地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 313-339.DOI: 10.13745/j.esf.sf.2022.12.51
收稿日期:
2022-09-14
修回日期:
2022-12-15
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
*张立飞(1963—),男,博士生导师,主要从事变质地质学研究工作。E-mail: 作者简介:
陈雪倩(1996—),女,博士研究生,矿物学、岩石学、矿床学专业。E-mail: chenxueqian@pku.edu.cn
基金资助:
CHEN Xueqian(), ZHANG Lifei*(
)
Received:
2022-09-14
Revised:
2022-12-15
Online:
2023-05-25
Published:
2023-04-27
摘要:
俯冲带背景下,碳在促进岩石熔融、岩浆起源和演化、地球深部的岩石学及动力学等过程中扮演的角色尤为重要。碳的存在形式是由温度、压力、氧逸度以及溶流体的性质等条件控制的,这些以不同形式存在的碳随板块俯冲到达地球深部,而后又通过火山作用等脱气过程被返回地表,便形成了地球深部碳循环过程。固碳和脱碳反应是影响碳在固体地球、海洋和大气圈转换的主要反应。碳的固定包括硅酸盐风化作用、玄武质洋壳的热液交代、海沟外隆的蛇纹石化、有机碳的埋藏和逆风化作用等过程;碳的运输包括沉积成因和交代成因沉积物的俯冲过程;当俯冲碳被输送到地球内部时,它可能被保留在板块内,或者转移到地幔楔中,又或再被循环到地球深部,这将取决于特定构造环境的温压条件和氧化还原状态等。碳的排放包括火山作用、弧前扩散脱气、溶解脱碳、变质反应脱碳和熔融脱碳等过程,这些过程将俯冲下去的碳再一次返回大气,能够平衡俯冲带的碳输入。本文系统地总结了地表及地球深部碳的固定、运输、转移和排放过程中碳的存在形式、碳的迁移和变化以及相关碳通量计算值,分析了目前碳通量差异的原因并阐述了今后需要深入研究的一些关键科学问题。另外,工业革命后,人为成因的CO2释放对于全球气候产生了巨大影响,给地球的自我调节系统带来了额外的压力。在全球低碳经济背景下,我国坚持节能减排、增加森林蓄积量,提出了双碳目标,助力全球应对气候变化。
中图分类号:
陈雪倩, 张立飞. 碳的固定、运输、转移和排放过程:对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339.
CHEN Xueqian, ZHANG Lifei. Carbon sequestration, transport, transfer, and degassing: Insights into the deep carbon cycle[J]. Earth Science Frontiers, 2023, 30(3): 313-339.
图5 来源于俯冲板片的C-H-O流体在向上迁移的过程中温度降低,碳酸盐溶解度随之降低,导致地幔楔中碳酸盐的沉淀(据文献[112]修改)
Fig.5 Mechanism of carbonate precipitation in the mantle wedge. During the upward migration of C-H-O fluid (derived from the subducted slab), carbonate solubility decreases with decreasing fluid temperature, which leads to carbonate precipitation in the mantle wedge. Modified after [112].
图6 脱碳程度与岩石组成和流体成分的关系(据文献[104]修改) 当 X C O 2=0.002 5,约50%泥质岩成分下是完全脱碳的;当 X C O 2=0.005 0和 X C O 2=0.007 5时,分别仅在约25%和10%泥质成分下完全脱碳;当 X C O 2≥0.025(封闭体系),所有成分下的岩石都没有发生脱碳。
Fig.6 Extent of carbon degassing as functions of sediment/fluid compositions. Modified after [104].
图8 碳酸盐(CaCO3)饱和流体中C的等值线(据文献[19]) 虚线—俯冲洋壳底部;实线—俯冲沉积物的顶部;绿色—克马德克群岛;蓝色—阿留申群岛;橙色—智利南部。实心棕色曲线表示蛇纹石的稳定域。黑色粗实线表示变玄武岩和变沉积物的流体饱和固相线。
Fig.8 Contour diagram showing the solubility of carbon in aqueous carbonate fluid as functions of P and T (after [19])
图9 硅质白云岩的温度-压力(MPa)-流体演化(CaO-MgO-SiO2-CO2),垂直方向代表造山带典型的地热梯度(据文献[103])
Fig.9 P - T - a C O 2 diagram showing phase equilibria in siliceous dolomites (after [103])
图10 全球古元古代缝合带、显生宙缝合带和现代俯冲带位置示意图(据文献[9]修改)
Fig.10 Global map indicating the location of modern subduction and ancient sutures formed in the Phanerozoic and Proterozoic. Modified after [9].
图11 流体驱动脱碳反应:中部石英脉和边部Di + Amp + Zo(透辉石+角闪石+黝帘石)切穿了最边缘的含金云母的变碳酸盐岩石,产生大量CO2,进变质反应为:Pl + Cc + Q = Di + Kf + H2O + CO2(斜长石+方解石+石英=透辉石+钾长石+H2O+CO2[156,159])(据文献[9])
Fig.11 Infiltration-driven decarbonation shown in a carbonate rock specimen (after [9])
图12 1990—2021年全球化石燃料燃烧释放CO2量统计(据全球碳计划)
Fig.12 1990—2021 trend in global annual CO2 release from fossil fuel combustion. Modified after Global Carbon Project 2021.
图13 2011—2020年人为活动成因CO2平均释放量和各储层碳储量(据2021全球碳计划)
Fig.13 2011—2020 average annual anthropogenic CO2 release and carbon stock changes in carbon reservoirs. Modified after Global Carbon Project 2021.
[1] | BERNER R A. A new look at the long-term carbon cycle[J]. Geological Society of America Today, 1999, 9(11): 1-6. |
[2] |
BUNDY F P. The P, T phase and reaction diagram for elemental carbon, 1979[J]. Journal of Geophysical Research, 1980, 85(B12): 6930.
DOI URL |
[3] |
DASGUPTA R. Ingassing,storage, and outgassing of terrestrial carbon through geologic time[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183-229.
DOI URL |
[4] |
MÖRNER N A, ETIOPE G. Carbon degassing from the lithosphere[J]. Global and Planetary Change, 2002, 33(1/2): 185-203.
DOI URL |
[5] |
SCHIDLOWSKI M. A 3, 800-million-year isotopic record of life from carbon in sedimentary rocks[J]. Nature, 1988, 333(6171): 313-318.
DOI |
[6] |
HAMMOUDA T, KESHAV S. Melting in the mantle in the presence of carbon:review of experiments and discussion on the origin of carbonatites[J]. Chemical Geology, 2015, 418: 171-188.
DOI URL |
[7] |
HAZEN R M, DOWNS R T, JONES A P, et al. Carbonmineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7-46.
DOI URL |
[8] | 张立飞, 陶仁彪, 朱建江. 俯冲带深部碳循环: 问题与探讨[J]. 矿物岩石地球化学通报, 2017, 36(2): 185-196, 182. |
[9] |
STEWART E M, AGUE J J, FERRY J M, et al. Carbonation and decarbonation reactions:implications for planetary habitability[J]. American Mineralogist, 2019, 104(10): 1369-1380.
DOI URL |
[10] |
KELEMEN P B, MATTER J, STREIT E E, et al. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 545-576.
DOI URL |
[11] |
AGUE J J, NICOLESCU S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geoscience, 2014, 7(5): 355-360.
DOI |
[12] |
FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
DOI |
[13] |
KERRICK D M. Present and past nonanthropogenic CO2 degassing from the solid earth[J]. Reviews of Geophysics, 2001, 39(4): 565-585.
DOI URL |
[14] |
STOREY M, DUNCAN R A, SWISHER C C. Paleocene-Eocenethermal maximum and the opening of the Northeast Atlantic[J]. Science, 2007, 316(5824): 587-589.
DOI URL |
[15] |
HAZEN R M, SCHIFFRIES C M. Why deep carbon?[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 1-6.
DOI URL |
[16] | HOLLAND H D. The chemistry of the atmosphere and oceans[J]. New York, Wiley Interscience, 1978: 351. |
[17] |
DASGUPTA R, HIRSCHMANN M M. The deep carbon cycle and melting in Earth’s interior[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 1-13.
DOI URL |
[18] | EVANS M J, DERRY L A, FRANCE-LANORD C. Degassing of metamorphic carbon dioxide from the Nepal Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04021. |
[19] | KELEMEN P B, MANNING C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997-E4006. |
[20] | LITASOV K D, SHATSKIY A. Carbon-bearing magmas in the earth’s deep interior[M]// Magmas under pressure. Amsterdam: Elsevier, 2018: 43-82. |
[21] | SLEEP N H. Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11): Q11010. |
[22] |
AIUPPA A, CASETTA F, COLTORTI M, et al. Carbon concentration increases with depth of melting in Earth’s upper mantle[J]. Nature Geoscience, 2021, 14(9): 697-703.
DOI |
[23] |
FISCHER R A, COTTRELL E, HAURI E, et al. The carbon content of Earth and its core[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 8743-8749.
DOI PMID |
[24] | HUNT J M. Distribution of carbon in crust of earth: geological NOTES[J]. American Association of Petroleum Geologists Bulletin, 1972, 56(11): 2273-2277. |
[25] |
LE VOYER M, KELLEY K A, COTTRELL E, et al. Heterogeneity in mantle carbon content from CO2-undersaturated basalts[J]. Nature Communications, 2017, 8: 14062.
DOI |
[26] |
MILLER W G R, MACLENNAN J, SHORTTLE O, et al. Estimating the carbon content of the deep mantle with Icelandic melt inclusions[J]. Earth and Planetary Science Letters, 2019, 523: 115699.
DOI URL |
[27] |
NAKAJIMA Y, TAKAHASHI E, SUZUKI T, et al. “Carbon in the core” revisited[J]. Physics of the Earth and Planetary Interiors, 2009, 174(1/2/3/4): 202-211.
DOI URL |
[28] |
FRIEDLINGSTEIN P, HOUGHTON R A, MARLAND G, et al. Update on CO2 emissions[J]. Nature Geoscience, 2010, 3(12): 811-812.
DOI |
[29] |
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
PMID |
[30] |
MATTHEWS H D, TOKARSKA K B, NICHOLLS Z R J, et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy[J]. Nature Geoscience, 2020, 13(12): 769-779.
DOI |
[31] |
YUE X L, GAO Q X. Contributions of natural systems and human activity to greenhouse gas emissions[J]. Advances in Climate Change Research, 2018, 9(4): 243-252.
DOI URL |
[32] |
YAXLEY G M, BREY G P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites[J]. Contributions to Mineralogy and Petrology, 2004, 146(5): 606-619.
DOI URL |
[33] |
BECKER J A, BICKLE M J, GALY A, et al. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 616-629.
DOI URL |
[34] |
EVANS K A, BICKLE M J, SKELTON A D L, et al. Reductive deposition of graphite at lithological margins in East Central Vermont: a Sr, C and O isotope study[J]. Journal of Metamorphic Geology, 2002, 20(8): 781-798.
DOI URL |
[35] | LUTH R W, FEI Y, BERTKA C, et al. Carbon and carbonates in the mantle[J]. Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R(Joe) Boyd, 1999, 6: 297-316. |
[36] |
HAMMOUDA T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 357-368.
DOI URL |
[37] |
DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide[J]. Nature, 2006, 440(7084): 659-662.
DOI |
[38] |
DASGUPTA R, HIRSCHMANN M M. Effect of variable carbonate concentration on the solidus of mantle peridotite[J]. American Mineralogist, 2007, 92(2/3): 370-379.
DOI URL |
[39] |
BRENKER F E, VOLLMER C, VINCZE L, et al. Carbonates from the lower part of transition zone or even the lower mantle[J]. Earth and Planetary Science Letters, 2007, 260(1/2): 1-9.
DOI URL |
[40] |
FROST D J, MCCAMMON C A. The redox state of earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 389-420.
DOI URL |
[41] |
NESTOLA F, KOROLEV N, KOPYLOVA M, et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle[J]. Nature, 2018, 555(7695): 237-241.
DOI URL |
[42] |
KISEEVA E S, LITASOV K D, YAXLEY G M, et al. Melting and phase relations of carbonated eclogite at 9-21 GPa and the petrogenesis of alkali-rich melts in the deep mantle[J]. Journal of Petrology, 2013, 54(8): 1555-1583.
DOI URL |
[43] | STACHEL T, LUTH R W. Diamond formation: where, when and how?[J]. Lithos, 2015, 220/221/222/223: 200-220. |
[44] |
NESTOLA F. Inclusions in super-deep diamonds: windows on the very deep Earth[J]. Rendiconti Lincei, 2017, 28(4): 595-604.
DOI URL |
[45] |
LORD O T, WALTER M J, DASGUPTA R, et al. Melting in the Fe-C system to 70 GPa[J]. Earth and Planetary Science Letters, 2009, 284(1/2): 157-167.
DOI URL |
[46] |
OGANOV A R, ONO S, MA Y M, et al. Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 38-47.
DOI URL |
[47] |
ONO S, KIKEGAWA T, OHISHI Y. High-pressure transition of CaCO3[J]. American Mineralogist, 2007, 92(7): 1246-1249.
DOI URL |
[48] |
ANDERSON K R, POLAND M P. Abundant carbon in the mantle beneath Hawai‘I[J]. Nature Geoscience, 2017, 10(9): 704-708.
DOI URL |
[49] | CARTIGNY P, PINEAU F, AUBAUD C, et al. Towards a consistent mantle carbon flux estimate:insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N)[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 672-685. |
[50] |
MICHAEL P J, GRAHAM D W. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts[J]. Lithos, 2015, 236/237: 338-351.
DOI URL |
[51] |
SAAL A E, HAURI E H, LANGMUIR C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle[J]. Nature, 2002, 419(6906): 451-455.
DOI |
[52] |
BAJGAIN S K, MOOKHERJEE M, DASGUPTA R. Earth’s core could be the largest terrestrial carbon reservoir[J]. Communications Earth and Environment, 2021, 2: 165.
DOI |
[53] |
DASGUPTA R, WALKER D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4627-4641.
DOI URL |
[54] |
WOOD B J, LI J, SHAHAR A. Carbon in the core: its influence on the properties of core and mantle[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 231-250.
DOI URL |
[55] |
MCCAMMON C, BUREAU H, CLEAVES J H II, et al. Deep Earth carbon reactions through time and space[J]. American Mineralogist, 2020, 105(1): 22-27.
DOI URL |
[56] |
MASHINO I, MIOZZI F, HIROSE K, et al. Melting experiments on the Fe-C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core[J]. Earth and Planetary Science Letters, 2019, 515: 135-144.
DOI URL |
[57] | MCDONOUGH W F. Compositional model for the earth’s core[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 559-577. |
[58] |
WOOD B J. Carbon in the core[J]. Earth and Planetary Science Letters, 1993, 117(3/4): 593-607.
DOI URL |
[59] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
DOI URL |
[60] | BERNER R A, BERNER E K. Silicate weathering and climate[M]// BERNER R A, BERNER E K. Tectonic uplift and climate change. Boston, MA: Springer US, 1997: 353-365. |
[61] | HILLEY G E, PORDER S. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 16855-16859. |
[62] |
STEWART J A, JAMES R H, ANAND P, et al. Silicate weathering and carbon cycle controls on the Oligocene-Miocene transition glaciation[J]. Paleoceanography, 2017, 32(10): 1070-1085.
DOI URL |
[63] |
DUTKIEWICZ A, MÜLLER R D, CANNON J, et al. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous[J]. Geology, 2019, 47(1): 91-94.
DOI URL |
[64] |
MAHER K, CHAMBERLAIN C P. Hydrologic regulation of chemical weathering and the geologic carbon cycle[J]. Science, 2014, 343(6178): 1502-1504.
DOI PMID |
[65] |
DESSERT C, DUPRÉ B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology, 2003, 202(3/4): 257-273.
DOI URL |
[66] |
ALT J C, TEAGLE D A H. The uptake of carbon during alteration of ocean crust[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1527-1535.
DOI URL |
[67] |
GILLIS K M, COOGAN L A. Secular variation in carbon uptake into the ocean crust[J]. Earth and Planetary Science Letters, 2011, 302(3/4): 385-392.
DOI URL |
[68] |
MÜLLER R D, DUTKIEWICZ A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities[J]. Science Advances, 2018, 4(2): eaaq0500.
DOI URL |
[69] |
ALT J C, HONNOREZ J, LAVERNE C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B:mineralogy, chemistry and evolution of seawater-basalt interactions[J]. Journal of Geophysical Research, 1986, 91(B10): 10309.
DOI URL |
[70] |
MCDUFF R E, MOREL F M M. The geochemical control of seawater (sillen revisited)[J]. Environmental Science and Technology, 1980, 14(10): 1182-1186.
DOI URL |
[71] |
SPIVACK A J, STAUDIGEL H. Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater[J]. Chemical Geology, 1994, 115(3/4): 239-247.
DOI URL |
[72] |
WALLMANN K, ALOISI G, HAECKEL M, et al. Silicate weathering in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918.
DOI URL |
[73] |
MATTER J M, BROECKER W S, STUTE M, et al. Permanent carbon dioxide storage into basalt: the CarbFix pilot project, Iceland[J]. Energy Procedia, 2009, 1(1): 3641-3646.
DOI URL |
[74] |
GOLDBERG D S, TAKAHASHI T, SLAGLE A L. Carbon dioxide sequestration in deep-sea basalt[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9920-9925.
DOI PMID |
[75] |
COOGAN L A, GILLIS K M. Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(6): 1771-1786.
DOI URL |
[76] |
CANNAT M, MEVEL C, MAIA M, et al. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°-24°N)[J]. Geology, 1995, 23(1): 49-52.
DOI URL |
[77] |
CARLSON R L. The abundance of ultramafic rocks in Atlantic Ocean crust[J]. Geophysical Journal International, 2001, 144(1): 37-48.
DOI URL |
[78] | BIRD P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027. |
[79] |
PEACOCK S M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?[J]. Geology, 2001, 29(4): 299.
DOI URL |
[80] |
NAIF S, KEY K, CONSTABLE S, et al. Water-rich bending faults at the Middle America Trench[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2582-2597.
DOI URL |
[81] |
IVANDIC M, GREVEMEYER I, BIALAS J, et al. Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data[J]. Geophysical Journal International, 2010, 180(3): 1253-1264.
DOI URL |
[82] |
ALT J C, SCHWARZENBACH E M, FRÜH-GREEN G L, et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism[J]. Lithos, 2013, 178: 40-54.
DOI URL |
[83] |
MENDONÇA R, MÜLLER R A, CLOW D, et al. Organic carbon burial in global lakes and reservoirs[J]. Nature Communications, 2017, 8(1): 1694.
DOI PMID |
[84] |
TRANVIK L J, DOWNING J A, COTNER J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6,part2): 2298-2314.
DOI URL |
[85] |
BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
DOI URL |
[86] |
KUMP L R, ARTHUR M A. Interpreting carbon-isotope excursions: carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/2/3): 181-198.
DOI URL |
[87] |
ISSON T T, PLANAVSKY N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J]. Nature, 2018, 560(7719): 471-475.
DOI |
[88] | BEBOUT G E. Trace element and isotopic fluxes/subducted slab[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2007: 1-50. |
[89] |
BECKER H, ALTHERR R. Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle[J]. Nature, 1992, 358(6389): 745-748.
DOI |
[90] |
LÜ Z, BUCHER K, ZHANG L F. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan[J]. Journal of Asian Earth Sciences, 2013, 76: 37-47.
DOI URL |
[91] |
OGASAWARA Y, OHTA M, FUKASAWA K, et al. Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan[J]. The Island Arc, 2000, 9(3): 400-416.
DOI URL |
[92] |
OHTA M, MOCK T, OGASAWARA Y, et al. Oxygen, carbon, and strontium isotope geochemistry of diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav Massif, Kazakhstan[J]. Lithos, 2003, 70(3/4): 77-90.
DOI URL |
[93] |
PROYER A, ROLFO F, ZHU Y F, et al. Ultrahigh-pressure metamorphism in the magnesite+aragonite stability field: evidence from two impure marbles from the Dabie-Sulu UHPM belt[J]. Journal of Metamorphic Geology, 2013, 31(1): 35-48.
DOI URL |
[94] |
ZHANG L F, ELLIS D J, ARCULUS R J, et al. ‘Forbidden zone’ subduction of sediments to 150 km depth-the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China[J]. Journal of Metamorphic Geology, 2003, 21(6): 523-529.
DOI URL |
[95] |
SHIREY S B, CARTIGNY P, FROST D J, et al. Diamonds and the geology of mantle carbon[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 355-421.
DOI URL |
[96] |
IZRAELI E S, HARRIS J W, NAVON O. Brine inclusions in diamonds: a new upper mantle fluid[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 323-332.
DOI URL |
[97] |
KAMINSKY F V, WIRTH R, SCHREIBER A. Carbonatitic inclusions indeep mantle diamond from juina, Brazil: new minerals in the carbonate-halide association[J]. The Canadian Mineralogist, 2013, 51(5): 669-688.
DOI URL |
[98] |
NAVON O, HUTCHEON I D, ROSSMAN G R, et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988, 335(6193): 784-789.
DOI |
[99] |
WANG A L, PASTERIS J D, MEYER H O A, et al. Magnesite-bearing inclusion assemblage in natural diamond[J]. Earth and Planetary Science Letters, 1996, 141(1/2/3/4): 293-306.
DOI URL |
[100] |
CHEN C F, LIU Y S, FOLEY S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton[J]. Chemical Geology, 2017, 466: 641-653.
DOI URL |
[101] |
LI Y S, ZHANG J X, MOSTOFA K M G, et al. Petrogenesis of carbonatites in the Luliangshan region, North Qaidam, northern Tibet, China: evidence for recycling of sedimentary carbonate and mantle metasomatism within a subduction zone[J]. Lithos, 2018, 322: 148-165.
DOI URL |
[102] |
XUE S, LING M X, LIU Y L, et al. Recycling of subducted carbonates:formation of the taohuala mountain carbonatite, North China Craton[J]. Chemical Geology, 2018, 478: 89-101.
DOI URL |
[103] | BUCHER K, GRAPES R. Petrogenesis of metamorphic rocks[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. |
[104] |
COOK-KOLLARS J, BEBOUT G E, COLLINS N C, et al. Subduction zone metamorphic pathway for deep carbon cycling: I. evidence from HP/UHP metasedimentary rocks, Italian Alps[J]. Chemical Geology, 2014, 386: 31-48.
DOI URL |
[105] | GORMAN P J, KERRICK D M, CONNOLLY J A D. Modeling open system metamorphic decarbonation of subducting slabs[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04007. |
[106] |
STEWART E M, AGUE J J. Pervasive subduction zone devolatilization recycles CO2 into the forearc[J]. Nature Communications, 2020, 11(1): 6220.
DOI |
[107] |
CLIFT P D. A revised budget for Cenozoic sedimentary carbon subduction[J]. Reviews of Geophysics, 2017, 55(1): 97-125.
DOI URL |
[108] |
COOGAN L A, DOSSO S E. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater[J]. Earth and Planetary Science Letters, 2015, 415: 38-46.
DOI URL |
[109] | JARRARD R D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium[J]. Geochemistry, Geophysics,Geosystems, 2003, 4(5): 8950. |
[110] |
HILTON D R, FISCHER T P, MARTY B. Noblegases and volatile recycling at subduction zones[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 319-370.
DOI URL |
[111] |
OKAMOTO A, OYANAGI R, YOSHIDA K, et al. Rupture of wet mantle wedge by self-promoting carbonation[J]. Communications Earth and Environment, 2021, 2: 151.
DOI |
[112] |
PICCOLI F, VITALE BROVARONE A, BEYSSAC O, et al. Carbonation by fluid-rock interactions at high-pressure conditions: implications for carbon cycling in subduction zones[J]. Earth and Planetary Science Letters, 2016, 445: 146-159.
DOI URL |
[113] |
FALK E S, KELEMEN P B. Geochemistry and petrology of listvenite in the samail ophiolite, sultanate of Oman: complete carbonation of peridotite during ophiolite emplacement[J]. Geochimica et Cosmochimica Acta, 2015, 160: 70-90.
DOI URL |
[114] |
ZHAO D, ROGERS G, WANG K. Tomographic imaging of Cascadia subduction zone in and around Vancouver Island[J]. Earth Planets and Space, 2001, 53: 285-293.
DOI URL |
[115] |
SCAMBELLURI M, BEBOUT G E, BELMONTE D, et al. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling[J]. Earth and Planetary Science Letters, 2016, 441: 155-166.
DOI URL |
[116] |
SIEBER M J, HERMANN J, YAXLEY G M. An experimental investigation of C-O-H fluid-driven carbonation of serpentinites under forearc conditions[J]. Earth and Planetary Science Letters, 2018, 496: 178-188.
DOI URL |
[117] |
KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle[J]. Nature, 2001, 411(6835): 293-296.
DOI |
[118] |
KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling[J]. Earth and Planetary Science Letters, 2001, 189(1/2): 19-29.
DOI URL |
[119] |
MASON E, EDMONDS M, TURCHYN A V. Remobilization of crustal carbon may dominate volcanic arc emissions[J]. Science, 2017, 357(6348): 290-294.
DOI PMID |
[120] |
DESCHAMPS F, GUILLOT S, GODARD M, et al. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones[J]. Chemical Geology, 2010, 269(3/4): 262-277.
DOI URL |
[121] |
SKELTON A. Flux rates for water and carbon during greenschist facies metamorphism[J]. Geology, 2011, 39(1): 43-46.
DOI URL |
[122] |
TAO R B, ZHANG L F, LI S G, et al. Significant contrast in the Mg-C-O isotopes of carbonate between carbonated eclogite and marble from the S.W. Tianshan UHP subduction zone:evidence for two sources of recycled carbon[J]. Chemical Geology, 2018, 483: 65-77.
DOI URL |
[123] |
ZHU J J, ZHANG L F, LÜ Z, et al. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: implications for deep carbon cycle[J]. Journal of Asian Earth Sciences, 2018, 153: 307-324.
DOI URL |
[124] | SCHMIDT M W, POLI S. Devolatilization during subduction[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 669-701. |
[125] |
SCHMIDT M W, VIELZEUF D, AUZANNEAU E. Melting and dissolution of subducting crust at high pressures: the key role of white mica[J]. Earth and Planetary Science Letters, 2004, 228(1/2): 65-84.
DOI URL |
[126] |
KAWAMOTO T, HOLLOWAY J. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals[J]. Science, 1997, 276(5310): 240-243.
PMID |
[127] |
MYSEN B O, WHEELER K. Solubility behavior of water in haploandesitic melts at high pressure and high temperature[J]. American Mineralogist, 2000, 85(9): 1128-1142.
DOI URL |
[128] |
DUNCAN M S, DASGUPTA R. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5-3.0 GPa-implications for carbon flux in subduction zones[J]. Geochimica et Cosmochimica Acta, 2014, 124: 328-347.
DOI URL |
[129] |
MALUSÀ M G, FREZZOTTI M L, FERRANDO S, et al. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends[J]. Scientific Reports, 2018, 8: 4740.
DOI PMID |
[130] |
MALLIK A, DASGUPTA R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas[J]. Journal of Petrology, 2013, 54(11): 2267-2300.
DOI URL |
[131] |
BEHN M D, KELEMEN P B, HIRTH G, et al. Diapirs as the source of the sediment signature in arc lavas[J]. Nature Geoscience, 2011, 4(9): 641-646.
DOI |
[132] | KELEMEN P B, HANGHØJ K, GREENE A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 749-806. |
[133] |
MARSCHALL H R, SCHUMACHER J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12): 862-867.
DOI |
[134] | PLANK T. The chemical composition of subducting sediments[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 607-629. |
[135] |
WYLLIE P J, HUANG W L. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications[J]. Contributions to Mineralogy and Petrology, 1976, 54(2): 79-107.
DOI URL |
[136] |
TSUNO K, DASGUPTA R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon[J]. Contributions to Mineralogy and Petrology, 2011, 161(5): 743-763.
DOI URL |
[137] |
TSUNO K, DASGUPTA R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction[J]. Earth and Planetary Science Letters, 2012, 319/320: 185-196.
DOI URL |
[138] |
AIUPPA A, FISCHER T P, PLANK T, et al. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005-2015[J]. Scientific Reports, 2019, 9(1): 5442.
DOI |
[139] |
LEE C T A, SHEN B, SLOTNICK B S, et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change[J]. Geosphere, 2013, 9(1): 21-36.
DOI URL |
[140] |
LI J, REDFERN S A T, GIOVANNELLI D. Introduction: deep carbon cycle through five reactions[J]. American Mineralogist, 2019, 104(4): 465-467.
DOI URL |
[141] | SNYDER G, POREDA R, HUNT A, et al. Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(10): 2001GC000163. |
[142] |
MARTY B, TOLSTIKHIN I N. CO2 fluxes from mid-ocean ridges, arcs and plumes[J]. Chemical Geology, 1998, 145(3/4): 233-248.
DOI URL |
[143] |
LE VOYER M, HAURI E H, COTTRELL E, et al. Carbonfluxes and primary magma CO2 contents along the global mid-ocean ridge system[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(3): 1387-1424.
DOI URL |
[144] |
JOHNSTON F K B, TURCHYN A V, EDMONDS M. Decarbonation efficiency in subduction zones:implications for warm Cretaceous climates[J]. Earth and Planetary Science Letters, 2011, 303(1/2): 143-152.
DOI URL |
[145] | DAI J G, WANG C S, LIU S A, et al. Deep carbon cycle recorded by calcium-silicate rocks (rodingites) in a subduction-related ophiolite[J]. Geophysical Research Letters, 2016, 43(22): 11635-11643. |
[146] |
SEWARD T M, KERRICK D M. Hydrothermal CO2 emission from the taupo volcanic zone, new zealand[J]. Earth and Planetary Science Letters, 1996, 139(1/2): 105-113.
DOI URL |
[147] |
JAMES E R, MANGA M, ROSE T P. CO2 degassing in the Oregon cascades[J]. Geology, 1999, 27(9): 823-826.
DOI URL |
[148] |
JAMES E R, MANGA M, ROSE T P, et al. The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow[J]. Journal of Hydrology, 2000, 237(1/2): 100-112.
DOI URL |
[149] |
BARRY P H, DE MOOR J M, GIOVANNELLI D, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle[J]. Nature, 2019, 568(7753): 487-492.
DOI |
[150] |
GAILLARDET J, GALY A. Himalaya: carbon sink or source?[J]. Science, 2008, 320(5884): 1727-1728.
DOI URL |
[151] | RAMOS E, LACKEY J S, BARNES J, et al. Remnants andrates of metamorphic decarbonation in continental arcs[J]. GSA Today, 2020, 30(5): 4-10. |
[152] |
AGUE J J. Release of CO2 from carbonate rocks during regional metamorphism of lithologically heterogeneous crust[J]. Geology, 2000, 28(12): 1123-1126.
DOI URL |
[153] |
BURGESS S D, MUIRHEAD J D, BOWRING S A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction[J]. Nature Communications, 2017, 8(1): 164.
DOI PMID |
[154] |
GANINO C, ARNDT N T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces[J]. Geology, 2009, 37(4): 323-326.
DOI URL |
[155] |
BARTON M D, HANSON R B. Magmatism and the development of low-pressure metamorphic belts:implications from the western United States and thermal modeling[J]. Geological Society of America Bulletin, 1989, 101(8): 1051-1065.
DOI URL |
[156] |
STEWART E M, AGUE J J. Infiltration-driven metamorphism, New England, USA:regional CO2 fluxes and implications for Devonian climate and extinctions[J]. Earth and Planetary Science Letters, 2018, 489: 123-134.
DOI URL |
[157] | CHIODINI G, FRONDINI F, CARDELLINI C, et al. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers:the case of central Apennine, Italy[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8423-8434. |
[158] |
KERRICK D M, CALDEIRA K. Metamorphic CO2 degassing from orogenic belts[J]. Chemical Geology, 1998, 145(3/4): 213-232.
DOI URL |
[159] |
AGUE J J. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, wepawaug schist, Connecticut, USA[J]. American Journal of Science, 2003, 303(9): 753-816.
DOI URL |
[160] |
PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243.
DOI URL |
[161] |
CAMPBELL K A, FARMER J D, DES MARAIS D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments[J]. Geofluids, 2002, 2(2): 63-94.
DOI URL |
[162] |
SANO Y, WILLIAMS S N. Fluxes of mantle and subducted carbon along convergent plate boundaries[J]. Geophysical Research Letters, 1996, 23(20): 2749-2752.
DOI URL |
[163] |
POLI S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids[J]. Nature Geoscience, 2015, 8(8): 633-636.
DOI |
[164] |
NEWTON R C, MANNING C E. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones[J]. American Mineralogist, 2002, 87(10): 1401-1409.
DOI URL |
[165] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[166] |
HERMANN J, ZHENG Y F, RUBATTO D. Deepfluids in subducted continental crust[J]. Elements, 2013, 9(4): 281-287.
DOI URL |
[167] |
MANNING C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16.
DOI URL |
[168] |
NI H W, ZHANG L, XIONG X L, et al. Supercritical fluids at subduction zones:evidence, formation condition, and physicochemical properties[J]. Earth-Science Reviews, 2017, 167: 62-71.
DOI URL |
[169] |
ZHENG Y F, XIA Q X, CHEN R X, et al. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision[J]. Earth-Science Reviews, 2011, 107(3/4): 342-374.
DOI URL |
[170] |
HERMANN J, SPANDLER C, HACK A, et al. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:implications for element transfer in subduction zones[J]. Lithos, 2006, 92(3/4): 399-417.
DOI URL |
[171] |
KAWAMOTO T, KANZAKI M, MIBE K, et al. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(46): 18695-18700.
DOI PMID |
[172] | HERMANN J, RUBATTO D. Subduction of continental crust to mantle depth[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 309-340. |
[173] | 倪怀玮, 王沁霞, 张力, 等. 超临界地质流体的形成条件[J]. 矿物岩石地球化学通报, 2020, 39(3): 472-478. |
[174] |
GHOSH S, OHTANI E, LITASOV K D, et al. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle[J]. Chemical Geology, 2009, 262(1/2): 17-28.
DOI URL |
[175] |
THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79.
DOI |
[176] |
AVANZINELLI R, CASALINI M, ELLIOTT T, et al. Carbon fluxes from subducted carbonates revealed by uranium excess at Mount Vesuvius, Italy[J]. Geology, 2018, 46(3): 259-262.
DOI URL |
[177] |
HORTON F. Rapid recycling of subducted sedimentary carbon revealed by Afghanistan carbonatite volcano[J]. Nature Geoscience, 2021, 14(7): 508-512.
DOI |
[178] |
AVANZINELLI R, LUSTRINO M, MATTEI M, et al. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region:significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins[J]. Lithos, 2009, 113(1/2): 213-227.
DOI URL |
[179] |
BURKE A, PRESENT T M, PARIS G, et al. Sulfur isotopes in rivers:insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle[J]. Earth and Planetary Science Letters, 2018, 496: 168-177.
DOI URL |
[180] | PETSCH S T. Weathering of organic carbon[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 217-238. |
[181] |
CAO S Y, NEUBAUER F. Graphitic material in fault zones: implications for fault strength and carbon cycle[J]. Earth-Science Reviews, 2019, 194: 109-124.
DOI URL |
[182] |
CHOULGA M, JANSSENS-MAENHOUT G, SUPER I, et al. Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation[J]. Earth System Science Data, 2021, 13(11): 5311-5335.
DOI URL |
[183] | MÉLIÈRES M A, MARÉCHAL C. Climate change: past, present, and future[M]. Hoboken: Wiley Blackwell, 2015: 197-312. |
[184] |
BODEN T A, MARLAND G, ANDRES R J. Global, regional, and national fossil fuel CO2 emissions: 1751-2017[R]. U.S. Department of Energy Office of Scientific and Technical Information, 2020. doi:https://doi.org/10.15485/1712447
DOI |
[185] |
ANDREW R M. Global CO2 emissions from cement production, 1928-2018[J]. Earth System Science Data, 2019, 11(4): 1675-1710.
DOI URL |
[186] | 方琦, 钱立华, 鲁政委. 我国实现碳达峰与碳中和的碳排放量测算[J]. 环境保护, 2021, 49(16): 49-54. |
[187] |
OLAJIRE A A. A review of mineral carbonation technology in sequestration of CO2[J]. Journal of Petroleum Science and Engineering, 2013, 109: 364-392.
DOI URL |
[188] |
REINER D M. Learning through a portfolio of carbon capture and storage demonstration projects[J]. Nature Energy, 2016, 1: 15011.
DOI |
[189] |
SNÆBJÖRNSDÓTTIR S Ó, SIGFÚSSON B, MARIENI C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth and Environment, 2020, 1(2): 90-102.
DOI |
[190] | WIESE F, FRIDRIKSSON T, ÁRMANNSSON H. CO2 fixation by calcite in high-temperature geothermal systems in Iceland[J]. Report ÍSOR-2008/003, 2008. |
[191] |
LIU Y S, CHEN C F, HE D T, et al. Deep carbon cycle in subduction zones[J]. Science China Earth Sciences, 2019, 62(11): 1764-1782.
DOI |
[192] |
PLANK T, LANGMUIRC H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
DOI URL |
[193] | 兰春元, 陶仁彪, 张立飞, 等. 俯冲板片的脱碳机制及通量估算:问题与进展[J]. 岩石学报, 2022, 38(5): 1523-1540. |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 鲁安怀, 李艳, 丁竑瑞, 王长秋, 许晓明, 刘菲菲, 刘雨薇, 朱莹, 黎晏彰. 天然矿物光电效应:矿物非经典光合作用[J]. 地学前缘, 2020, 27(5): 179-194. |
[3] | 赵斐宇,姜素华,李三忠,曹伟,汪刚,张慧璇,高嵩. 中国东部无机CO2气藏与(古)太平洋板块俯冲关联[J]. 地学前缘, 2017, 24(4): 370-384. |
[4] | 李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159. |
[5] | 张舟,张宏福. 金刚石与深部碳循环[J]. 地学前缘, 2011, 18(3): 268-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||