地学前缘 ›› 2020, Vol. 27 ›› Issue (5): 179-194.DOI: 10.13745/j.esf.sf.2020.5.35
鲁安怀(), 李艳, 丁竑瑞, 王长秋, 许晓明, 刘菲菲, 刘雨薇, 朱莹, 黎晏彰
收稿日期:
2020-04-15
修回日期:
2020-05-28
出版日期:
2020-09-25
发布日期:
2020-09-25
作者简介:
鲁安怀(1962—),男,博士,教授,主要从事环境矿物学研究。E-mail: ahlu@pku.edu.cn
基金资助:
LU Anhuai(), LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuwei, ZHU Ying, LI Yanzhang
Received:
2020-04-15
Revised:
2020-05-28
Online:
2020-09-25
Published:
2020-09-25
摘要:
地球上生物因受到太阳光辐射作用而进化出结构精致的光合作用系统。太阳光辐射对地球表面广泛分布的无机矿物的影响与响应机制长期未被重视与理解。我们新发现的地表“矿物膜”转化太阳能系统,具有潜在的产氧固碳作用,体现出自然界中固有的矿物光电效应与非经典光合作用。本文在总结自然界中矿物光电子能量特征,特别是地表“矿物膜”特征及其光电效应性能的基础上,重点探讨铁锰氧化物矿物表现出的光电效应、产氧固碳作用与地质记录。提出矿物享有光电效应特性,地表“矿物膜”富含水钠锰矿、针铁矿、赤铁矿等天然半导体矿物,在日光辐射下具有稳定而灵敏的光电转换性能,产生矿物光电子能量;提出矿物拥有非经典光合作用的性能,自然界无机矿物转化太阳能系统类似生物光合作用吸收转化太阳能的产氧固碳系统,地表“矿物膜”光催化裂解水产氧作用及其转化大气和海洋二氧化碳为碳酸盐矿物作用,孕育出“矿物光合作用”;提出矿物具有促进生物光合作用的功能,生物光合作用中心Mn4CaO5在裂解水产氧过程中产生成分和结构类似水钠锰矿的锰簇化合物结构体,初步认为水钠锰矿可能促使蓝细菌光合作用系统的起源,矿物影响与削弱水分子氢键以改变水的性质,可提高水的分解程度与光合作用效率,为进一步探索矿物促进生物光合作用机理提供科学技术突破的机遇。
中图分类号:
鲁安怀, 李艳, 丁竑瑞, 王长秋, 许晓明, 刘菲菲, 刘雨薇, 朱莹, 黎晏彰. 天然矿物光电效应:矿物非经典光合作用[J]. 地学前缘, 2020, 27(5): 179-194.
LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuwei, ZHU Ying, LI Yanzhang. Natural mineral photoelectric effect: non-classical mineral photosynthesis[J]. Earth Science Frontiers, 2020, 27(5): 179-194.
图1 自然界中三种重要能量形式——太阳光子、矿物光电子和元素价电子[2]
Fig.1 Three significant energy carriers in nature: solar photons, mineralphotoelectrons and elemental valence electrons. Adapted from [2].
图2 地表“矿物膜”构成地球“新圈层”[6]
Fig.2 A schematic diagram of the natural photosynthesis process, noting the “new sphere” of the “mineral membrane” as the topmost layer of the Earth surface. Adapted from [6].
图4 自然光合作用和人工光合作用中Mn4CaO5的结构和性能比较[28]
Fig.4 Structural and functional comparisons of Mn4CaO5 in the natural and artificial photosynthesis processes. Adapted from [28].
图6 生物光合作用PSII产氧过程中Mn4CaO5结构变化特征[39]
Fig.6 Structural transformation of Mn4CaO5 during biologic photosynthesis-II and oxygen-evolving process. Adapted from [39].
光反应部位 | 催化状态 | 产氧过程 |
---|---|---|
生物PSⅡ | S1-S3 | Mn(Ⅲ)逐步被氧化 |
水钠锰矿 | S1-S4 | Mn(Ⅲ)逐步被氧化 |
生物PSⅡ | S4 | 形成O—O键 |
水钠锰矿 | S5 | 形成O—O键 |
生物PSⅡ | S4-S0-S1 | Mn(Ⅳ)被还原,H2O被氧化,释放O2 |
水钠锰矿 | S5-S6-S1 | Mn(Ⅳ)被还原,H2O被氧化,释放O2 |
表1 水钠锰矿与生物光合作用PSII产氧过程比较[39]
Table 1 Comparison of oxygen production mechanisms of birnessite and biologic photosynthesis-II. Adapted from [39].
光反应部位 | 催化状态 | 产氧过程 |
---|---|---|
生物PSⅡ | S1-S3 | Mn(Ⅲ)逐步被氧化 |
水钠锰矿 | S1-S4 | Mn(Ⅲ)逐步被氧化 |
生物PSⅡ | S4 | 形成O—O键 |
水钠锰矿 | S5 | 形成O—O键 |
生物PSⅡ | S4-S0-S1 | Mn(Ⅳ)被还原,H2O被氧化,释放O2 |
水钠锰矿 | S5-S6-S1 | Mn(Ⅳ)被还原,H2O被氧化,释放O2 |
图7 锰簇[Mn4O4L6]+光催化产氧过程中形成水钠锰矿物相[33] a—锰簇[Mn4O4L6]+光催化产氧过程;b—产物EXAFS图谱鉴定比较。
Fig.7 Birnessite phases produced in the [Mn4O4L6]+ catalytic oxygen-evolving process: (a) [Mn4O4L6]+ catalytic oxygen-evolving process; (b) Manganese K-edge EXAFS spectra of products. Adapted form [33].
[1] | 鲁安怀, 李艳, 王鑫, 等. 关键带中天然半导体矿物光电子的产生与作用[J]. 地学前缘, 2014, 21(3):256-264. |
[2] | 鲁安怀, 李艳, 丁竑瑞, 等. 矿物光电子能量及矿物与微生物协同作用[J]. 矿物岩石地球化学通报, 2018, 37(1):1-15. |
[3] |
LU A, Li Y, DING H, et al. Photoelectric conversion on Earth’s surface via widespread Fe-and Mn-mineral coatings[J]. Proceedings of the National Academy of Sciences, 2019, 116(20):9741-9746.
DOI URL |
[4] | SHUEY R. Semiconducting ore minerals[M]. Amsterdam: Elsevier, 1975. |
[5] | VAUGHAN D, CRAIG J. Mineral chemistry of metal sulfides[M]. Cambridge: Cambridge University Press, 1978. |
[6] | 鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层”[J]. 岩石学报, 2019, 35(1):119-128. |
[7] | ENGEL C G, SHARP R P. Chemical data on desert varnish[J]. Geological Society of America Bulletin, 1958, 69:273-286. |
[8] | DORN R I, OBERLANDER T M. Microbial origin of desert varnish[J]. Science, 1981, 213:1245. |
[9] | DORN R I, DENIRO M J. Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator[J]. Science, 1985, 227:1472-1474. |
[10] | DORN R I. Rock varnish[J]. American Scientist, 1991, 79:542-553. |
[11] | DIGREGORIO B E. Rock varnish as a habitat for extant life on Mars[M]// HOOVER R B, LEVIN G V, PAEPE R R, et al. Instruments, methods, and missions for astrobiology Ⅳ. San Diego, California, USA: International Society for Optics and Photonics, 2001: 120-130. |
[12] | PERRY R S, KOLB V M. From Darwin to Mars: desert varnish as a model for preservation of complex (bio)chemical systems[J]. SPIE International Symposium on Optical Science and Technology, 2004, 5163:136-144. |
[13] | LANZA N L, CLEGG S M, WIENS R C, et al. Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars[J]. Applied Optics, 2012, 51:B74-B82. |
[14] | GAO S, LUO T C, ZHANG B R, et al. Chemical composition of the continental curst as revealed by studies in east China[J]. Geochimica et Cosmochimica Acta, 1998, 62:1959-1975. |
[15] | XU X, DING H, LI Y, et al. Mineralogical characteristics of Mn coatings from different weathering environments in China: clues on their formation[J]. Mineralogy and Petrology, 2018, 112:671-683. |
[16] |
XU X, LI Y, LI Y, et al. Characteristics of desert varnish from nanometer to micrometer scale: a photo-oxidation model on its formation[J]. Chemical Geology, 2019, 522:55-70.
DOI URL |
[17] |
POTTER R M, ROSSMAN G R. The manganese- and iron-oxide mineralogy of desert varnish[J]. Chemical Geology, 1979, 25:79-94.
DOI URL |
[18] |
MCKEOWN D A, POST J E. Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy[J]. American Mineralogist, 2001, 86:701-713.
DOI URL |
[19] | GARVIE L A J, BURT D M, BUSECK P R. Nanometer-scale complexity, growth, and diagenesis in desert varnish[J]. Geology, 2008, 36:215-218. |
[20] | THIAGARAJAN N, LEE C T A. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition[J]. Earth and Planetary Science Letters, 2004, 224:131-141. |
[21] | GOLDSMITH Y, STEIN M, ENZEL Y. From dust to varnish: geochemical constraints on rock varnish formation in the Negev Desert, Israel[J]. Geochimica et Cosmochimica Acta, 2014, 126:97-111. |
[22] |
POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences, 1999, 96:3447-3454.
DOI URL |
[23] | RUALES-LONFAT C, BARONA J F, SIENKIWICZ A, et al. Iron oxides semiconductors are efficients for solar water disinfection: a comparison with photo-Fenton processes at neutral pH[J]. Applied Catalysis B: Environmental, 2015, 166:497-508. |
[24] |
PINAUD B A, CHEN Z, ABRAM D N, et al. Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry[J]. The Journal of Physical Chemistry C, 2011, 115(23):11830-11838.
DOI URL |
[25] |
LUCHT K P, MENDOZA-CORTES J L. Birnessite: a layered manganese oxide to capture sunlight for water-splitting catalysis[J]. The Journal of Physical Chemistry C, 2015, 119(40):22838-22846.
DOI URL |
[26] |
UMENA Y, KAWAKAMI K, SHEN J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å[J]. Nature, 2011, 473(7345):55-60.
DOI URL |
[27] |
SUGA M, AKITA F, HIRATA K, et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses[J]. Nature, 2015, 517(7532):99-103.
DOI URL |
[28] |
ZHANG C, CHEN C, DONG H, et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynjournal[J]. Science, 2015, 348(6235):690-693.
DOI URL |
[29] |
DAU H, HAUMANN M. The manganese complex of photosystem II in its reaction cycle: basic framework and possible realization at the atomic level[J]. Coordination Chemistry Reviews, 2008, 252(3/4):273-295.
DOI URL |
[30] |
COX N, PANTAZIS D A, NEESE F, et al. Biological water oxidation[J]. Accounts of Chemical Research, 2013, 46(7):1588-1596.
DOI URL |
[31] | JONES L H P, MILNE A A. Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland[J]. Mineralogical Magazine, 1956, 31:283-288. |
[32] |
HSU Y K, CHEN Y C, LIN Y G, et al. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light[J]. Journal of Materials Chemistry, 2012, 22(6):2733-2739.
DOI URL |
[33] | HOCKING R K, BRIMBLECOMBE R, CHANG L Y, et al. Water-oxidation catalysis by manganese in a geochemical-like cycle[J]. Nature Chemistry, 2011, 3(6):461-466. |
[34] |
GORLIN Y, LASSALLE-KAISER B, BENCK J D, et al. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction[J]. Journal of the American Chemistry Society, 2013, 135:8525-8534.
DOI URL |
[35] |
PENG H, MCKENDRY I G, DING R, et al. Redox properties of birnessite from a defect perspective[J]. Proceedings of the National Academy of Sciences, 2017, 114(36):9523-9528.
DOI URL |
[36] |
WIECHEN M, ZAHARIEVA I, DAU H, et al. Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion[J]. Chemical Science, 2012, 3(7):2330-2339.
DOI URL |
[37] |
FREY C E, WIECHEN M, KURZ P. Water-oxidation catalysis by synthetic manganese oxides: systematic variations of the calcium birnessite theme[J]. Dalton Transactions, 2014, 43(11):4370-4379.
DOI URL |
[38] |
TAKAHASHI Y, MANCEAU A, GEOFFROY N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(4):984-1008.
DOI URL |
[39] | YANG J, AN H, ZHOU X, et al. Water oxidation mechanism on alkaline-earth-cation containing birnessite-like manganese oxides[J]. The Journal of Physical Chemistry C, 2015, 119(32):18487-18494. |
[40] | LYONST W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean andatmosphere[J]. Nature, 2014, 506(7488):307-315. |
[41] |
KENNEDY M J, PEVEAR D R, HILL R J. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5555):657-660.
DOI URL |
[42] |
KENNEDY M, DROSER M, MAYER L M, et al. Late Precambrian oxygenation: inception of the clay mineral factory[J]. Science, 2006, 311(5766):1446-1449.
DOI URL |
[43] |
CAMPBELL I H, ALLEN C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geosciences, 2008, 1:554-558.
DOI URL |
[44] |
SQUIRE R J, CAMPBELL I H, ALLEN C M, et al. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?[J]. Earth and Planetary Science Letters, 2006, 250(1/2):116-133.
DOI URL |
[45] |
LINDSAY J F, BRASIER M D. Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins[J]. Precambrian Research, 2002, 114:1-34.
DOI URL |
[46] |
CANFIELD D E. The early history of atmospheric oxygen: Homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Science, 2005, 33:1-36.
DOI URL |
[47] |
CAMPBELL I H, SQUIRE R J. The mountains that triggered the Late Neoproterozoic increase in oxygen: the second great oxidation event[J]. Geochimica et Cosmochimica Acta, 2010, 74:4187-4206.
DOI URL |
[48] |
BERNER R A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica et Cosmochimica Acta, 2006, 70:5653-5664.
DOI URL |
[49] | MATTE P. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review[J]. Terra Nova, 2001, 13:122-128. |
[50] |
BROCKS J J, BUICK R, SUMMONS R E, et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia[J]. Geochimica et Cosmochimica Acta, 2003, 67(22):4321-4335.
DOI URL |
[51] | SUMMONS R E, BRADLEY A S, JAHNKE L L, et al. Steroids, triterpenoids and molecular oxygen[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470):951-968. |
[52] | ZHANG X V, ELLERY S P, FRIEND C M, et al. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synjournal[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2/3):301-311. |
[53] | LU A, LI Y, JIN S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications, 2012, 3(1):1-8. |
[54] |
LI Y, WANG X, LI Y, et al. Coupled anaerobic and aerobic microbial processes for Mn-carbonate precipitation: a realistic model of inorganic carbon pool formation[J]. Geochimica et Cosmochimica Acta, 2019, 256:49-65.
DOI URL |
[55] |
ALLWOOD A C, WALTER M R, KAMBER B S, et al. Stromatolite reef from the Early Archaean era of Australia[J]. Nature, 2006, 441(7094):714-718.
DOI URL |
[56] |
DUPRAZ C, VISSCHER P T. Microbial lithification in marine stromatolites and hypersaline mats[J]. Trends in Microbiology, 2005, 13(9):429-438.
DOI URL |
[57] | 王艺凝, 刘建波, 足立奈津子, 等. 华南上扬子台地南缘早奥陶世生物礁演变规律及其控制因素[C]// 中国古生物学会第十二次全国会员代表大会暨第29届学术年会摘要集. 郑州: 中国古生物学会, 2018: 44. |
[58] |
VASCONCELOS C, MCKENZIE J A, BERNASCONI S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546):220-222.
DOI URL |
[59] | VASCONCELOS C, MCKENZIE J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3):378-390. |
[60] |
WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12):1091-1094.
DOI URL |
[61] |
VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1):71-79.
DOI URL |
[62] |
BEVERIDGE T J. Role of cellular design in bacterial metal accumulation and mineralization[J]. Annual Review of Microbiology, 1989, 43(1):147-171.
DOI URL |
[63] | FOLK R L. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks[J]. Journal of Sedimentary Research, 1993, 63(5):990-999. |
[64] |
WACEY D, WRIGHT D T, BOYCE A J. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia[J]. Chemical Geology, 2007, 244(1/2):155-174.
DOI URL |
[65] |
WRIGHT D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 1999, 126(1/2/3/4):147-157.
DOI URL |
[66] | WACEY D. Microbial mediation of dolomite formation: geochemical and microbial investigations in the Coorong region of South Australia[D]. London: University of Oxford, 2002. |
[67] | WRIGHT D T, WACEY D. Sedimentary dolomite: a reality check[J]. Geological Society, London, Special Publications, 2004, 235(1):65-74. |
[68] |
ZHANG F, XU H, KONISHI H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97:148-165.
DOI URL |
[69] | ZHANG F, XU H, KONISHI H, et al. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite[J]. American Mineralogist, 2012, 97(4):556-567. |
[70] |
NOFFKE N. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits[J]. Earth-Science Reviews, 2009, 96(3):173-180.
DOI URL |
[71] |
MCKENZIE J A, VASCONCELOS C. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives[J]. Sedimentology, 2009, 56(1):205-219.
DOI URL |
[72] | PETRASH D A, BIALIK O M, BONTOGNALI T R R, et al. Microbially catalyzed dolomite formation: from near-surface to burial[J]. Earth-Science Reviews, 2017, 171:558-582. |
[73] | KENARD P A, GONZALEZ L A, GOLDSTEIN R H, et al. Impact of biogenic methane generation on formation of dolomite reservoirs[C]// Proceedings of AAPG Annual Convention. 2007: 90063. |
[74] |
KENWARD P A, GOLDSTEIN R H, GONZALEZ L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea[J]. Geobiology, 2009, 7(5):556-565.
DOI URL |
[75] | SAUER K, YACHANDRA V K. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean[J]. Proceedings of the National Academy of Sciences, 2002, 99:8631-8636. |
[76] | FISCHER W W, KNOLL A H. An iron shuttle for deepwater silica in late Archean and early Paleoproterozoic iron formation[J]. Geological Society of American Bulletin, 2009, 121(1/2):222-235. |
[77] | BEUKES N, KLEIN C. Models for iron-formation deposition. The Proterozoic biosphere: a multidisciplinary study[M]. Cambridge: Cambridge University Press, 1992: 147-156. |
[78] |
CLEMENT B G, LUTHER G W III, TEBO B M. Rapid, oxygen-dependent microbial Mn(Ⅱ) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):1878-1889.
DOI URL |
[79] | KOPP R E, KIRSCHVINK J L, HILBURN I A, et al. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis[J]. Proceedings of the National Academy of Sciences, 2005, 102(32):11131-11136. |
[80] |
HOLLAND H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470):903-915.
DOI URL |
[81] |
JOHNSON J E, WEBB S M, THOMAS K, et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria[J]. Proceedings of the National Academy of Sciences, 2013, 110(28):11238-11243.
DOI URL |
[82] |
DISMUKES G C, KLIMOV V V, BARANOV S V, et al. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis[J]. Proceedings of the National Academy of Sciences, 2001, 98(5):2170-2175.
DOI URL |
[83] |
LU A, LI Y, WANG X, et al. Photoelectrons from minerals and microbial world: a perspective on life evolution in the early Earth[J]. Precambrian Research, 2013, 231:401-408.
DOI URL |
[84] |
BRINI E, FENNELL C J, FERNANDEZ-SERRA M, et al. How water’s properties are encoded in its molecular structure and energies[J]. Chemical Reviews, 2017, 117(19):12385-12414.
DOI URL |
[85] |
LARS G M, PETTERSSON R H, HENCHMAN A N. Water: the most anomalous liquid[J]. Chemical Reviews, 2016, 116:7459-7462.
DOI URL |
[86] |
BERNAL J D, FOWLER R H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions[J]. Journal of Chemistry Physics, 1933, 1:515-548.
DOI URL |
[87] | FREY P A, WHITT S A, TOBIN J B. A low-barrier hydrogen bond in the catalytic triad of serine proteases[J]. Science, 1994, 264(5167):1927-1930. |
[88] |
ZHANG C. Low-barrier hydrogen bond plays key role in active photosystem II: a new model for photosynthetic water oxidation[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(6):493-499.
DOI URL |
[89] |
BAO H, ZHANG C, REN Y, et al. Low-temperature electron transfer suggests two types of QA in intact photosystem II[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2010, 1797(3):339-346.
DOI URL |
[90] | 张纯喜. 从自然光合作用到人工光合作用[J]. 中国科学: 化学, 2016, 46(10):1101-1109. |
[91] | 赵国忠. 太赫兹科学技术研究的新进展[J]. 国外电子测量技术, 2014, 33(2):1-6. |
[92] | 范姝婷, 马莹玉, 舒国响, 等. 太赫兹与水的相互作用: 机理、 应用和新趋势[J]. 深圳大学学报(理工版), 2019, 36(2):200-206. |
[1] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[2] | 黄春梅, 李光明, 付建刚, 梁维, 张志, 王艺云. 藏南错那洞中新世早期淡色花岗岩岩石成因:全岩地球化学、矿物学特征约束[J]. 地学前缘, 2023, 30(5): 74-92. |
[3] | 张维峰, 陈华勇, 邓新, 金鑫镖, 刘舒展, 谭娟娟. 利用绿帘石化学成分及原位Sr同位素指示成矿流体特征:以东天山地区多头山铁铜矿床为例[J]. 地学前缘, 2023, 30(2): 384-400. |
[4] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[5] | 由文智, 向芳, 黄恒旭, 杨坤美, 喻显涛, 丁力, 杨奇. 青藏高原东缘宜宾地区第四纪河流沉积物中铁质重矿物特征及物源意义[J]. 地学前缘, 2022, 29(4): 278-292. |
[6] | 梁凯旋, 刘菲, 张莉. 高氯酸盐自然衰减的柱实验研究[J]. 地学前缘, 2022, 29(3): 207-216. |
[7] | 朱莹, 黎晏彰, 鲁安怀, 丁竑瑞, 李艳, 王长秋. 方解石-白云石-菱镁矿的中远红外光谱学特征研究[J]. 地学前缘, 2022, 29(1): 459-469. |
[8] | 唐勇, 覃山县, 赵景宇, 吕正航, 刘喜强, 王宏, 陈剑争, 张辉. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92. |
[9] | 惠淑君, 杨冰, 郭华明, 连国玺, 孙娟. 不同因素对砂岩含水层介质吸附铀的影响[J]. 地学前缘, 2021, 28(5): 68-78. |
[10] | 宋英昕, 李胜荣, 申俊峰, 张龙, 李文涛, 曾勇杰. 胶东三山岛北部海域金矿床石英热释光和晶胞参数特征及其找矿意义[J]. 地学前缘, 2021, 28(2): 305-319. |
[11] | 张聚全, 梁贤, 闫丽娜, 李胜荣, 申俊峰, 卢静, 吴伟哲, 李清. 岩浆作用过程的矿物记录:以邯邢地区中生代侵入岩为例[J]. 地学前缘, 2020, 27(5): 70-87. |
[12] | 申俊峰, 李胜荣, 徐渴鑫, 王业晗, 张士全, 许元全, 何泽宇, 迟雷, 吴晋超. 辽西赤峰—朝阳金矿带早白垩世以来的隆升剥蚀及启示意义[J]. 地学前缘, 2020, 27(5): 151-170. |
[13] | 董国臣, 李胜荣, 申俊峰, 董朋生, 李华伟, 殷国栋, 汤家辉. 自然重砂成因矿物学特征及找矿指示作用[J]. 地学前缘, 2020, 27(5): 171-178. |
[14] | 任桂平, 鲁安怀, 李艳, 王长秋, 丁竑瑞. 地表“矿物膜”半导体矿物光电子调控微生物群落结构演化特性研究[J]. 地学前缘, 2020, 27(5): 195-206. |
[15] | 申俊峰, 申旭辉, 李胜荣, 徐立为, 杜柏松, 王冬丽, 王书豪. 矿物热电效应与火山地震之热电异常[J]. 地学前缘, 2020, 27(5): 207-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||