地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 171-184.DOI: 10.13745/j.esf.sf.2023.5.2
收稿日期:
2022-10-04
修回日期:
2022-12-14
出版日期:
2023-09-25
发布日期:
2023-10-20
通信作者:
*李 欢(1985—),男,教授,博士生导师,主要从事矿床学方向研究工作。E-mail: lihuan@csu.edu.cn
作者简介:
孙文博(1999—),男,博士研究生,主要从事矿床学方向研究工作。E-mail: sunwbo@csu.edu.cn
基金资助:
Received:
2022-10-04
Revised:
2022-12-14
Online:
2023-09-25
Published:
2023-10-20
摘要:
随着全球经济的发展,世界对稀有金属的需求量越来越大,伟晶岩型稀有金属矿床因其数量多、成矿潜力大而走进了人们的视野。锆石作为伟晶岩中重要的副矿物,是研究伟晶岩型矿床成矿物质来源、流体性质、流体演化过程和稀有金属富集机制的重要对象。本文综述了伟晶岩中锆石研究的最新进展并探讨了其对稀有金属成矿的启示。研究发现伟晶岩锆石具有多种成因且多遭受热液改造,导致其具有复杂的年龄谱系,伟晶岩稀有金属成矿与老锆石存在关联性。锆石微量元素既可以指示伟晶岩锆石的稀有金属矿化,也可以反演岩浆演化过程及揭示成矿流体性质。稀土元素四分组效应是一种特殊的稀土配分模式,这种模式在伟晶岩锆石中同样存在,指示了熔体与流体之间的演化过程。伟晶岩锆石中的Hf-O同位素组成变化很大,Hf同位素可以很好地对伟晶岩源区进行示踪,O同位素是良好的示踪剂。伟晶岩锆石有着丰富的包裹体,利用流体包裹体测温以及成分分析解决岩浆演化阶段时间划分、使用高铀锆石追踪富U流体的来源以及利用锆石Li、Zr同位素特征来揭示成矿过程等将是后续伟晶岩中锆石研究的重点方向。
中图分类号:
孙文博, 李欢. 伟晶岩中锆石研究进展及其对稀有金属成矿的启示[J]. 地学前缘, 2023, 30(5): 171-184.
SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review[J]. Earth Science Frontiers, 2023, 30(5): 171-184.
图1 香花岭伟晶岩锆石协和年龄,表现为多年龄谱系,且老锆石分多个段
Fig.1 U-Pb concordia diagrams for zircons from the Xianghualing pegmatite, revealing multistage zircon mineralization and zonal features in older zircons
图2 香花岭地区伟晶岩中锆石阴极发光图像 1~4号为蚀变锆石,表现出明显的蜕晶化;5~8号为岩浆型锆石,表现出完好的岩浆锆石颗粒特征;9~10号为继承型锆石,其同时具备环带特征和经过改造的不平整的边缘;11~13号为捕获型,具岩浆锆石结构外围包裹一圈重结晶。
Fig.2 CL images of zircons from the Xianghualing pegmatite
图3 加泰罗尼亚比利牛斯山脉I型伟晶岩锆石晶体示意图,显示富包裹体核、振荡带状原生锆石和片状次生锆石(据文献[21]修改)
Fig.3 Internal structure of zircon revealing an inclusion-rich core and oscillatory zoned primary and secondary zircons. Modified after [21].
图5 秦岭伟晶岩中锆石Nb+Ta与REE+Y含量关系示意图(据文献[41]修改)
Fig.5 Plots of REE+Y vs. Nb+Ta for zircons (~415 Ma (blue) and <415 Ma (red)) from the Qinling pegmatite rim (a) and core (b). Modified after [41].
图7 不同成因锆石(Sm/La)N-La (a)和(Sm/La)N-δCe (b)图解浅灰色和深灰色分别代表典型的岩浆和热液锆石场(据文献[10,41,57]修改)
Fig.7 Genetic classification of zircons from the Qinling and Xinjiang pegmatites. Light and dark gray areas indicate fields of magmatic and hydrothermal zircon types, respectively. Modified after [10,41,57].
图8 新疆柯鲁木特地区伟晶岩中锆石的稀土元素特征(据文献[39]修改)
Fig.8 REE patterns of zircons from the Kelumute pegmatite, Xinjiang, showing REE tetrad effect. Modified after [39].
图9 新疆两伟晶岩εHf(t)值与锆石结晶年龄的关系图(据文献[69,79]修改)
Fig.9 Plot of εHf(t) vs. crystallization age for zircons from pegmatites and granites from two locations in Xinjiang. Modified after [69,79].
[1] | 邓运, 费光春, 李剑, 等. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究[J]. 矿物岩石, 2018, 38(3): 40-47. |
[2] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[3] | 冉子龙, 李艳军. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 2021(2): 13-23. |
[4] | 秦克章, 周起凤, 唐冬梅, 等. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜[J]. 地质学报, 2021, 95(10): 3039-3053. |
[5] | 邹心宇, 蒋济莲, 秦克章, 等. 锆石微量元素的理论基础及其应用研究进展[J]. 岩石学报, 2021, 37(4): 985-999. |
[6] |
CHERNIAK D J, HANCHAR J M, WATSON E B. Rare-earth diffusion in zircon[J]. Chemical Geology, 1997, 134(4): 289-301.
DOI URL |
[7] |
SIÉGEL C, BRYAN S E, ALLEN C M, et al. Use and abuse of zircon-based thermometers: a critical review and a recommended approach to identify antecrystic zircons[J]. Earth-Science Reviews, 2018, 176: 87-116.
DOI URL |
[8] |
LOADER M A, WILKINSON J J, ARMSTRONG R N. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J]. Earth and Planetary Science Letters, 2017, 472: 107-119.
DOI URL |
[9] |
ZOU X Y, QIN K Z, HAN X L, et al. Insight into zircon REE oxy-barometers: a lattice strain model perspective[J]. Earth and Planetary Science Letters, 2019, 506: 87-96.
DOI URL |
[10] | 唐勇, 张辉, 吕正航. 不同成因锆石阴极发光及微量元素特征: 以新疆阿尔泰地区花岗岩和伟晶岩为例[J]. 矿物岩石, 2012, 32(1): 8-15. |
[11] |
TANG Y, ZHAO J Y, ZHANG H, et al. Precise columbite-(Fe) and zircon U-Pb dating of the Nanping No. 31 pegmatite vein in northeastern Cathaysia Block, SE China[J]. Ore Geology Reviews, 2017, 83: 300-311.
DOI URL |
[12] |
FEI G C, MENUGE J F, LI Y Q, et al. Petrogenesis of the lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364/365: 105555.
DOI URL |
[13] |
SCHALTEGGER U, ULIANOV A, MUNTENER O, et al. Megacrystic zircon with planar fractures in miaskite-type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, southern Alps, Switzerland)[J]. American Mineralogist, 2015, 100(1): 83-94.
DOI URL |
[14] |
SKUBLOV S G, BEREZIN A V, LI X H, et al. Zircons from a pegmatite cutting eclogite (gridino, belomorian mobile belt): U-Pb-O and trace element constraints on eclogite metamorphism and fluid activity[J]. Geosciences, 2020, 10(5): 197.
DOI URL |
[15] | 秦克章, 周起凤, 唐冬梅, 等. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景: 兼与阿尔泰地区对比[J]. 矿床地质, 2019, 38(5): 970-982. |
[16] | 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286. |
[17] |
ZHOU Q F, QIN K Z, TANG D M, et al. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: evidence from U-Pb zircon and 40 muscovite ages[J]. Resource Geology, 2015, 65(3): 210-231.
DOI URL |
[18] |
ADETUNJI A, OLAREWAJU V O, OCAN O O, et al. Geochemistry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: a newly discovered oldest Pan African rock in southwestern Nigeria[J]. Journal of African Earth Sciences, 2016, 115: 177-190.
DOI URL |
[19] |
SOMAN A, GEISLER T, TOMASCHEK F, et al. Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi[J]. Contributions to Mineralogy and Petrology, 2010, 160(6): 909-930.
DOI URL |
[20] | 杨红, 王伟, 刘建辉. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义[J]. 岩石学报, 2017, 33(9): 2675-2688. |
[21] |
VAN LICHTERVELDE M, GRAND’HOMME A, SAINT-BLANQUAT M, et al. U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain[J]. Mineralogy and Petrology, 2017, 111(1): 1-21.
DOI URL |
[22] |
DENG X D, LI J W, ZHAO X F, et al. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: implications for geochronology of pegmatite and associated ore deposits[J]. Chemical Geology, 2013, 344: 1-11.
DOI URL |
[23] |
MADAYIPU N, LI H, ALGEO T J, et al. Long-lived Nb-Ta mineralization in Mufushan, NE Hunan, South China: geological, geochemical, and geochronological constraints[J]. Geoscience Frontiers, 2023, 14(1): 101491.
DOI URL |
[24] |
LI H, WATANABE K, YONEZU K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: implications for the magmatic evolution and mineralization processes[J]. Ore Geology Reviews, 2014, 60: 14-35.
DOI URL |
[25] |
VALÉRO R, DURAND B, GUTH J, et al. Mechanism of hydrothermal synthesis of zircon in a fluoride medium[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1/2/3), 119-124.
DOI URL |
[26] |
PARK C, SONG Y, CHUNG D, et al. Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: record of post-magmatic alteration[J]. Lithos, 2016, 260: 268-285.
DOI URL |
[27] |
CHEN W T, ZHOU M F. Hydrothermal alteration of magmatic zircon related to NaCl-rich brines: diffusion-reaction and dissolution-reprecipitation processes[J]. American Journal of Science, 2017, 317(2): 177-215.
DOI URL |
[28] |
WANG T, TONG Y, JAHN B M, et al. SHRIMP U-Pb zircon geochronology of the Altai No.3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J]. Ore Geology Reviews, 2007, 32(1/2): 325-336.
DOI URL |
[29] | 吴元保, 郑永飞, 龚冰, 等. 北淮阳庐镇关岩浆岩锆石U-Pb年龄和氧同位素组成[J]. 岩石学报, 2004, 20(5): 18-35. |
[30] | 齐金忠, 李莉, 袁士松, 等. 甘肃省阳山金矿床石英脉中锆石SHRIMP U-Pb年代学研究[J]. 矿床地质, 2005, 24(2): 141-150. |
[31] | 李文良, 陈勇敢, 赵玉锁, 等. 甘肃寨上金矿床含金石英脉中锆石SHRIMP法U-Pb同位素测定及地质意义[J]. 黄金, 2006, 27(7): 4-7. |
[32] | 林振文, 秦艳, 岳素伟, 等. 陕西省铧厂沟金矿床石英脉中锆石U-Pb年代学研究[J]. 矿物学报, 2011, 31(增刊1): 614-615. |
[33] | 陈超, 王芳, 赵夫旺, 等. 河北省石湖金矿含金石英脉中锆石U-Pb年龄及其地质意义[J]. 地质科技情报, 2017, 36(3): 103-109. |
[34] |
LI H, LI J W, ALGEO T J, et al. Zircon indicators of fluid sources and ore genesis in a multi-stage hydrothermal system: the Dongping Au deposit in North China[J]. Lithos, 2018, 314/315: 463-478.
DOI URL |
[35] |
LI H, SUN H S, EVANS N J, et al. Geochemistry and geochronology of zircons from granite-hosted gold mineralization in the Jiaodong Peninsula, North China: implications for ore genesis[J]. Ore Geology Reviews, 2019, 115: 103188.
DOI URL |
[36] |
BELL E A, BOEHNKE P, HARRISON T M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration[J]. Geochimica et Cosmochimica Acta, 2016, 191: 187-202.
DOI URL |
[37] |
ZENG L J, NIU H C, BAO Z W, et al. Chemical lattice expansion of natural zircon during the magmatic-hydrothermal evolution of A-type granite[J]. American Mineralogist, 2017, 102(3): 655-665.
DOI URL |
[38] |
LI H, WU J H, EVANS N J, et al. Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: insights into multi-stage Sn-polymetallic mineralization in South China[J]. Lithos, 2018, 312/313: 1-20.
DOI URL |
[39] |
LV Z H, ZHANG H, TANG Y. Lanthanide tetrads with implications for liquid immiscibility in an evolving magmatic-hydrothermal system: evidence from rare earth elements in zircon from the No.112 pegmatite, Kelumute, Chinese Altai[J]. Journal of Asian Earth Sciences, 2018, 164: 9-22.
DOI URL |
[40] | 李再会, 唐发伟, 林仕良, 等. 滇西含绿柱石伟晶岩锆石U-Pb年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(2): 554-565. |
[41] |
YUAN F, LIU J J, CARRANZA E J M, et al. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: a case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China[J]. Lithos, 2018, 302/303: 20-36.
DOI URL |
[42] |
LONDON D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1/2/3/4): 281-303.
DOI URL |
[43] |
BALLOUARD C, POUJOL M, BOULVAIS P, et al. Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: the uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France)[J]. Ore Geology Reviews, 2017, 80: 309-331.
DOI URL |
[44] |
CUNEY M, BARBEY P. Uranium, rare metals, and granulite-facies metamorphism[J]. Geoscience Frontiers, 2014, 5(5): 729-745.
DOI URL |
[45] |
PEIFFERT C, NGUYEN-TRUNG C, CUNEY M. Uranium in granitic magmas: part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770 ℃, 2 kbar[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1515-1529.
DOI URL |
[46] |
ZAMYATIN D A, SHCHAPOVA Y V, VOTYAKOV S L, et al. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia[J]. Mineralogy and Petrology, 2017, 111(4): 475-497.
DOI URL |
[47] |
WANG X, GRIFFIN W L, CHEN J. Hf contents and Zr/Hf ratios in granitic zircons[J]. Geochemical Journal, 2010, 44(1): 65-72.
DOI URL |
[48] | ČERNÝP, MEINTZER R E, ANDERSON A J. Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms[J]. Canadian Mineralogist, 1985, 23: 381-421. |
[49] |
ZARAISKY G P, AKSYUK A M, DEVYATOVA V N, et al. The Zr/Hf ratio as a fractionation indicator of rare-metal granites[J]. Petrology, 2009, 17(1): 25-45.
DOI URL |
[51] |
WANG R C, ZHAO G T, LU J J, et al. Chemistry of hf-rich zircons from the Laoshan I- and A-type granites, eastern China[J]. Mineralogical Magazine, 2000, 64(5): 867-877.
DOI URL |
[52] |
LINNEN R L, KEPPLER H. Melt composition control of Zr/Hf fractionation in magmatic processes[J]. Geochimica et Cosmochimica Acta, 2002, 66(18): 3293-3301.
DOI URL |
[53] | 吕正航, 张辉, 唐勇. 稀有金属伟晶岩锆石的REE特征、Zr/Hf和Y/Ho比值对岩浆-热液演化过程的指示[J]. 矿物学报, 2013, 33(增刊2): 235. |
[54] |
PIILONEN P C, MCDONALD A M, POIRIER G, et al. The mineralogy and crystal chemistry of alkaline pegmatites in the Larvik Plutonic Complex, Oslo rift valley, Norway. Part 1. Magmatic and secondary zircon: implications for petrogenesis from trace-element geochemistry[J]. Mineralogical Magazine, 2012, 76(3): 649-672.
DOI URL |
[55] |
HOSKIN P W O. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
DOI URL |
[56] | 张爱铖, 王汝成, 谢磊, 等. 阿尔泰可可托海3号伟晶岩脉中的铪质锆石[J]. 矿物学报, 2003, 23(4): 327-332. |
[57] |
HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648.
DOI URL |
[58] |
HOSKIN P W O, IRELAND T R. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 2000, 28(7): 627-630.
DOI URL |
[59] |
ZHAO J X, COOPER J A. Fractionation of monazite in the development of V-shaped REE patterns in leucogranite systems: evidence from a muscovite leucogranite body in central Australia[J]. Lithos, 1993, 30(1): 23-32.
DOI URL |
[60] |
MCLENNAN S M. Rare earth element geochemistry and the “tetrad” effect[J]. Geochimica et Cosmochimica Acta, 1994, 58(9): 2025-2033.
DOI URL |
[61] |
PAN Y M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect: a discussion of the article by M. Bau (1996)[J]. Contributions to Mineralogy and Petrology, 1997, 128(4): 405-408.
DOI URL |
[62] | PAN Y M, BREAKS F. Rare-earth elements in fluorapatite, Separation Lake area, Ontario: evidence for S-type granite-rare-element pegmatite linkage[J]. The Canadian Mineralogist, 1997, 35: 659-671. |
[63] |
SHA L K, CHAPPELL B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861-3881.
DOI URL |
[64] |
DUC-TIN Q, KEPPLER H. Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 2015, 169(1): 1-26.
DOI URL |
[65] |
IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 489-508.
DOI URL |
[66] | DOLEJŠ D, ŠTEMPROK M. Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Krušnéhory batholith, Czech Republic[J]. Bulletin of Geosciences, 2001, 76(2): 77-99. |
[67] |
ZHAO Z H, XIONG X L, HAN X D, et al. Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe granites, China[J]. Geochemical Journal, 2002, 36(6): 527-543.
DOI URL |
[68] |
WU C Z, LIU S H, GU L X, et al. Formation mechanism of the lanthanide tetrad effect for a topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(5): 903-916.
DOI URL |
[69] |
MONECKE T, KEMPE U, TRINKLER M, et al. Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system[J]. Geology, 2011, 39(4): 295-298.
DOI URL |
[70] |
MONECKE T, DULSKI P, KEMPE U. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 335-353.
DOI URL |
[71] |
MONECKE T, KEMPE U, MONECKE J, et al. Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1185-1196.
DOI URL |
[72] |
TANG Y, ZHANG H. Lanthanide tetrads in normalized rare element patterns of zircon from the Koktokay No.3 granitic pegmatite, Altay, NW China[J]. American Mineralogist, 2015, 100(11/12): 2630-2636.
DOI URL |
[73] |
LIU C Q, ZHANG H. The lanthanide tetrad effect in apatite from the Altay No.3 pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma[J]. Chemical Geology, 2005, 214(1/2): 61-77.
DOI URL |
[74] |
CAO M J, ZHOU Q F, QIN K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No.3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6): 985-1005.
DOI URL |
[75] |
VEKSLER I V, DORFMAN A M, KAMENETSKY M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2847-2860.
DOI URL |
[76] |
BADANINA E V, TRUMBULL R B, DULSKI P, et al. The behavior of rare-earth and lithophile trace elements in rare-metal granites: a study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia[J]. The Canadian Mineralogist, 2006, 44(3): 667-692.
DOI URL |
[77] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[78] |
LENTING C, GEISLER T, GERDES A, et al. The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration[J]. American Mineralogist, 2010, 95(8/9): 1343-1348.
DOI URL |
[79] |
LV Z H, ZHANG H, TANG Y, et al. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No.112 pegmatite in Altay, northwestern China: evidence from zircon U-Pb and Hf isotopes[J]. Lithos, 2012, 154: 374-391.
DOI URL |
[80] |
MAAS R, KINNY P D, WILLIAMS I S, et al. The Earth’s oldest known crust: a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, western Australia[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1281-1300.
DOI URL |
[81] | 张玉洁. 新疆卡鲁安锂矿床花岗岩与伟晶岩成因关系:锆石定年、 Hf-O同位素和全岩地球化学证据[D]. 北京: 中国地质大学(北京), 2019. |
[82] |
ZHANG H F, ZHONG Z Q, GAO S, et al. U-Pb zircon age of the foliated garnet-bearing granites in western Dabie Mountains, Central China[J]. Chinese Science Bulletin, 2001, 46(19): 1657-1660.
DOI URL |
[83] | GREWEDWARD S, SUZUKI K, ASAMI M. CHEME ages of xenotime, monazite and zircon from beryllium pegmetites in the Napiercomplex, Khmara Bay, Enderby land, East Antarctica[J]. Polar Geoscience, 2001, 14: 99-118. |
[84] | KAUR P, CHAUDHRI N, BIJUSEKHAR S, et al. Electron probe micro analyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of widespread late Palaeoproterozoic extension-related magmatism[J]. Current Science, 2006, 90(1): 65-73. |
[85] |
KHILLER V V, REVERDATTO V V, KONILOV A N, et al. Experience of chemical Th-U-Pb chemical dating of zircon from metasomatic felsic veins of the Mridino area, Belomorian eclogite province[J]. Doklady Earth Sciences, 2015, 462(1): 494-496.
DOI URL |
[86] |
SUZUKI K, ADACHI M. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime[J]. Geochemical Journal, 1991, 25(5): 357-376.
DOI URL |
[87] |
GEISLER T, SCHLEICHER H. Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon[J]. Chemical Geology, 2000, 163(1/2/3/4): 269-285.
DOI URL |
[88] |
SUZUKI K, KATO T. CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data[J]. Gondwana Research, 2008, 14(4): 569-586.
DOI URL |
[89] |
VOTYAKOV S L, PRIBAVKIN S V, ZAMYATIN D A. Chemical dating of zircon from granitic pegmatite of the Shartash Massif (Central Urals)[J]. Doklady Earth Sciences, 2016, 470(1): 938-941.
DOI URL |
[90] | 张文, 胡兆初, 刘勇胜, 等. 微区原位锆石Zr同位素测试方法研究[C]// 2019年中国地球科学联合学术年会论文集. 北京: 中国和平音像电子出版社, 2019: 31. |
[91] |
INGLIS E C, MOYNIER F, CREECH J, et al. Isotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth[J]. Geochimica et Cosmochimica Acta, 2019, 250: 311-323.
DOI URL |
[1] | 吴庆, 黄芬, 郭永丽, 肖琼, 孙平安, 杨慧, 白冰. 西南岩溶小流域水体中微量元素地球化学特征及其指示意义[J]. 地学前缘, 2024, 31(5): 397-408. |
[2] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
[3] | 尹青青, 唐菊兴, 项新葵, 赵晓彦, 汪方跃, 徐裕敏, 郭虎, 余振东, 谢金玲, 代晶晶, 彭勃. 赣北彭山还原性S型花岗岩成因及其对Sn富集的启示:来自锆石微量元素的证据[J]. 地学前缘, 2024, 31(3): 133-149. |
[4] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[5] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[6] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[7] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
[8] | 饶灿, 王吴梦雨, 王琪, 张志琦, 吴润秋. NYF型伟晶岩岩浆-热液演化与稀有稀土金属超常富集[J]. 地学前缘, 2023, 30(5): 106-114. |
[9] | 聂潇, 陈雷, 郭现轻, 于涛, 王宗起. 南秦岭中段宁陕地区绿柱石-铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究[J]. 地学前缘, 2023, 30(5): 115-133. |
[10] | 付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆-热液过程的指示[J]. 地学前缘, 2023, 30(5): 134-150. |
[11] | 王珊珊, 周可法, 白泳, 鲁雪晨, 蒋果. 新疆镜儿泉伟晶岩型锂矿岩矿光谱特征分析[J]. 地学前缘, 2023, 30(5): 205-215. |
[12] | 付小方, 黄韬, 郝雪峰, 王登红, 梁斌, 杨荣, 潘蒙, 范俊波. 川西花岗细晶岩-伟晶岩型锂矿含矿性评价与示矿标志[J]. 地学前缘, 2023, 30(5): 227-243. |
[13] | 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 伟晶岩型锂矿床地球物理探测及可可托海实例[J]. 地学前缘, 2023, 30(5): 244-254. |
[14] | 焦彦杰, 黄旭日, 李光明, 付建刚, 梁生贤, 郭镜. 喜马拉雅成矿带嘎波伟晶岩型锂矿的找矿方法与深部背景研究[J]. 地学前缘, 2023, 30(5): 255-264. |
[15] | 周起凤, 秦克章, 朱丽群, 赵俊兴. 花岗伟晶岩成因探讨:岩浆分异与深熔[J]. 地学前缘, 2023, 30(5): 26-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||