quaternary incision of the Mekong River knickzone, southeast Tibetan Plateau[J]. Tectonics, 2020, 39: e2019TC005782. |
[59] | 刘宇平, 陈智梁, 唐文清, 等. 青藏高原东部及周边现时地壳运动[J]. 沉积与特提斯地质, 2003, 23(4): 1-8. |
[60] | ALLEN C R, LUO Z L, QIAN H, et al. Field study of a highly active fault zone: the Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9): 1178-1199. |
[61] | 王振荣, 张燕, 周贞莲. 安宁河断裂带显微构造及动力学的研究[J]. 成都地质学院学报, 1992, 19(4): 48-54, 125. |
[62] | 冉勇康, 陈立春, 程建武, 等. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J]. 中国科学D辑: 地球科学, 2008, 38(5): 543-554. |
[63] | 何宏林, 池田安隆. 安宁河断裂带晚第四纪运动特征及模式的讨论[J]. 地震学报, 2007, 29(5): 537-548, 560. |
[64] | REN Z K. Late Quaternary deformation features along the Anninghe Fault on the eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2014, 85: 53-65. |
[65] | DENG B, LIU S G, JIANG L, et al. Tectonic uplift of the Xichang Basin (SE Tibetan Plateau) revealed by structural geology and thermochronology data[J]. Basin Research, 2018, 30(1): 75-96. |
[66] |
邓宾, 雍自权, 刘树根, 等. 青藏高原东南缘大凉山新生代隆升建造过程: 多封闭系统低温热年代学与热模型限制[J]. 地球物理学报, 2016, 59(6): 2162-2175.
DOI |
[67] | WANG Y Z, LIU C R, ZHANG D W, et al. Multistage exhumation in the catchment of the Anninghe River in the SE Tibetan Plateau: insights from both detrital thermochronology and topographic analysis[J]. Geophysical Research Letters, 2021, 134: 98-136. |
[68] | 张岳桥, 杨农, 陈文, 等. 中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究[J]. 地学前缘, 2003, 10(4): 599-612. |
[69] | 陈应涛, 余文鑫, 张欢, 等. 青藏高原东缘安宁河断裂带中—新生代构造变形及其磁组构特征[J]. 西安科技大学学报, 2021, 41(1): 94-103. |
[70] | 华天, 李金玺, 李智武, 等. 安宁河断裂带新生代构造变形与磁组构特征[J]. 地球学报, 2022, 43(2): 144-156. |
[71] |
PEVEAR D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3440-3446.
PMID |
[72] | BOLES A, SCHLEICHER A M, SOLUM J, et al. Quantitative X-ray powder diffraction and the illite polytype analysis method for direct fault rock dating: a comparison of analytical techniques[J]. Clays and Clay Minerals, 2018, 66(3): 220-232. |
[73] | KÜBLER B, JABOYEDOFF M. Illite crystallinity[J]. Earth and Planetary Science Letters, 2000, 331: 75-89. |
[74] | KÜBLER B. Evaluation quantitative du métamorphisme par la cristallinité de l’illite[J]. Bulletin Centre Recherche Pau-SNPA, 1968, 2: 385-397. |
[75] | WARR L N, FERREIRO MÄHLMANN R. Recommendations for Kübler index standardization[J]. Clay Minerals, 2015, 50(3): 283-286. |
[76] | DALRYMPLE G B, LANPHERE M A. Potassium-argon dating[M]. San Francisco: W.H. Freeman, 1969. |
[77] | BONHOMME M G, THUIZAT R, PINAULT Y, et al. Méthode de Datation Potassium-Argon[M]. Strasbourg: Technique de l’Institut de Géologie de Strasbourg, 1975. |
[78] | STEIGER R H, JÄGER E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359-362. |
[79] | CLAUER N, ZWINGMANN H, LIEWIG N, et al. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: a tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115(1/2): 76-96. |
[80] | VIOLA G, ZWINGMANN H, MATTILA J, et al. K-Ar illite age constraints on the Proterozoic formation and reactivation history of a brittle fault in Fennoscandia[J]. Terra Nova, 2013, 25(3): 236-244. |
[81] | 张有瑜, 刘可禹, 罗修泉. 自生伊利石年代学研究: 理论、方法与实践[M]. 北京: 科学出版社, 2016. |
[82] | MCDOUGALL I, HARRISON T M. Geochronology and thermochronology by the 40Ar/39Ar method[M]. 2nd ed. New York: Oxford University Press, 1999. |
[83] | DAVIDS C, BENOWITZ J A, LAYER P W, et al. Direct 40Ar/39Ar K-feldspar dating of Late Permian: early Triassic brittle faulting in northern Norway[J]. Terra Nova, 2018, 30(4): 263-269. |
[84] | WANG Y, ZHOU L Y, ZWINGMANNH, et al. 40Ar/39Ar dating of cataclastic K-feldspar: a new approach for establishing the chronology of brittle deformation[J]. Journal of Structural Geology, 2020, 131: 103948. |
[85] | HU S B, HE L J, WANG J Y. Heat flow in the continental area of China: a new data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. |
[86] | LI H L, ZHANG Y Q. Zircon U-Pb geochronology of the Konggar granitoid and migmatite: constraints on the Oligo-Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet[J]. Tectonophysics, 2013, 606: 127-139. |
[87] | CHEN Y T, ZHANG G W, LU R K, et al. Formation and evolution of Xianshuihe Fault Belt in the eastern margin of the Tibetan Plateau: constraints from structural deformation and geochronology[J]. Geological Journal, 2020, 55(12): 7953-7976. |
[88] | SPURLIN M S, YIN A, HORTON B K, et al. Structural evolution of the Yushu-Nangqian Region and its relationship to syncollisional igneous activity, east-central Tibet[J]. Geological Society of America Bulletin, 2005, 117(9/10): 1293. |
[89] | BURCHFIEL B C, CHEN Z L. Tectonics of the Southeastern Tibetan Plateau and its adjacent foreland[J]. Geological Society of America Memoirs, 2013, 210: 1-164. |
[90] | HORTON B K, YIN A, SPURLIN M S, et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. Geological Society of America Bulletin, 2002, 114(7): 771-786. |
[91] | ZHANG Y, HUANG W T, HUANG B C, et al. 53-43 Ma deformation of eastern Tibet revealed by three stages of tectonic rotation in the Gongjue Basin[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3320-3338. |
[92] | LI S H, VAN HINSBERGEN D J J, NAJMAN Y, et al. Does pulsed Tibetan deformation correlate with Indian plate motion changes?[J]. Earth and Planetary Science Letters, 2020, 536: 116144. |
[93] | LI S H, SU T, SPICER R A, et al. Oligocene deformation of the Chuandian Terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina[J]. Tectonics, 2020, 39(7): e2019TC005974. |
[94] | CLARK M K, FARLEY K A, ZHENG D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88. |
[95] | VAN HINSBERGEN D J J, KAPP P, DUPONT-NIVET G, et al. Restoration of Cenozoic deformation in Asia and the size of Greater India[J]. Tectonics, 2011, 30(5): TC5003. |
[96] | 廖忠礼, 邓永福, 廖光宇. 四川锦屏地区新生代冲断作用[J]. 大地构造与成矿学, 2003, 27(2): 152-159. |
[97] | TIAN Y T, LIU Y M, LI R, et al. Thermochronological constraints on Eocene deformation regime in the Longmen Shan: implications for the eastward growth of the Tibetan Plateau[J]. Global and Planetary Change, 2022, 217: 103930. |
[98] | TONG Y B, YANG Z Y, MAO C P, et al. Paleomagnetism of Eocene red-beds in the eastern part of the Qiangtang Terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2017, 475: 1-14. |
[99] | ZHANG Z J, TONG Y B, JIN S C, et al. Paleomagnetic constraint on the formation of the Eastern Himalayan Syntaxis: a new late Eocene result from the Mangkang area of the eastern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2023, 603: 117974. |
[100] | LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1/2/3/4): 85-138. |
[101] | WANG Q, WYMAN D A, XU J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272: 158-171. |
[102] | ZHANG B, LIU J Q, CHEN W, et al. Late Eocene magmatism of the eastern Qiangtang Block (eastern Tibetan Plateau) and its geodynamic implications[J]. Journal of Asian Earth Sciences, 2020, 195: 104329. |
[103] | KONG X, YIN A, HARRISON T M. Evaluating the role of preexisting weaknesses and topographic distributions in the Indo-Asian collision by use of a thin-shell numerical model[J]. Geology, 1997, 25(6): 527-530. |
[104] | XIE R X, CHEN L, XIONG X, et al. The role of pre-existing crustal weaknesses in the uplift of the eastern Tibetan Plateau: 2D thermo-mechanical modeling[J]. Tectonics, 2021, 40(4): e2020TC006444. |
[1] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. 尼泊尔喜马拉雅山脉中央丘里亚冲断层的电子自旋共振测年[J]. 地学前缘, 2023, 30(4): 260-269. |
[2] | 施和生 朱俊章 邱华宁 舒誉 吴建耀 龙祖烈. 利用自生伊利石激光加热40Ar-39Ar定年技术探讨惠州凹陷新近系油气充注时间[J]. 地学前缘, 2009, 16(1): 290-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||