地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 304-319.DOI: 10.13745/j.esf.sf.2024.10.10
收稿日期:
2024-01-18
修回日期:
2024-04-15
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
*许 成(1976—),男,教授,主要从事岩石和矿床地球化学研究工作。E-Mail: xucheng1999@pku.edu.cn
作者简介:
李卓骐(1998—),男,博士研究生,矿物学、岩石学、矿床学专业。E-mail: lnozki@pku.edu.cn
基金资助:
LI Zhuoqi1(), XU Cheng1,2,*(
), WEI Chunwan1
Received:
2024-01-18
Revised:
2024-04-15
Online:
2024-11-25
Published:
2024-11-25
摘要:
地球深部是一个巨大的碳库,含有地球98%以上的碳。在上地幔顶部,碳的主要存在形式是碳酸盐与CO2。在一定的温度和压力条件下,它们可以降低地幔岩的固相线,参与地幔熔融过程,形成含碳的硅酸盐熔体或者碳酸盐熔体。含碳的熔流体是岩石圈地幔中碳迁移的重要形式,也是地球深源碳向地表释放的直接载体。碳酸盐熔体与碳酸盐化硅酸盐熔体在地幔中迁移、上侵过程中可能与橄榄岩发生反应,熔体分解并释放出CO2。在地壳阶段,除了火山作用导致的脱气外,含碳熔体在上侵的过程中,减压导致熔体中CO2溶解度降低,或者熔体与地壳岩石之间的脱碳反应也是CO2释放的重要途径。地表碳可以随板块俯冲等作用进入地球深部,该过程与深源碳释放构成的深部碳循环过程是影响地球历史大气中碳含量与气候变化的重要因素。在现代冷板块俯冲过程中,碳释放的主要形式是俯冲板片释放的流体对板片中碳的溶解和迁移,大部分的俯冲碳能够进入地球深度。深部脱碳过程的复杂性使当前对地史时期深部碳释放的途径与对应的通量仍有争议,对不同脱碳作用的综合研究是进一步厘清地史时期碳释放的重要依据。因此,本文系统地总结了深部碳循环过程中不同脱碳作用与其识别标志,并以华北克拉通东缘中生代脱碳过程为例,探讨了深源碳释放对于古环境变化的指示意义。
中图分类号:
李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319.
LI Zhuoqi, XU Cheng, WEI Chunwan. Outgassing processes of carbon in deep Earth: A review[J]. Earth Science Frontiers, 2024, 31(6): 304-319.
图2 含CO2橄榄岩体系的基本相图以及压力、熔体成分对熔体中CO2溶解度的影响 (据文献[28-29]修改) a—含CO2橄榄岩体系的相图和不同温度压力条件下可能的熔融产物;b—压力对熔体中CO2溶解度的影响;c—熔体成分(横坐标)与压力(图中数字,GPa)对熔体中CO2溶解度的影响。
Fig.2 Phase diagram of CO2-bearing olivine systems and the effects of pressure and melt composition on the solubility of CO2 in the melt. Modified after [28-29].
图4 地壳阶段碳酸盐熔体、硅酸盐熔体与地壳物质交代去气作用的野外(a,b)、实验(c,d)与显微典型结构(e,f)的照片 a,c,e—碳酸盐熔体与硅酸盐地壳交代反应产物;b,d,f—中基性熔体与沉积碳酸盐反应产物。a—Ihouhaouene碳酸岩与正长岩捕虏体反应形成单斜辉石反应边(据文献[83]);b—Merapi火山中岩浆与围岩反应形成的钙质硅酸盐捕虏体,碳酸盐岩原岩部分保留在核部(据文献[85]);c—碳酸盐与硅酸盐反应高温高压实验产物(据文献[82]);d—硅酸盐与碳酸盐反应高温高压实验产物,碳酸盐相中方解石和白云石的比例分别为64%和36%(据文献[87]);e— Kaiserstuhl碳酸岩的单偏光镜下照片(据文献[84]); f— Merapi火山钙质硅酸盐捕虏体中的反应关系(据文献[86])。Ap—磷灰石,Bi—黑云母,Cc—方解石,Cln—绿脆云母,Cpx—单斜辉石,Di—透辉石,Hd—钙铁辉石,Spl—尖晶石,Qz—石英,Wo—硅灰石。 (据文献[82⇓⇓⇓⇓-87]修改)
Fig.4 Photos of the gas-exchange processes between carbonate melts, silicate melts, and crustal materials during the crustal stage in the field (a,b), experiments (c,d), and typical microstructures (e,f) (modified from references [82⇓⇓⇓⇓-87]).
[1] | DASGUPTA R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183-229. |
[2] | DEPAOLO D J. Sustainable carbon emissions: the geologic perspective[J]. MRS Energy and Sustainability, 2015, 2(1): 9. |
[3] | BERG G W. Evidence for carbonate in the mantle[J]. Nature, 1986, 324(6092): 50-51. |
[4] | FREZZOTTI M L, PECCERILLO A. Diamond-bearing COHS fluids in the mantle beneath Hawaii[J]. Earth and Planetary Science Letters, 2007, 262(1/2): 273-283. |
[5] | KLEIN-BENDAVID O, IZRAELI E S, HAURI E, et al. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 723-744. |
[6] | IONOV D A, O’REILLY S Y, GENSHAFT Y S, et al. Carbonate-bearing mantle peridotite xenoliths from spitsbergen: phase relationships, mineral compositions and trace-element residence[J]. Contributions to Mineralogy and Petrology, 1996, 125(4): 375-392. |
[7] | GUZMICS T, ZAJACZ Z, KODOLÁNYI J, et al. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: implications for significance of carbonatite melts in the earth’s mantle[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1864-1886. |
[8] | PLANK T, MANNING C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343-352. |
[9] | BURTON M R, SAWYER G M, GRANIERI D. Deep carbon emissions from volcanoes[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 323-354. |
[10] | SOBOLEV S V, SOBOLEV A V, KUZMIN D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J]. Nature, 2011, 477(7364): 312-316. |
[11] | JIANG Q, JOURDAN F, OLIEROOK H K H, et al. Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31): e2202039119. |
[12] | FISCHER T P, ARELLANO S, CARN S, et al. The emissions of CO2 and other volatiles from the world’s subaerial volcanoes[J]. Scientific Reports, 2019, 9: 18716. |
[13] | RANTA E, HALLDÓRSSON S A, BARRY P H, et al. Deep magma degassing and volatile fluxes through volcanic hydrothermal systems: insights from the askja and kverkfjöll volcanoes, Iceland[J]. Journal of Volcanology and Geothermal Research, 2023, 436: 107776. |
[14] | AIUPPA A, FISCHER T P, PLANK T, et al. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism[J]. Earth-Science Reviews, 2017, 168: 24-47. |
[15] | WANG X, ZHANG J, WANG C, et al. Experimental constraint on Ca-rich carbonatite melt-peridotite interaction and implications for lithospheric mantle modification beneath the North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024769. |
[16] | FOLEY S F, FISCHER T P. An essential role for continental rifts and lithosphere in the deep carbon cycle[J]. Nature Geoscience, 2017, 10(12): 897-902. |
[17] |
MCKENZIE N R, HORTON B K, LOOMIS S E, et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability[J]. Science, 2016, 352(6284): 444-447.
DOI PMID |
[18] | KEPPLER H. Water solubility in carbonatite melts[J]. American Mineralogist, 2003, 88(11/12): 1822-1824. |
[19] | DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide[J]. Nature, 2006, 440(7084): 659-662. |
[20] | OLSZAK-HUMIENIK M, JABLONSKI M. Thermal behavior of natural dolomite[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 2239-2248. |
[21] | WEI C J. Types of metamorphic reactions[M]//ALDERTON D, ELIAS S A.Encyclopedia of geology. Amsterdam: Elsevier, 2021: 397-411. |
[22] | TAO R B, ZHANG L F, FEI Y W, et al. The effect of Fe on the stability of dolomite at high pressure: experimental study and petrological observation in eclogite from southwestern Tianshan, China[J]. Geochimica et Cosmochimica Acta, 2014, 143: 253-267. |
[23] | IRVING A J, WYLLIE P J. Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 36 kb[J]. Geochimica et Cosmochimica Acta, 1975, 39(1): 35-53. |
[24] | WYLLIE P J, HUANG W L. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications[J]. Contributions to Mineralogy and Petrology, 1976, 54(2): 79-107. |
[25] | FOLEY S F, YAXLEY G M, ROSENTHAL A, et al. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar[J]. Lithos, 2009, 112: 274-283. |
[26] | WYLLIE P J, HUANG W L. Influence of mantle CO2 in the generation of carbonatites and kimberlites[J]. Nature, 1975, 257(5524): 297-299. |
[27] | KESHAV S, GUDFINNSSON G H. Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 from 1.1 to 2 GPa[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3341-3353. |
[28] | HAMMOUDA T, KESHAV S. Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites[J]. Chemical Geology, 2015, 418: 171-188. |
[29] | RUSSELL J K, PORRITT L A, LAVALLÉE Y, et al. Kimberlite ascent by assimilation-fuelled buoyancy[J]. Nature, 2012, 481(7381): 352-356. |
[30] | TAO R B, FEI Y W. Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions[J]. Communications Earth and Environment, 2021, 2: 45. |
[31] | STAGNO V, OJWANG D O, MCCAMMON C A, et al. The oxidation state of the mantle and the extraction of carbon from Earth’s interior[J]. Nature, 2013, 493(7430): 84-88. |
[32] | FROST D J, MCCAMMON C A. The redox state of earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 389-420. |
[33] | ROHRBACH A, BALLHAUS C, GOLLA-SCHINDLER U, et al. Metal saturation in the upper mantle[J]. Nature, 2007, 449(7161): 456-458. |
[34] | FOLEY S F. Rejuvenation and erosion of the cratonic lithosphere[J]. Nature Geoscience, 2008, 1(8): 503-510. |
[35] | GREEN D H, WALLACE M E. Mantle metasomatism by ephemeral carbonatite melts[J]. Nature, 1988, 336(6198): 459-462. |
[36] | ROHRBACH A, SCHMIDT M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling[J]. Nature, 2011, 472(7342): 209-212. |
[37] | LEE W J, WYLLIE P J. Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO—(MgO+FeO*)—(Na2O+K2O)—(SiO2+Al2O3+TiO2)—CO2[J]. Journal of Petrology, 1998, 39(3): 495-517. |
[38] | WYLLIE P J, TUTTLE O F. The system CaO-CO2-H2O and the origin of carbonatites[J]. Journal of Petrology, 1960, 1(1): 1-46. |
[39] | ÇIMEN O, KUEBLER C, SIMONETTI S S, et al. Combined boron, radiogenic (Nd, Pb, Sr), stable (C, O) isotopic and geochemical investigations of carbonatites from the blue river region, British Columbia (Canada): implications for mantle sources and recycling of crustal carbon[J]. Chemical Geology, 2019, 529: 119240. |
[40] | GRÜNENFELDER M H, TILTON G R, BELL K, et al. Lead and strontium isotope relationships in the Oka carbonatite complex, Quebec[J]. Geochimica et Cosmochimica Acta, 1986, 50(3): 461-468. |
[41] | NELSON D R, CHIVAS A R, CHAPPELL B W, et al. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources[J]. Geochimica et Cosmochimica Acta, 1988, 52(1): 1-17. |
[42] | POWELL J L, HURLEY P M, FAIRBAIRN H W. Isotopic composition of strontium in carbonatites[J]. Nature, 1962, 196(4859): 1085-1086. |
[43] | WOOLLEY A R, CHURCH A A. Extrusive carbonatites: a brief review[J]. Lithos, 2005, 85(1/2/3/4): 1-14. |
[44] | HAMMOUDA T, LAPORTE D. Ultrafast mantle impregnation by carbonatite melts[J]. Geology, 2000, 28(3): 283-285. |
[45] | SHATSKIY A, LITASOV K D, BORZDOV Y M, et al. Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle[J]. Physics of the Earth and Planetary Interiors, 2013, 225: 1-11. |
[46] | BAILEY D K. Mantle metasomatism: perspective and prospect[J]. Geological Society, London, Special Publications, 1987, 30(1): 1-13. |
[47] | COLTORTI M, BONADIMAN C, HINTON R W, et al. Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande comore, Indian Ocean[J]. Journal of Petrology, 1999, 40(1): 133-165. |
[48] | DUCEA M N, SALEEBY J, MORRISON J, et al. Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: an example from California[J]. American Mineralogist, 2005, 90(5/6): 864-870. |
[49] | HAURI E H, SHIMIZU N, DIEU J J, et al. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle[J]. Nature, 1993, 365(6443): 221-227. |
[50] | LAURORA A, MAZZUCCHELLI M, RIVALENTI G, et al. Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the gobernador gregores case (southern Patagonia)[J]. Journal of Petrology, 2001, 42(1): 69-87. |
[51] | RUDNICK R L, MCDONOUGH W F, CHAPPELL B W. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics[J]. Earth and Planetary Science Letters, 1993, 114(4): 463-475. |
[52] | HAMMOUDA T, CHANTEL J, MANTHILAKE G, et al. Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface[J]. Geology, 2014, 42(10): 911-914. |
[53] | SHISHKINA T A, BOTCHARNIKOV R E, HOLTZ F, et al. Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts[J]. Chemical Geology, 2014, 388: 112-129. |
[54] | SOLOMATOVA N, CARACAS R, COHEN R. Carbon speciation and solubility in silicate melts[M]//MANNING C E, LIN J F, MAO W L. Carbon in Earth’s Interior. 1st ed. Washington, DC: American Geophysical Union and John Wiley and Sons, Inc, 2020: 179-194. |
[55] | BROOKER R A, KOHN S C, HOLLOWAY J R, et al. Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2-SiO2 join[J]. Geochimica et Cosmochimica Acta, 1999, 63(21): 3549-3565. |
[56] | LESNE P, SCAILLET B, PICHAVANT M, et al. The carbon dioxide solubility in alkali basalts: an experimental study[J]. Contributions to Mineralogy and Petrology, 2011, 162(1): 153-168. |
[57] | STOLPER E, HOLLOWAY J R. Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure[J]. Earth and Planetary Science Letters, 1988, 87(4): 397-408. |
[58] | PAN V, HOLLOWAY J R, HERVIG R L. The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts[J]. Geochimica et Cosmochimica Acta, 1991, 55(6): 1587-1595. |
[59] | GUILLOT B, SATOR N. Carbon dioxide in silicate melts: a molecular dynamics simulation study[J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1829-1857. |
[60] | DIXON J E. Degassing of alkalic basalts[J]. American Mineralogist, 2015, 82(3/4): 368-378. |
[61] | GIULIANI A, SCHMIDT M W, TORSVIK T H, et al. Genesis and evolution of kimberlites[J]. Nature Reviews Earth and Environment, 2023, 4(11): 738-753. |
[62] | FREZZOTTI M L, ANDERSEN T, NEUMANN E R, et al. Carbonatite melt-CO2 fluid inclusions in mantle xenoliths from Tenerife, canary islands: a story of trapping, immiscibility and fluid-rock interaction in the upper mantle[J]. Lithos, 2002, 64(3/4): 77-96. |
[63] | YAXLEY G M, CRAWFORD A J, GREEN D H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia[J]. Earth and Planetary Science Letters, 1991, 107(2): 305-317. |
[64] | LIU J Q, CHEN L H, NI P. Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, Eastern China: implications for asthenosphere-lithosphere interactions[J]. Chinese Science Bulletin, 2010, 55(11): 1067-1076. |
[65] | BLUNDY J, DALTON J. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 356-371. |
[66] | BRENAN J M, WATSON E B. Partitioning of trace elements between carbonate melt and clinopyroxene and olivine at mantle p-T conditions[J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2203-2214. |
[67] | KLEMME S, VAN DER LAAN S R, FOLEY S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions[J]. Earth and Planetary Science Letters, 1995, 133(3/4): 439-448. |
[68] | BAKER M B, WYLLIE P J. High-pressure apatite solubility in carbonate-rich liquids:implications for mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3409-3422. |
[69] | 宗克清, 刘勇胜. 华北克拉通东部岩石圈地幔碳酸盐熔体交代作用与克拉通破坏[J]. 中国科学: 地球科学, 2018, 48(6): 732-752. |
[70] | QIN B, HUANG F, HUANG S C, et al. Machine learning investigation of clinopyroxene compositions to evaluate and predict mantle metasomatism worldwide[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023614. |
[71] | BYERLY B L, JACKSON M G, BIZIMIS M. Carbonatite versus silicate melt metasomatism impacts grain scale 87Sr/86Sr and 143Nd/144Nd heterogeneity in Polynesian mantle peridotite xenoliths[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(9): e2021GC009749. |
[72] | JONES A P, GENGE M, CARMODY L. Carbonate melts and carbonatites[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 289-322. |
[73] | WILLIAMS R W, GILL J B, BRULAND K W. Ra-Th disequilibria systematics: timescale of carbonatite magma formation at Oldoinyo lengai volcano, Tanzania[J]. Geochimica et Cosmochimica Acta, 1986, 50(6): 1249-1259. |
[74] | WEIDENDORFER D, SCHMIDT M W, MATTSSON H B. A common origin of carbonatite magmas[J]. Geology, 2017, 45(6): 507-510. |
[75] |
ANENBURG M, GUZMICS T. Silica is unlikely to be soluble in upper crustal carbonatite melts[J]. Nature Communications, 2023, 14: 942.
DOI PMID |
[76] | DASGUPTA R, HIRSCHMANN M M, WITHERS A C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions[J]. Earth and Planetary Science Letters, 2004, 227(1/2): 73-85. |
[77] | YAXLEY G M, ANENBURG M, TAPPE S, et al. Carbonatites: classification, sources, evolution, and emplacement[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 261-293. |
[78] | ANENBURG M, MAVROGENES J A, FRIGO C, et al. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica[J]. Science Advances, 2020, 6(41): eabb6570. |
[79] | MOORE K R, WALL F, DIVAEV F K, et al. Mingling of carbonate and silicate magmas under turbulent flow conditions: evidence from rock textures and mineral chemistry in sub-volcanic carbonatite dykes, Chagatai, Uzbekistan[J]. Lithos, 2009, 110(1/2/3/4): 65-82. |
[80] | YING J F, ZHOU X H, ZHANG H F. Geochemical and isotopic investigation of the Laiwu? Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source[J]. Lithos, 2004, 75(3/4): 413-426. |
[81] |
范朝熙, 许成, 崔莹, 等. 碳酸岩岩浆与地壳反应综述[J]. 地学前缘, 2022, 29(4): 330-344.
DOI |
[82] | ANENBURG M, MAVROGENES J A. Carbonatitic versus hydrothermal origin for fluorapatite REE-Th deposits: experimental study of REE transport and crustal“antiskarn” metasomatism[J]. American Journal of Science, 2018, 318(3): 335-366. |
[83] | DJEDDI A, PARAT F, BODINIER J L, et al. The syenite-carbonatite complex of ihouhaouene (western Hoggar, Algeria): interplay between alkaline magma differentiation and hybridization of cumulus crystal mushes[J]. Frontiers in Earth Science, 2021, 8: 605116. |
[84] | GIEBEL R J, PARSAPOOR A, WALTER B F, et al. Evidence for magma-wall rock interaction in carbonatites from the kaiserstuhl volcanic complex (southwest Germany)[J]. Journal of Petrology, 2019, 60(6): 1163-1194. |
[85] | DEEGAN F M, TROLL V R, GERTISSER R, et al. Magma-carbonate interaction at merapi volcano, Indonesia[M]//GERTISSER R, TROLL V R, WALTER T R, et al, eds. Active Volcanoes of the World. Cham: Springer International Publishing, 2023: 291-321. |
[86] | WHITLEY S, GERTISSER R, HALAMA R, et al. Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas[J]. Scientific Reports, 2019, 9: 8803. |
[87] | CARTER L B, DASGUPTA R. Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal pressure as a function of temperature and assimilation with arc magmas-Implications for long-term climate[J]. Chemical Geology, 2018, 492: 30-48. |
[88] |
LUSTRINO M, LUCIANI N, STAGNO V. Fuzzy petrology in the origin of carbonatitic/pseudocarbonatitic Ca-rich ultrabasic magma at Polino (central Italy)[J]. Scientific Reports, 2019, 9: 9212.
DOI PMID |
[89] | BARKER D S. Calculated silica activities in carbonatite liquids[J]. Contributions to Mineralogy and Petrology, 2001, 141(6): 704-709. |
[90] | CHAKHMOURADIAN A, REGUIR E, MITCHELL R. Titanite in carbonatitic rocks: genetic dualism and geochemical significance[J]. Periodico di Mineralogia, 2003, 72(SPEC. ISSUE 1): 107-113. |
[91] | HARLOV D E, FÖRSTER H J, SCHMIDT C. High p-T experimental metasomatism of a fluorapatite with significant britholite and fluorellestadite components: implications for LREE mobility during granulite-facies metamorphism[J]. Mineralogical Magazine, 2003, 67(1): 61-72. |
[92] | FENG M, XU C, KYNICKY J, et al. Rare earth element enrichment in Palaeoproterozoic Fengzhen carbonatite from the North China block[J]. International Geology Review, 2016, 58(15): 1940-1950. |
[93] | MASSUYEAU M, GARDÉS E, MORIZET Y, et al. A model for the activity of silica along the carbonatite-kimberlite-mellilitite-basanite melt compositional joint[J]. Chemical Geology, 2015, 418: 206-216. |
[94] | WEI C W, XU C, CHAKHMOURADIAN A R, et al. Carbon-strontium isotope decoupling in carbonatites from caotan (Qinling, China): implications for the origin of calcite carbonatite in orogenic settings[J]. Journal of Petrology, 2020, 61(2): egaa024. |
[95] | WHITLEY S, HALAMA R, GERTISSER R, et al. Magmatic and metasomatic effects of magma-carbonate interaction recorded in calc-silicate xenoliths from merapi volcano (Indonesia)[J]. Journal of Petrology, 2020, 61(4): egaa048. |
[96] | DEEGAN F M, TROLL V R, FREDA C, et al. Magma-carbonate interaction processes and associated CO2 release at merapi volcano, Indonesia: insights from experimental petrology[J]. Journal of Petrology, 2010, 51(5): 1027-1051. |
[97] | CARTER L B, DASGUPTA R. Effect of melt composition on crustal carbonate assimilation: implications for the transition from calcite consumption to skarnification and associated CO2 degassing[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(10): 3893-3916. |
[98] | GAETA M, DI ROCCO T, FREDA C. Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes[J]. Journal of Petrology, 2009, 50(2): 361-385. |
[99] | LUSTRINO M, LUCIANI N, STAGNO V, et al. Experimental evidence on the origin of Ca-rich carbonated melts formed by interaction between sedimentary limestones and mantle-derived ultrabasic magmas[J]. Geology, 2022, 50(4): 476-480. |
[100] | CARTER L B, DASGUPTA R. Hydrous basalt-limestone interaction at crustal conditions: implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs[J]. Earth and Planetary Science Letters, 2015, 427: 202-214. |
[101] | MOLLO S, GAETA M, FREDA C, et al. Carbonate assimilation in magmas: a reappraisal based on experimental petrology[J]. Lithos, 2010, 114(3/4): 503-514. |
[102] | AIUPPA A, FISCHER T P, PLANK T, et al. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005—2015[J]. Scientific Reports, 2019, 9: 5442. |
[103] | IACONO MARZIANO G, GAILLARD F, PICHAVANT M. Limestone assimilation and the origin of CO2 emissions at the alban hills (central Italy): constraints from experimental petrology[J]. Journal of Volcanology and Geothermal Research, 2007, 166(2): 91-105. |
[104] | TROLL V R, DEEGAN F M, JOLIS E M, et al. Magmatic differentiation processes at merapi volcano: inclusion petrology and oxygen isotopes[J]. Journal of Volcanology and Geothermal Research, 2013, 261: 38-49. |
[105] | ALT J C, TEAGLE D A H. The uptake of carbon during alteration of ocean crust[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1527-1535. |
[106] | PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394. |
[107] | 兰春元, 陶仁彪, 张立飞, 等. 俯冲板片的脱碳机制及通量估算: 问题与进展[J]. 岩石学报, 2022, 38(5): 1523-1540. |
[108] | GORMAN P J, KERRICK D M, CONNOLLY J A D. Modeling open system metamorphic decarbonation of subducting slabs[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04007. |
[109] | KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle[J]. Nature, 2001, 411(6835): 293-296. |
[110] | CHEN C F, FÖRSTER M W, FOLEY S F, et al. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles[J]. Nature, 2023, 620(7974): 576-581. |
[111] | MANNING C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16. |
[112] | FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706. |
[113] | LAN C Y, TAO R B, HUANG F, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989. |
[114] | TAO R B, ZHANG L F, TIAN M, et al. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: constraints from petrological observation and experimental simulation[J]. Geochimica et Cosmochimica Acta, 2018, 239: 390-408. |
[115] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[116] | KISEEVA E S, YAXLEY G M, HERMANN J, et al. An experimental study of carbonated eclogite at 3.5—5.5 GPa: implications for silicate and carbonate metasomatism in the cratonic mantle[J]. Journal of Petrology, 2012, 53(4): 727-759. |
[117] |
MASON E, EDMONDS M, TURCHYN A V. Remobilization of crustal carbon may dominate volcanic arc emissions[J]. Science, 2017, 357(6348): 290-294.
DOI PMID |
[118] | DEINES P. The carbon isotope geochemistry of mantle xenoliths[J]. Earth-Science Reviews, 2002, 58(3/4): 247-278. |
[119] | JAVOY M, PINEAU F, DELORME H. Carbon and nitrogen isotopes in the mantle[J]. Chemical Geology, 1986, 57(1/2): 41-62. |
[120] | XU C, KYNICK J, TAO R B, et al. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere[J]. Science Advances, 2017, 3(4): e1601589. |
[121] | TAPPERT R, FODEN J, STACHEL T, et al. Deep mantle diamonds from South Australia: a record of Pacific subduction at the gondwanan margin[J]. Geology, 2009, 37(1): 43-46. |
[122] | ZHENG Y F. Mantle degassing and diamond genesis: a carbon isotope perspective[J]. Chinese Journal of Geochemistry, 1994, 13(4): 305-316. |
[123] | CHEN C F, DAI W, WANG Z C, et al. Calcium isotope fractionation during magmatic processes in the upper mantle[J]. Geochimica et Cosmochimica Acta, 2019, 249: 121-137. |
[124] | TENG F Z, LI W Y, KE S, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166. |
[125] | LIU SG, LI S G. Tracing the deep carbon cycle using metal stable isotopes: opportunities and challenges[J]. Engineering, 2019, 5(3): 448-457. |
[126] | SONG W L, XU C, QI L, et al. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 2015, 64: 756-765. |
[127] | ZHENG H, CHEN H Y, LI D F, et al. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: constraints from titanite U-Pb and molybdenite Re-Os dating[J]. Geoscience Frontiers, 2020, 11(5): 1581-1592. |
[128] | FENG J Y, TANG L, YANG B C, et al. Bastnäsite U-Th-Pb age, sulfur isotope and trace elements of the Huangshui’an deposit: implications for carbonatite-hosted Mo-Pb-REE mineralization in the Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 2022, 143: 104790. |
[129] | WANG C, LIU J C, ZHANG H D, et al. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, Eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785. |
[130] | XU C, CHAKHMOURADIAN A R, TAYLOR R N, et al. Origin of carbonatites in the South Qinling Orogen: implications for crustal recycling and timing of collision between the south and North China blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206. |
[131] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356. |
[132] | SUN H, XIAO Y L, GAO Y J, et al. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction[J]. Contributions to Mineralogy and Petrology, 2013, 165(5): 885-901. |
[133] | WANG X, WANG Z C, CHENG H, et al. Early Cretaceous lamprophyre dyke swarms in Jiaodong Peninsula, eastern North China Craton, and implications for mantle metasomatism related to subduction[J]. Lithos, 2020, 368: 105593. |
[134] | 储同庆. 山东碳酸岩磷灰石的特征及其研究意义[J]. 矿物岩石, 1992, 12(3): 5-12. |
[135] | 夏卫华, 冯志文. 鲁中碳酸岩成岩分析及其含矿性[J]. 地球科学:中国地质大学学报, 1987(3): 63-70. |
[136] | DUAN Z, LI J W. Zircon and titanite U-Pb dating of the zhangjiawa iron skarn deposit, Luxi district, North China Craton: implications for a craton-wide iron skarn mineralization[J]. Ore Geology Reviews, 2017, 89: 309-323. |
[137] | XIE Q H, ZHANG Z C, JIN Z L, et al. The high-grade Fe skarn deposit of jinling, North China Craton: insights into hydrothermal iron mineralization[J]. Ore Geology Reviews, 2021, 138: 104395. |
[138] | ZHU R X, PAN Y X, SHI R P, et al. Palaeomagnetic and 40Ar/39Ar dating constraints on the age of the Jehol Biota and the duration of deposition of the Sihetun fossil-bearing lake sediments, Northeast China[J]. Cretaceous Research, 2007, 28(2): 171-176. |
[139] | HUANG C M, RETALLACK G J, WANG C S. Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China[J]. Cretaceous Research, 2012, 33(1): 42-49. |
[140] | MÉHAY S, KELLER C E, BERNASCONI S M, et al. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis[J]. Geology, 2009, 37(9): 819-822. |
[141] | TEJADA M L G, SUZUKI K, KURODA J, et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event[J]. Geology, 2009, 37(9): 855-858. |
[1] | 兰春元, 张立飞, 陶仁彪, 胡晗, 张丽娟, 王超. 基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述[J]. 地学前缘, 2024, 31(1): 64-76. |
[2] | 陈雪倩, 张立飞. 碳的固定、运输、转移和排放过程:对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339. |
[3] | 漆富成, 李治兴, 张字龙, 王文全, 杨志强, 张岩. 湘西北海相磷块岩的热液脱碳与铀多金属成矿作用[J]. 地学前缘, 2015, 22(4): 188-199. |
[4] | 赵素涛 金振民. 地球深部科学研究的新进展——记2007年美国地球物理联合会(AGU)[J]. 地学前缘, 2008, 15(5): 298-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||