地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 26-39.DOI: 10.13745/j.esf.sf.2023.5.8
收稿日期:
2022-11-28
修回日期:
2022-12-26
出版日期:
2023-09-25
发布日期:
2023-10-20
作者简介:
周起凤(1985—),女,博士,高级工程师,主要从事花岗伟晶岩及稀有金属矿床研究。E-mail: zhouqifeng85@163.com
基金资助:
ZHOU Qifeng1(), QIN Kezhang2,3, ZHU Liqun2,3, ZHAO Junxing2
Received:
2022-11-28
Revised:
2022-12-26
Online:
2023-09-25
Published:
2023-10-20
摘要:
花岗伟晶岩成因研究是探索花岗伟晶岩成岩和稀有金属成矿作用的重要内容。花岗伟晶岩成因主要为岩浆分异和深熔作用,即伟晶岩来自花岗质岩浆的结晶分异或者小比例部分熔融(深熔)。花岗伟晶岩分类以及特征矿物组合可为花岗伟晶岩成因探讨提供初步依据。岩浆分异成因伟晶岩由母体花岗质岩浆派生而成,明确母体花岗岩是判别岩浆分异成因的关键。母体花岗岩与伟晶岩通常具有密切的时空关系(近同期,相距不超过10 km),存在连续的分异演化趋势,并且来自同一物质来源。通过瑞利分馏方程模拟(主量-微量-稀土元素和稳定同位素等)查明结晶分异程度,解析分异成因伟晶岩岩浆的形成过程。根据区域构造-变质事件,区域变质作用特征,伟晶岩与变质岩的空间关系、成分关系和一致的同位素组成,伟晶岩产出的特色矿物组合和矿物包裹体,以及伟晶岩与部分熔融熔体相近的化学组成等,来明确伟晶岩来自深熔作用。通过岩石特征元素含量、同位素示踪和微量元素模拟判别源岩,运用Rb/Sr-Ba图解等明确熔融方式,根据源岩矿物组成特征查明熔融条件和熔体产出情况,结合特征元素在熔体-矿物相间的分配行为探讨熔融过程和熔体抽提汇聚史,最终阐明深熔成因伟晶岩熔体形成过程。稀有金属伟晶岩岩浆来自高分异花岗质岩浆的极度结晶分异,少数情况下可由成熟沉积岩/变质沉积岩低程度部分熔融形成。没有母体花岗岩出露的稀有金属伟晶岩群也可来自岩浆分异作用,或是深熔熔体通过进一步分异产生。深入理解部分熔融和结晶分异对伟晶岩岩浆的控制作用,探索伟晶岩岩浆形成过程中相关的物理化学过程,尤其是熔体逃离迁移机制及其对稀有金属元素富集的影响,并建立花岗伟晶岩成因的判别标志,是花岗伟晶岩成因探讨亟待开展的研究工作。
中图分类号:
周起凤, 秦克章, 朱丽群, 赵俊兴. 花岗伟晶岩成因探讨:岩浆分异与深熔[J]. 地学前缘, 2023, 30(5): 26-39.
ZHOU Qifeng, QIN Kezhang, ZHU Liqun, ZHAO Junxing. Overview of magmatic differentiation and anatexis: Insights into pegmatite genesis[J]. Earth Science Frontiers, 2023, 30(5): 26-39.
图1 花岗伟晶岩成因模式(据文献[18,40]修改) M1—岩浆分异成因花岗岩-伟晶岩系统; M2—岩浆分异成因伟晶岩群; M3—深熔成因伟晶岩; M4—部分熔融熔体进一步分异形成的伟晶岩群。
Fig.1 Diagram showing four main processes (M1-4) of granitic-pegmatite formation. Modified after [18,40].
[1] | ČERNÝ P. Rare-element granitic pegmatites. Part I: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 1991, 18: 49-67. |
[2] |
LONDON D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1/2/3/4): 281-303.
DOI URL |
[3] | ČERNÝP. Anatomy and classification of granitic pegmatites[M]// ČERNÝ P. Granitic pegmatites in science and industry. Winnipeg: Mineralogist Association of Canada, 1982: 1-39. |
[4] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026.
DOI URL |
[5] | 张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10): 2955-2970. |
[6] |
XIE L, TAO X Y, WANG R C, et al. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization[J]. Lithos, 2020, 354/355: 105286.
DOI URL |
[7] | 赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347. |
[8] | 李建康, 李鹏, 严清高, 等. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 2021, 95(10): 2996-3016. |
[9] | 王登红, 王成辉, 孙艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5): 1-8. |
[10] | 王汝成, 邬斌, 谢磊, 等. 稀有金属成矿全球时空分布与大陆演化[J]. 地质学报, 2021, 95(1): 182-193. |
[11] | 秦克章, 周起凤, 赵俊兴, 等. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 2021, 95(10): 3146-3162. |
[12] | 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286. |
[13] | BREAKS F, MOOREJR J M. The Ghost Lake Batholith, Superior Province of northwestern Ontario: a fertile, S-type, peraluminous granite-rare-element pegmatite system[J]. The Canadian Mineralogist, 1992, 30: 835-875. |
[14] | ČERNÝ P, BLEVIN P L, CUNEY M, et al. Granite-related ore deposits[M]// One hundredth anniversary volume. Littleton: Society of Economic Geologists, 2005: 337-370. |
[15] |
SIMMONS W B S, WEBBER K L. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438.
DOI URL |
[16] |
KAETER D, BARROS R, MENUGE J F, et al. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta, 2018, 240: 98-130.
DOI URL |
[17] |
XU Z Q, FU X F, WANG R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354/355: 105281.
DOI URL |
[18] |
MÜLLER A, ROMER R L, PEDERSEN R B. The sveconorwegian pegmatite province: thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2): 283-315.
DOI URL |
[19] | GINSBURG A I, RODIONOV G G. On the depth of formation of granitic pegmatites[J]. Geologiya Rudnykh Mestorozhdenii, 1960, 45-54. |
[20] | GINSBURG A I, TIMOFEYEV I N, FELDMAN L G. Principles of geology of the granitic pegmatites[M]. Moscow: Nedra, 1979. |
[21] | 邹天人, 徐建国. 论花岗伟晶岩的成因和类型的划分[J]. 地球化学, 1975, 4(3): 161-174. |
[22] |
ZOU T R, YANG Y Q, GUO Y Q, et al. China’s crust-and mantle-source pegmatites and their discriminating criteria[J]. Geochemistry, 1985, 4(1): 1-17.
DOI |
[23] |
WISE M A, MÜLLER A, SIMMONS W B. A proposed new mineralogical classification system for granitic pegmatites[J]. The Canadian Mineralogist, 2022, 60(2): 229-248.
DOI URL |
[24] |
MARTIN R F, DE VITO C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. The Canadian Mineralogist, 2005, 43(6): 2027-2048.
DOI URL |
[25] | CAMERON E N, JAHNS R H, MCNAIR A H, et al. Internal Structure of Granitic Pegmatites[M]. Littleton: Society of Economic Geologists, 1949. |
[26] | JAHNS R H. The genesis of pegmatites: I. Occurrence and origin of giant crystals[J]. Ameircan Mineralogist, 1953, 38: 563-598. |
[27] |
JAHNS R H, BURNHAM C W. Experimental studies of pegmatite genesis: l. A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8): 843-864.
DOI URL |
[28] |
LONDON D. The origin of primary textures in granitic pegmatites[J]. The Canadian Mineralogist, 2009, 47(4): 697-724.
DOI URL |
[29] |
O’CONNOR P J, GALLAGHER V, KENNAN P S. Genesis of lithium pegmatites from the Leinster granite margin, Southeast Ireland: geochemical constraints[J]. Geological Journal, 1991, 26(4): 295-305.
DOI URL |
[30] | LONDON D. Pegmatites of the Middletown district, Connecticut[C]// Connecticut geological and natural history survey guidebook No.6, 77th annual meeting, New England intercollegiate geological conference. Connecticut: Yale University, 1985: 509-533. |
[31] |
ČERNÝ P. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991, 51(1/2/3/4): 429-468.
DOI URL |
[32] | BROOKINS D G. Rubidium-strontium geochronologic studies of large granitic pegmatites[J]. Neues Jahrbuch für Mineralogie-Abhandlungen Journal of Mineralogy and Geochemistry, 1986, 156: 81-97. |
[33] |
TAYLOR B E, FRIEDRICHSEN H. Light stable isotope systematics of granitic pegmatites from North America and Norway[J]. Chemical Geology, 1983, 41: 127-167.
DOI URL |
[34] | GOAD B E, ČERNÝ P. Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba[J]. Canadian Mineralogist, 1981, 19(1): 177-194. |
[35] |
MALLÓ A, FONTAN F, MELGAREJO J C, et al. Thealbera zoned pegmatite field, eastern Pyrenees, France[J]. Mineralogy and Petrology, 1995, 55(1): 103-116.
DOI URL |
[36] |
ROBLES E R, PEREZ A, ROLDAN F V, et al. The granitic pegmatites of the Fregeneda area (Salamanca, Spain): characteristics and petrogenesis[J]. Mineralogical Magazine, 1999, 63: 535-558.
DOI URL |
[37] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36. |
[38] | 徐喆, 王迪文, 吴正昌, 等. 江西宜春雅山地区铌钽矿床地质特征及成因探讨[J]. 东华理工大学学报(自然科学版), 2018, 41(4): 364-378. |
[39] |
LI J, HUANG X L, FU Q, et al. Tungsten mineralization during the evolution of a magmatic-hydrothermal system: mineralogical evidence from the Xihuashan rare-metal granite in South China[J]. American Mineralogist, 2021, 106(3): 443-460.
DOI URL |
[40] | ČERNÝ P. et al. Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis[J]. Geoscience Canada, 1991, 18: 68-81. |
[41] | LONDON D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 1992, 30: 499-540. |
[42] |
RODA-ROBLES E, PESQUERA A, GIL-CRESPO P, et al. From granite to highly evolved pegmatite: a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 2012, 153: 192-207.
DOI URL |
[43] |
XIE L, WANG Z J, WANG R C, et al. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China)[J]. Ore Geology Reviews, 2018, 95: 695-712.
DOI URL |
[44] |
ČERNÝ P, LONDON D, NOVÁK M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4): 289-294.
DOI URL |
[45] |
PLUNDER A, LE POURHIET L, RÄSS L, et al. Pegmatites as geological expressions of spontaneous crustal flow localisation[J]. Lithos, 2022, 416/417: 106652.
DOI URL |
[46] |
MANETA V, BAKER D R, MINARIK W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1): 4.
DOI URL |
[47] | ČERNÝ P, MEINTZER R E. Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships[M]// TAYLORR P, STRONGD F. Geology of granite-related mineral deposits. Quebec: Canadian Institute Mining and Metallurgy and Petroleum, 1988: 170-206. |
[48] | LONDON D. Pegmatites[M]. Quebec: Mineralogical Association of Canada, 2008. |
[49] |
DENG J Y, LI J K, ZHANG D H, et al. Origin of pegmatitic melts from granitic magmas in the formation of the Jiajika lithium deposit in the eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2022, 229: 105147.
DOI URL |
[50] | BAKER D R. The escape of pegmatite dikes from granitic plutons: constraints from new models of viscosity and dike propagation[J]. The Canadian Mineralogist, 1998, 36(2): 255-263. |
[51] |
SWEETAPPLE M T, COLLINS P L F. Genetic framework for the classification and distribution of Archean rare metal pegmatites in the north pilbara craton, western Australia[J]. Economic Geology, 2002, 97(4): 873-895.
DOI URL |
[52] | FUCHSLOCH W C, NEX P A M, KINNAIRD J A. Classification, mineralogical and geochemical variations in pegmatites of the cape cross-uis pegmatite belt, Namibia[J]. Lithos, 2018, 296/297/298/299: 79-95. |
[53] |
TRUMBULL R B, CHAUSSIDON M. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland[J]. Chemical Geology, 1999, 153(1/2/3/4): 125-137.
DOI URL |
[54] |
ANTUNES I M H R, NEIVA A M R, RAMOS J M F, et al. Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal)[J]. Geochemistry, 2013, 73(3): 323-341.
DOI URL |
[55] |
HULSBOSCH N, HERTOGEN J, DEWAELE S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349-374.
DOI URL |
[56] |
BARROS R, MENUGE J F. The origin of spodumene pegmatites associated with the Leinster granite in Southeast Ireland[J]. The Canadian Mineralogist, 2016, 54(4): 847-862.
DOI URL |
[57] |
VILLAROS A, PICHVANT M. Mica-liquid trace elements partitioning and the granite-pegmatite connection: the St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology, 2019, 528: 119265.
DOI URL |
[58] |
XIANG L, ROME R L, GLODNY J, et al. Li and B isotopic fractionation at the magmatic-hydrothermal transition of highly evolved granites[J]. Lithos, 2020, 376/377: 105753.
DOI URL |
[59] | STEWART D B. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 1978, 63: 970-980. |
[60] | ZASEDATELEV A M. Possible accumulation of lithium in host rocks of lithium pegmatite veins during old sedimentation processes[J]. Doklady, Akademii Nauk SSSR, Earth Science Section, 1974, 218: 196-198. |
[61] | ZASEDATELEV A M. Quantitative model of metamorphic generation of rare-metal pegmatite with litium mineralization[J]. Doklady, Akademii Nauk SSSR, Earth Science Section, 1977, 236: 219-221. |
[62] | SHMAKIN B W. Geochemistry and origin of granitic pegmatites[J]. Geochemistry International, 1983, 20(6): 1-8. |
[63] | NORTON J J, REDDEN J A. Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks in the southern Black Hills, South Dakota[J]. American Mineralogist, 1990, 75: 631-655. |
[64] | SIMMONS W B, FOORD E E, FALSTER A U, et al. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA[J]. Abstract of Programs, Geological Society of America, 1995, 27: 411. |
[65] |
NOVÁK M, SELWAY J B, ČERNÝ P, et al. Tourmaline of the elbaite-dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic[J]. European Journal of Mineralogy, 1999, 11(3): 557-568.
DOI URL |
[66] |
SIMMONS W, FALSTER A, WEBBER K, et al. Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 2016, 54(4): 1053-1070.
DOI URL |
[67] | SIMMONS W B, FORRD E E, FALSTER A U. Anatectic origin of granitic pegmatites, western Maine, USA[C]// Abstracts with programs, GAC-MAC annual meeting. Winnipeg: Geological Association of Canada, 1996: 87. |
[68] |
BEURLEN H, THOMAS R, DA SILVA M R R, et al. Perspectives for Li- and Ta-mineralization in the Borborema pegmatite province, NE-Brazil: a review[J]. Journal of South American Earth Sciences, 2014, 56: 110-127.
DOI URL |
[69] | CRONWRIGHT M. A review of the rare-element pegmatites of the Alto Ligonha pegmatite province, northern Mozambique[C]// Abstract volume, 21st general meeting. Johannesburg, South Africa: International Mineralogical Association, 2014: 256. |
[70] |
WEBBER K L, SIMMONS W B, FALSTER A U, et al. Anatectic pegmatites of the Oxford County pegmatite field, Maine, USA[J]. The Canadian Mineralogist, 2019, 57(5): 811-815.
DOI URL |
[71] | GREW E S. Boron and beryllium minerals in granulite-facies pegmatites and implications of beryllium pegmatites for the origin and evolution of the Archean Napier complex of East Antarctica[J]. Memoirs of National Institute of Polar Research Special Issue, 1998, 53: 74-92. |
[72] |
LV Z H, ZHANG H, TANG Y, et al. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 2018, 95: 161-181.
DOI URL |
[73] |
LV Z H, ZHANG H, TANG Y. Anatexis origin of rare metal/earth pegmatites: evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380/381: 105865.
DOI URL |
[74] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[75] |
CLEMENS J D, VIELZEUF D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2/3/4): 287-306.
DOI URL |
[76] |
VIELZEUF D, SCHMIDT M W. Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts[J]. Contributions to Mineralogy and Petrology, 2001, 141(3): 251-267.
DOI URL |
[77] |
GARDIEN V, THOMPSON A B, ULMER P. Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole[J]. Journal of Petrology, 2000, 41(5): 651-666.
DOI URL |
[78] |
HOLTZ F, JOHANNES W, TAMIC N, et al. Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications[J]. Lithos, 2001, 56(1): 1-14.
DOI URL |
[79] |
PATIÑODOUCE A E, HARRIS N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710.
DOI URL |
[80] |
VIELZEUF D, HOLLOWAY J R. Experimental determination of the fluid-absent melting relations in the pelitic system[J]. Contributions to Mineralogy and Petrology, 1988, 98(3): 257-276.
DOI URL |
[81] | GARDIEN V, THOMPSON A B, GRUJIC D, et al. Experimental melting of biotite + plagioclase + quartz± muscovite assemblages and implications for crustal melting[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15581-15591. |
[82] | 徐兴旺, 洪涛, 李杭, 等. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 2020, 36(12): 3572-3592. |
[83] | 曾令森, 高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 2017, 33(5): |
[84] |
HARRIS N B W, INGER S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56.
DOI URL |
[85] |
BEA F, PEREIRA M D, STROH A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 1994, 117(1/2/3/4): 291-312.
DOI URL |
[86] |
YANG P, RIVERS T. Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, western Labrador: structural, compositional and thermal controls[J]. Geochimica et Cosmochimica Acta, 2000, 64(8): 1451-1472.
DOI URL |
[87] |
KLEMME S, MARSCHALL H R, JACOB D E, et al. Trace-element partitioning and boron isotope fractionation between white mica and tourmaline[J]. The Canadian Mineralogist, 2011, 49(1): 165-176.
DOI URL |
[88] |
GAO L E, ZENG L S, ASIMOW P D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites[J]. Geology, 2017, 45(1): 39-42.
DOI URL |
[89] |
WOLF M, ROMER R L, FRANZ L, et al. Tin in granitic melts: the role of melting temperature and protolith composition[J]. Lithos, 2018, 310/311: 20-30.
DOI URL |
[90] |
FAN J J, WANG Q, LI J, et al. Boron and molybdenum isotopic fractionation during crustal anatexis: constraints from the conadong leucogranites in the Himalayan block, South Tibet[J]. Geochimica et Cosmochimica Acta, 2021, 297: 120-142.
DOI URL |
[91] |
LENTZ D. U, Mo, and REE mineralization in late-tectonic granitic pegmatites, southwestern Grenville Province, Canada[J]. Ore Geology Reviews, 1996, 11(4): 197-227.
DOI URL |
[92] |
KONZETT J, SCHNEIDER T, NEDYALKOVA L, et al. Anatectic granitic pegmatites from the eastern Alps: a case of variable rare-metal enrichment during high-grade regional metamorphism. I: mineral assemblages, geochemical characteristics, and emplacement ages[J]. The Canadian Mineralogist, 2018, 56(4): 555-602.
DOI URL |
[93] |
KONZETT J, HAUZENBERGER C, LUDWIG T, et al. Anatectic granitic pegmatites from theeastern Alps: a case of variable rare metal enrichment during high-grade regional metamorphism. II: pegmatite staurolite as an indicator of anatectic pegmatite parent melt formation: a field and experimental study[J]. The Canadian Mineralogist, 2018, 56(4): 603-624.
DOI URL |
[94] |
CHEN B, HUANG C, ZHAO H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551: 119769.
DOI URL |
[95] | GREW E S, YATES M G, HUIJSMANS J P P, et al. Werdingite, a borosilicate new to granitic pegmatites[J]. Canadian Mineralogist, 1998, 36: 399-414. |
[96] |
MAGNANI L, FARINA F, PEZZOTTA F, et al. Role of aqueous fluids during low pressure partial melting of pelites in the Adamello pluton contact aureole (Italy)[J]. Lithos, 2022, 430/431: 106853.
DOI URL |
[97] |
JOHNSON T, YAKYMCHUK C, BROWN M. Crustal melting and suprasolidus phase equilibria: from first principles to the state-of-the-art[J]. Earth-Science Reviews, 2021, 221: 103778.
DOI URL |
[98] |
WU F Y, LIU X C, LIU Z C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352/353: 105319.
DOI URL |
[99] | RAIMBAULT L, BURNOL L. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites[J]. The Canadian Mineralogist, 1998, 36: 265-282. |
[100] |
KUNZ B E, WARREN C J, JENNER F E, et al. Critical metal enrichment in crustal melts: the role of metamorphic mica[J]. Geology, 2022, 50(11): 1219-1223.
DOI URL |
[101] |
MANETA V, BAKER D R. Exploring the effect of lithium on pegmatitic textures: an experimental study[J]. American Mineralogist, 2014, 99(7): 1383-1403.
DOI URL |
[102] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[103] |
EVENSEN J M, LONDON D. Experimental silicate mineral/melt partition coefficients for beryllium and thecrustal Be cycle from migmatite to pegmatite[J]. Geochimica et Cosmochimica Acta, 2002, 66(12): 2239-2265.
DOI URL |
[104] |
GION A M, PICCOLI P M, FEI Y W, et al. Experimental constraints on the formation of pegmatite-forming melts by anatexis of amphibolite: a case study from Evje-Iveland, Norway[J]. Lithos, 2021, 398/399: 106342.
DOI URL |
[105] | 周起凤. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、 矿物学、 熔-流体演化与成矿作用[D]. 北京: 中国科学院大学, 2013. |
[106] |
LIU F, ZHANG Z X, LI Q, et al. New precise timing constraint for the Keketuohai No.3 pegmatite in Xinjiang, China, and identification of its parental pluton[J]. Ore Geology Reviews, 2014, 56: 209-219.
DOI URL |
[107] | HAN J S, ZHAO Z H, HOLLINGS P, et al. A 50 m.y. melting model for the rare metal-rich Koktokay pegmatite in the Chinese Altai: implications from a newly identified Jurassic granite[J]. GSA Bulletin, 2022, 135(5/6): 1467-1479. |
[108] |
SHEN P, PAN H D, LI CH, et al. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): rare-metal fertility and connection with the No.3 pegmatite[J]. Gondwana Research, 2022, 112: 24-51.
DOI URL |
[109] | 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006. |
[110] |
MÜLLER A, IHLEN P M, SNOOK B, et al. The chemistry of quartz in granitic pegmatites of southern Norway: petrogenetic and economic implications[J]. Economic Geology, 2015, 110(7): 1737-1757.
DOI URL |
[111] | 朱金初, 吴长年, 刘昌实, 等. 新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因[J]. 高校地质学报, 2000, 6(1): 40-52. |
[112] | RUBIN A M. Getting granite dikes out of the source region[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 5911-5929. |
[1] | 王水炯, 李曙光. 混合岩研究及地球动力学意义[J]. 地学前缘, 20140101, 21(1): 21-32. |
[2] | 黄春梅, 李光明, 付建刚, 梁维, 张志, 王艺云. 藏南错那洞中新世早期淡色花岗岩岩石成因:全岩地球化学、矿物学特征约束[J]. 地学前缘, 2023, 30(5): 74-92. |
[3] | 陈旭, 范洪海, 陈东欢, 陈金勇, 王生云. 纳米比亚罗辛地区白岗岩成因及铀成矿作用[J]. 地学前缘, 2023, 30(5): 59-73. |
[4] | 孙文博, 李欢. 伟晶岩中锆石研究进展及其对稀有金属成矿的启示[J]. 地学前缘, 2023, 30(5): 171-184. |
[5] | 付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆-热液过程的指示[J]. 地学前缘, 2023, 30(5): 134-150. |
[6] | 饶灿, 王吴梦雨, 王琪, 张志琦, 吴润秋. NYF型伟晶岩岩浆-热液演化与稀有稀土金属超常富集[J]. 地学前缘, 2023, 30(5): 106-114. |
[7] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
[8] | 张旗, 翟明国, 魏春景, 周李岗, 陈万峰, 焦守涛, 王跃, 袁方林. 一个新的花岗岩成因分类:基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 2022, 29(4): 319-329. |
[9] | 唐勇, 覃山县, 赵景宇, 吕正航, 刘喜强, 王宏, 陈剑争, 张辉. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92. |
[10] | 王登红,刘丽君,侯江龙,代鸿章,于扬,代晶晶,田世洪. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 2017, 24(5): 1-7. |
[11] | 王水炯, 李曙光. 混合岩研究及地球动力学意义[J]. 地学前缘, 2014, 21(1): 21-31. |
[12] | 李建康. 花岗伟晶岩结构结晶动力学的研究进展[J]. 地学前缘, 2012, 19(4): 165-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||