地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 81-92.DOI: 10.13745/j.esf.sf.2021.8.7
唐勇1(), 覃山县1,2, 赵景宇3, 吕正航1, 刘喜强1,2, 王宏1,2, 陈剑争1,2, 张辉1,*(
)
收稿日期:
2020-06-20
修回日期:
2021-01-22
出版日期:
2022-01-25
发布日期:
2022-02-22
通信作者:
张辉
作者简介:
唐 勇(1980—),男,研究员,博士生导师,主要从事伟晶岩成矿与找矿研究。E-mail: tangyong@vip.gyig.ac.cn
基金资助:
TANG Yong1(), QIN Shanxian1,2, ZHAO Jingyu3, LÜ Zhenghang1, LIU Xiqiang1,2, WANG Hong1,2, CHEN Jianzheng1,2, ZHANG Hui1,*(
)
Received:
2020-06-20
Revised:
2021-01-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
ZHANG Hui
摘要:
花岗伟晶岩型矿床是稀有金属矿床重要的类型之一。在花岗伟晶岩中,稀有金属元素Li、Be、Nb和Ta主要以独立矿物的形式存在,前人对稀有金属独立矿物在硅酸盐熔体中的溶解度及其影响因素展开了系统研究。本文综合分析了已有的实验数据,其结果表明,影响稀有金属独立矿物溶解度最为重要的2个参数是温度(T)和铝饱和指数(ASI)。因此本文建立了稀有金属独立矿物,尤其是铌锰矿和钽锰矿溶解度,与温度(T)和铝饱和指数(ASI)之间的定量关系:
lg [w(Li)/10-6]=-0.37×[1 000/(T/K)]+4.56,R2=0.44
lg [w(BeO)/10-6]=-4.21×[1 000/(T/K)]+6.86,R2=0.91
lg [Ksp(Nb)/(mg2·kg-2)]=-(2.86±0.14)×ASI(Mn+Li)-(4.95±0.31)×[1 000/(T/K)]+(4.20+0.28),R2=0.86
lg [Ksp(Ta)/(mg2·kg-2)]=-(2.46±0.11)×ASI(Mn+Li)-(4.86±0.30)×[1 000/(T/K)]+(4.00+0.30),R2=0.80
式中,温度T为热力学温度,ASI(Mn+Li)(ASI=Al2O3/(CaO+Na2O+K2O+Li2O+MnO),摩尔分数比)和T的适用范围分别为0.6~1.2和1 073~1 373 K的范围内。上述公式为估算硅酸盐熔体中稀有金属含量提供了便利,为量化花岗伟晶岩成矿模型提供了基础。
稀有金属独立矿物溶解度随温度降低和铝饱和指数的增加而急剧降低,因此,在岩浆演化过程中,由岩浆侵位、分离结晶以及流体作用等因素引起的岩浆温度降低和铝饱和指数的增加,是导致稀有金属独立矿物结晶的主要机制。
中图分类号:
唐勇, 覃山县, 赵景宇, 吕正航, 刘喜强, 王宏, 陈剑争, 张辉. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92.
TANG Yong, QIN Shanxian, ZHAO Jingyu, LÜ Zhenghang, LIU Xiqiang, WANG Hong, CHEN Jianzheng, ZHANG Hui. Solubility of rare metals as a constraint on mineralization of granitic pegmatite[J]. Earth Science Frontiers, 2022, 29(1): 81-92.
图1 挥发组分对铌锰矿和钽锰矿溶解度的影响 (数据引自文献[10,12,14-15])
Fig.1 Effect of flux elements on the solubility of Mn-columbite and Mn-tantalite. Data adapted from [10,12,14-15].
图2 温度对稀有金属独立矿物溶解度的影响 (数据引自文献[10-13,15-21])
Fig.2 Effect of temperature on the solubility of independent rare-metal minerals. Data adapted from [10-13,15-21].
序号 | ASI | 矿物 | 等式 | R2 | 斜率 | H/(kJ·mol-1) |
---|---|---|---|---|---|---|
1 | 1.00 | 锂辉石 | lg [w(Li)/10-6]=-0.37×[1 000/(T/K)]+4.56 | 0.44 | 0.37 | 7.1 |
2 | 1.00 | 绿柱石 | lg [w(BeO)/10-6] =-2.75×[1 000/(T/K)]+5.89 | 0.95 | 3.32 | 63.6 |
3 | >1.00 | 绿柱石 | lg [w(BeO)/10-6] =-4.21×[1 000/(T/K)]+6.86 | 0.91 | 4.21 | 80.6 |
4 | 0.60 | 铌锰矿 | lg [ | 0.78 | 2.32 | 44.4 |
5 | 1.00 | 铌锰矿 | lg [ | 0.98 | 5.56 | 106.5 |
6 | 1.20 | 铌锰矿 | lg [ | 1.00 | 8.06 | 154.3 |
7 | 0.90 | 钽锰矿 | lg [ | 0.98 | 5.28 | 101.1 |
8 | 1.00 | 钽锰矿 | lg [ | 0.94 | 7.01 | 134.2 |
9 | 1.10 | 钽锰矿 | lg [ | 0.94 | 5.19 | 99.4 |
表1 温度对稀有金属矿物溶解度影响 (数据引自[10-13,15-21])
Table 1 Effect of temperature on solubility of rare metal minerals. Data adapted from [10-13,15-21].
序号 | ASI | 矿物 | 等式 | R2 | 斜率 | H/(kJ·mol-1) |
---|---|---|---|---|---|---|
1 | 1.00 | 锂辉石 | lg [w(Li)/10-6]=-0.37×[1 000/(T/K)]+4.56 | 0.44 | 0.37 | 7.1 |
2 | 1.00 | 绿柱石 | lg [w(BeO)/10-6] =-2.75×[1 000/(T/K)]+5.89 | 0.95 | 3.32 | 63.6 |
3 | >1.00 | 绿柱石 | lg [w(BeO)/10-6] =-4.21×[1 000/(T/K)]+6.86 | 0.91 | 4.21 | 80.6 |
4 | 0.60 | 铌锰矿 | lg [ | 0.78 | 2.32 | 44.4 |
5 | 1.00 | 铌锰矿 | lg [ | 0.98 | 5.56 | 106.5 |
6 | 1.20 | 铌锰矿 | lg [ | 1.00 | 8.06 | 154.3 |
7 | 0.90 | 钽锰矿 | lg [ | 0.98 | 5.28 | 101.1 |
8 | 1.00 | 钽锰矿 | lg [ | 0.94 | 7.01 | 134.2 |
9 | 1.10 | 钽锰矿 | lg [ | 0.94 | 5.19 | 99.4 |
图3 熔体组成(ASI)对绿柱石、铌锰矿和钽锰矿溶解度的影响 (数据引自文献[10-13,15-20,22])
Fig.3 Effect of melt composition (ASI) on the solubility of beryl, Mn-columbite and Mn-tantalite. Data adapted from [10-13,15-20,22].
图5 稀有金属元素溶解度-温度的关系图 a—甲基卡X03伟晶岩脉中Li2O含量最大为1.5%;b—伟晶岩中已知最低和平均Be含量分别为30×10-6和200×10-6;c,d—熔体MnO含量受锰铝榴石的控制,熔体中MnO含量与温度的关系[31]为:ln[MnO]=-9 747.4/(T/K)+5.24,T为热力学温度。Tanco伟晶岩全岩铌和钽的含量分别为56×10-6和300×10-6。
Fig.5 Temperature-solubility diagrams for Li, Be, Nb and Ta
[1] | LINNEN R L, SAMSON I M, WILLIAMS-JONES A E, et al. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 543-568. |
[2] |
LINNEN R L, VAN LICHTERVELDE M, ČERNÝ P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
DOI URL |
[3] |
LIN Y, POLLARD P J, HU S X, et al. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China[J]. Economic Geology, 1995, 90(3):577-585.
DOI URL |
[4] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学:地球科学, 2017, 47(8):871-880. |
[5] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36. |
[6] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4):792-814. |
[7] |
XU Z Q, FU X F, WANG R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354/355:105281.
DOI URL |
[8] |
WANG H, GAO H, ZHANG X Y, et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360/361:105449.
DOI URL |
[9] |
XIONG Y Q, JIANG S Y, WEN C H, et al. Granite-pegmatite connection and mineralization age of the giant Renli Ta-Nb deposit in South China: constraints from U-Th-Pb geochronology of coltan, monazite, and zircon[J]. Lithos, 2020, 358/359:105422.
DOI URL |
[10] |
ASERI A A, LINNEN R L, CHE X D, et al. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts[J]. Ore Geology Reviews, 2015, 64:736-746.
DOI URL |
[11] |
BARTELS A, HOLTZ F, LINNEN R L. Solubility of manganotantalite and manganocolumbite in pegmatitic melts[J]. American Mineralogist, 2010, 95(4):537-544.
DOI URL |
[12] |
FIEGE A, KIRCHNER C, HOLTZ F, et al. Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts: an experimental study[J]. Lithos, 2011, 122(3/4):165-174.
DOI URL |
[13] |
FIEGE A, SIMON A, LINSLER S A, et al. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation[J]. Ore Geology Reviews, 2018, 94:383-395.
DOI URL |
[14] |
KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4):479-488.
DOI URL |
[15] |
LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7):1013-1025.
DOI URL |
[16] |
LINNEN R L. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts[J]. Lithos, 2005, 80(1/2/3/4):267-280.
DOI URL |
[17] |
LINNEN R L, KEPPLER H. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2/3):213-227.
DOI URL |
[18] |
TANG Y, ZHANG H, RAO B. The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts[J]. American Mineralogist, 2016, 101(2):415-422.
DOI URL |
[19] |
CHEVYCHELOV V Y, BORODULIN G P, ZARAISKY G P. Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650-850 ℃ and 30-400 MPa: an experimental investigation[J]. Geochemistry International, 2010, 48(5):456-464.
DOI URL |
[20] |
EVENSEN J M, LONDON D, WENDLANDT R F. Solubility and stability of beryl in granitic melts[J]. American Mineralogist, 1999, 84(5/6):733-745.
DOI URL |
[21] |
MANETA V, BAKER D R, MINARIK W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1):1-16.
DOI URL |
[22] |
VAN LICHTERVELDE M, HOLTZ F, HANCHAR J M. Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts[J]. Contributions to Mineralogy and Petrology, 2010, 160(1):17-32.
DOI URL |
[23] | STEWART D B. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 1978, 63:970-980. |
[24] |
LONDON D, MORGAN G B. Experimental crystallization of the Macusani obsidian, with applications to lithium-rich granitic pegmatites[J]. Journal of Petrology, 2017, 58(5):1005-1030.
DOI URL |
[25] | LONDON D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites[J]. American Mineralogist, 1984, 69(11/12):995-1004. |
[26] | 张辉. 岩浆-热液过渡阶段体系中不相容元素地球化学行为及其机制: 以新疆阿尔泰3号伟晶岩脉研究为例[D]. 贵阳: 中国科学院地球化学研究所, 2001. |
[27] | 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006. |
[28] | 饶灿. 福建南平31号花岗伟晶岩的矿物学研究与岩浆-热液演化示踪[D]. 南京: 南京大学, 2009. |
[29] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.
DOI URL |
[30] |
EVENSEN J M, LONDON D. Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite[J]. Geochimica et Cosmochimica Acta, 2002, 66(12):2239-2265.
DOI URL |
[31] |
MANER J L IV, LONDON D, ICENHOWER J P. Enrichment of manganese to spessartine saturation in granite-pegmatite systems[J]. American Mineralogist, 2019, 104(11):1625-1637.
DOI URL |
[32] |
TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic composition and concentration of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2004, 68(20):4167-4178.
DOI URL |
[33] | TOMASCAK P B, MAGNA T, DOHMEN R. Lithium in the deep earth: mantle and crustal systems[M]// Advances in lithium isotope geochemistry. Berlin: Springer, 2016: 119-156. |
[34] | 付小芳, 侯立玮, 梁斌, 等. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型[M]. 北京: 科学出版社, 2017. |
[35] |
LONDON D, MORGAN G B, HERVIG R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1):1-17.
DOI URL |
[36] |
STILLING A, ČERNÝ P, VANSTONE P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.
DOI URL |
[37] |
TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265.
DOI URL |
[38] |
GREW E S. Beryllium in metamorphic environments (emphasis on aluminous compositions)[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1):487-549.
DOI URL |
[39] |
LONDON D, EVENSEN J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1):445-486.
DOI URL |
[40] |
WEBSTER J D, THOMAS R, RHEDE D, et al. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 1997, 61(13):2589-2604.
DOI URL |
[41] |
CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 1992, 87(7):1766-1794.
DOI URL |
[42] | MCNEIL A G. Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts[D]. London: The university of Western Ontario, 2018. |
[43] |
ZAJACZ Z, HALTER W E, PETTKE T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8):2169-2197.
DOI URL |
[44] |
COLOMBO F, SFRAGULLA J, DEL TÁNAGO J G. The garnet-phosphate buffer in peraluminous granitic magmas: a case study from pegmatites in the Pocho District, Córdoba, Argentina[J]. The Canadian Mineralogist, 2012, 50(6):1555-1571.
DOI URL |
[45] |
GAMMEL E M, NABELEK P I. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J]. American Mineralogist, 2016, 101(8):1906-1915.
DOI URL |
[46] |
KONTAK D J, DOSTAL J, KYSER T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5):1249-1286.
DOI URL |
[47] |
LONDON D, HUNT L E, SCHWING C R, et al. Feldspar thermometry in pegmatites: truth and consequences[J]. Contributions to Mineralogy and Petrology, 2019, 175(1):1-21.
DOI URL |
[48] |
MORGAN VI G B, LONDON D. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136(4):310-330.
DOI URL |
[49] |
SIEGEL K, WAGNER T, TRUMBULL R B, et al. Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (Northern Sweden)[J]. Chemical Geology, 2016, 421:1-16.
DOI URL |
[50] |
CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551.
DOI URL |
[51] |
ACOSTA-VIGIL A, LONDON D, MORGAN G B, et al. Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700-800 ℃ and 200 MPa, and applications of the aluminum saturation index[J]. Contributions to Mineralogy and Petrology, 2003, 146(1):100-119.
DOI URL |
[52] |
BURNHAM C W, DAVIS N F. The role of H2O in silicate melts: Si3O8-H2O to 10 kilobars and 700-1 000 ℃[J]. American Journal of Science, 1974, 274:902-940.
DOI URL |
[53] |
LONDON D. Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine[J]. Geochimica et Cosmochimica Acta, 1987, 51(3):403-420.
DOI URL |
[54] |
LONDON D, MORGAN G B, BABB H A, et al. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O)[J]. Contributions to Mineralogy and Petrology, 1993, 113(4):450-465.
DOI URL |
[55] |
BORCHERT M, WILKE M, SCHMIDT C, et al. Partitioning of Ba, La, Yb and Y between haplogranitic melts and aqueous solutions: an experimental study[J]. Chemical Geology, 2010, 276(3/4):225-240.
DOI URL |
[56] | HU X Y, BI X W, SHANG L B, et al. An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma[J]. Chinese Science Bulletin, 2009, 54(6):1087-1097. |
[57] | ČERNÝ P. Characteristics of pegmatite deposits of tantalum[M]// Lanthanides, tantalum and niobium. Berlin: Springer-Verlag, 1989: 195-239. |
[58] |
PARTINGTON G A, MCNAUGHTON N J, WILLIAMS I S. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3):616-635.
DOI URL |
[59] | ČERNÝ P. The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons[M]// Rare-element geochemistry of ore deposits. St John’s: Geological Association of Canada, 2005: 127-158. |
[60] |
RAO C, WANG R C, HU H, et al. Complex internal textures in oxide minerals from the Nanping No.31 dyke of granitic pegmatite, Fujian Province, Southeastern China[J]. The Canadian Mineralogist, 2009, 47(5):1195-1212.
DOI URL |
[61] |
BREITER K, KORBELOVÁ Z, CHLÁDEK S, et al. Diversity of Ti-Sn-W-Nb-Ta oxide minerals in the classic granite-related magmatic-hydrothermal Cínovec/Zinnwald Sn-W-Li deposit (Czech Republic)[J]. European Journal of Mineralogy, 2017, 29(4):727-738.
DOI URL |
[62] |
WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan deposit, Nanling Range, Southeastern China[J]. Economic Geology, 2017, 112(4):855-887.
DOI URL |
[63] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun Granite-Marginal Pegmatite, Southeastern China[J]. Economic Geology, 2018, 113(4):937-960.
DOI URL |
[64] |
VAN LICHTERVELDE M, BEZIAT D, SALVI S, et al. Textures and chemical evolutions in tantalum oxides: a discussion of magmatic versus metasomatic origins for Ta mineralization in the Tanco Lower Pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2):257-276.
DOI URL |
[65] |
MCNEIL A G, LINNEN R L, FLEMMING R L, et al. An experimental approach to examine fluid-melt interaction and mineralization in rare-metal pegmatites[J]. American Mineralogist, 2020, 105(7):1078-1087.
DOI URL |
[66] | LONDON D. Geochemistry of alkalis and alkaline earths in ore-forming granites, pegmatites, and rhyolites[M]// Rare-element geochemistry of ore deposits. St John’s: Geological Association of Canada, 2005: 17-43. |
[67] | LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[M]// Rare-element geochemistry and mineral deposits. St John’s: Geological Association of Canada, 2005: 45-67. |
[68] | 王汝成, 谢磊, 诸泽颖, 等. 云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1):69-75. |
[69] |
BREITER K, VANKOVÁ M, GALIOVÁ M V, et al. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS[J]. Mineralogical Magazine, 2017, 81(1):15-33.
DOI URL |
[70] |
LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65:793-810.
DOI URL |
[71] | LONDON D. Pegmatite[M]. Quebec: Mineralogical Association of Canada, 2018. |
[1] | 李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157. |
[2] | 李柯然, 杨迪, 宋金民, 李智武, 金鑫, 刘芳, 杨雄, 刘树根, 叶玥豪, 范建平, 任佳鑫, 赵玲丽, 夏舜, 陈伟. 滇东北地区下寒武统龙王庙组白云石化模式研究:来自钙同位素模拟结果[J]. 地学前缘, 2024, 31(2): 313-326. |
[3] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[4] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
[5] | 饶灿, 王吴梦雨, 王琪, 张志琦, 吴润秋. NYF型伟晶岩岩浆-热液演化与稀有稀土金属超常富集[J]. 地学前缘, 2023, 30(5): 106-114. |
[6] | 聂潇, 陈雷, 郭现轻, 于涛, 王宗起. 南秦岭中段宁陕地区绿柱石-铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究[J]. 地学前缘, 2023, 30(5): 115-133. |
[7] | 付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆-热液过程的指示[J]. 地学前缘, 2023, 30(5): 134-150. |
[8] | 孙文博, 李欢. 伟晶岩中锆石研究进展及其对稀有金属成矿的启示[J]. 地学前缘, 2023, 30(5): 171-184. |
[9] | 王珊珊, 周可法, 白泳, 鲁雪晨, 蒋果. 新疆镜儿泉伟晶岩型锂矿岩矿光谱特征分析[J]. 地学前缘, 2023, 30(5): 205-215. |
[10] | 付小方, 黄韬, 郝雪峰, 王登红, 梁斌, 杨荣, 潘蒙, 范俊波. 川西花岗细晶岩-伟晶岩型锂矿含矿性评价与示矿标志[J]. 地学前缘, 2023, 30(5): 227-243. |
[11] | 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 伟晶岩型锂矿床地球物理探测及可可托海实例[J]. 地学前缘, 2023, 30(5): 244-254. |
[12] | 焦彦杰, 黄旭日, 李光明, 付建刚, 梁生贤, 郭镜. 喜马拉雅成矿带嘎波伟晶岩型锂矿的找矿方法与深部背景研究[J]. 地学前缘, 2023, 30(5): 255-264. |
[13] | 周起凤, 秦克章, 朱丽群, 赵俊兴. 花岗伟晶岩成因探讨:岩浆分异与深熔[J]. 地学前缘, 2023, 30(5): 26-39. |
[14] | 魏新昊, 周楠楠, 张顺. 伟晶岩型锂矿人工源电磁勘探可行性研究[J]. 地学前缘, 2023, 30(5): 265-274. |
[15] | 郭伟康, 李光明, 付建刚, 张海, 张林奎, 吴建阳, 董随亮, 杨玉林. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义[J]. 地学前缘, 2023, 30(5): 275-297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||