地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 115-133.DOI: 10.13745/j.esf.sf.2023.5.11
收稿日期:
2022-11-30
修回日期:
2022-12-15
出版日期:
2023-09-25
发布日期:
2023-10-20
作者简介:
聂 潇(1988—),男,副研究员,主要研究方向为成因矿物学与岩浆-热液成矿作用。E-mail: niexiao369@gmail.com
基金资助:
NIE Xiao1,2(), CHEN Lei3, GUO Xianqing1, YU Tao1, WANG Zongqi4
Received:
2022-11-30
Revised:
2022-12-15
Online:
2023-09-25
Published:
2023-10-20
摘要:
宁陕伟晶岩区分布于宁陕花岗岩基南侧的外接触带,是秦岭造山带内三大伟晶岩区之一,并分布有伟晶岩型铷-铍-铌-钽矿床。本研究利用扫描电镜和电子探针对宁陕地区的绿柱石-铌铁矿型伟晶岩进行了矿物学研究,同时对铌铁矿族矿物和晶质铀矿进行了定年工作。矿物成分和结构特征显示伟晶岩内的磷灰石和铌铁矿族矿物均可分为两类。第一类磷灰石和第二类磷灰石分别具有相对低Mn、低Cl(MnO含量为0.41%~2.27%;Cl含量为0~0.06%)和高Mn、高Cl(MnO含量为14.51%~19.12%;Cl含量为0.12%~0.16%)的特征;第一类铌铁矿族矿物在分类图上集中在铌铁矿区域,第二类铌铁矿族矿物则分散于铌铁矿和钽铁矿区域。结合矿物组成和矿物相互交代关系,本研究认为第一类磷灰石和铌铁矿族矿物为岩浆分离结晶作用的产物,而第二类磷灰石和铌铁矿族矿物的形成则均与流体活动关系密切。第一类铌铁矿族矿物的U-Pb年龄((206.3±1.5) Ma)代表伟晶岩的侵位年龄,第一类磷灰石的原位Nd同位素结果(εNd值的范围为-4.3~-2.5)与宁陕岩基内晚三叠世二长花岗岩的εNd值基本一致,指示了其同源性。综合两类磷灰石和铌钽铁矿族矿物的成分和结构特征,本研究认为伟晶岩内流体活动具有多阶段性,次生晶质铀矿U-Pb年龄((199.2±1.5) Ma)与岩浆铌铁矿U-Pb年龄((206.3±1.5) Ma)相接近,暗示了早阶段流体活动与岩浆演化关系密切,属于岩浆-热液过渡阶段形成的残余流体;第二类铌铁矿族矿物中局部残留的高Mn含量和第二类磷灰石中较高的Mn、Cl含量共同指示了晚阶段流体中混合了来自围岩的外来流体。
中图分类号:
聂潇, 陈雷, 郭现轻, 于涛, 王宗起. 南秦岭中段宁陕地区绿柱石-铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究[J]. 地学前缘, 2023, 30(5): 115-133.
NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China[J]. Earth Science Frontiers, 2023, 30(5): 115-133.
图1 (a)秦岭造山带大地构造位置;(b)南秦岭中段构造单元划分和印支期花岗岩类分布简图(据文献[26⇓-28]);(c)研究区地质图
Fig.1 Regional geology.(a) Location and tectonic setting of the Qinling orogenic belt.(b) Tectonic units of the middle segment,southern Qinling orogenic belt,showing the distribution of Indosinian granitoids ( adapted from[26⇓-28]).(c) Geological sketch map of the study area.
图2 本研究中伟晶岩的野外露头(a)及岩石薄片的TIMA矿物相图(b,c) 伟晶岩颜色分带为新鲜面和植被覆盖面的颜色差。
图a (a) Pegmatite outcrops showing the effect of vegetation on outcrop appearance, and (b, c) TIMA images of rock thin sections from pegmatite specimens.
图3 本研究伟晶岩中第二类磷灰石及其内部矿物包裹体的扫描电镜背散射(BSE)图像(a)和能谱分析(EDS)图谱(b,c),以及磷灰石部分元素分布图(d,e) 图a中黄色虚线框代表了图d和e中元素面扫描区域。矿物缩写:Ap-Ⅰ—第一类磷灰石;Ap-Ⅱ—第二类磷灰石;Trl—氟磷锰矿。
Fig.3 Mineral analysis of pegmatite specimens. (a) BSE image of pegmatite specimen showing Ap-I, Ap-II and triplite occurrences. (b) EDS spectrum of Ap-I. (c) EDS spectrum of Ap-II. (d) EPMA image of apatite with Mn elemental scan. (e) EPMA image of apatite with F elemental scan.
图4 (a)本研究伟晶岩中具有代表性的第一类(Ap-Ⅰ)磷灰石颗粒的BSE图像(圆圈指Nd同位素测点位置);(b)第一类(Ap-Ⅰ)磷灰石颗粒的Sm-Nd同位素值图
Fig.4 (a) Representative BSE images of Ap-Ⅰ grains (circles indicate sampling points for Nd isotopic analysis), and (b) Sm-Nd isochron diagram for Ap-Ⅰ grains.
图5 本研究伟晶岩中不同类型铌铁矿族矿物及其内部包裹体的扫描电镜BSE图像(a-d)及其内部包裹体的EDS图谱(e,f) 图c中虚线框代表了图6中元素面扫描区域。矿物缩写:CGM-Ⅰ—第一类铌铁矿族矿物;CGM-Ⅱ—第二类铌铁矿族矿物;Urn—晶质铀矿;Mcl—细晶石(疑似)。
Fig.5 (a-d) BSE images of pegmatite specimens showing occurrences of CGM-Ⅰ/Ⅱ and inclusions Urn and Mcl in CGM-Ⅱ, and (e, f) EDS spectra of inclusions Urn and Mcl.
图8 (a)本研究伟晶岩中具有代表性的第一类铌铁矿族矿物颗粒(含U-Pb年龄分析激光剥蚀点)的BSE图像;(b)第一类铌铁矿U-Pb年代学分析结果(含下交点年龄和平均年龄)
Fig.8 LA-ICP-MS U-Pb dating data for single-grain CGM-I from pegmatite specimens. (a) Representative BSE images. (b) Tera-Wasserburg concordia diagram and weighted mean 207Pb/206Pb ages.
样品名 | 同位素比值及误差 | 年龄及误差/Ma | ||||||
---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 206Pb/238U | 1σ | rho | 207Pb-corrected | 1σ | ||
K6145-1 | 0.060 74 | 0.001 73 | 0.031 41 | 0.000 43 | 0.32 | 197 | 2.7 | |
K6145-2 | 0.058 46 | 0.003 34 | 0.031 68 | 0.000 85 | 0.45 | 199 | 5.4 | |
K6145-3 | 0.053 10 | 0.001 33 | 0.032 12 | 0.000 59 | 0.63 | 203 | 3.7 | |
K6145-4 | 0.061 38 | 0.003 20 | 0.032 52 | 0.000 65 | 0.16 | 204 | 4.1 | |
K6145-5 | 0.053 73 | 0.001 57 | 0.032 39 | 0.000 46 | 0.34 | 205 | 2.9 | |
K6145-6 | 0.051 47 | 0.001 49 | 0.032 31 | 0.000 50 | 0.59 | 205 | 3.2 | |
K6145-7 | 0.089 15 | 0.004 54 | 0.034 05 | 0.000 86 | 0.68 | 206 | 5.3 | |
K6145-8 | 0.049 75 | 0.002 30 | 0.032 41 | 0.000 49 | 0.21 | 206 | 3.1 | |
K6145-9 | 0.053 81 | 0.002 76 | 0.032 59 | 0.000 62 | 0.01 | 206 | 3.9 | |
K6145-10 | 0.050 16 | 0.001 31 | 0.032 49 | 0.000 38 | 0.26 | 206 | 2.4 | |
K6145-11 | 0.052 79 | 0.001 05 | 0.032 61 | 0.000 38 | 0.41 | 206 | 2.4 | |
K6145-12 | 0.053 12 | 0.002 34 | 0.032 67 | 0.000 54 | 0.13 | 207 | 3.4 | |
K6145-13 | 0.049 57 | 0.001 09 | 0.032 57 | 0.000 48 | 0.54 | 207 | 3.0 | |
K6145-14 | 0.052 13 | 0.001 36 | 0.032 70 | 0.000 40 | 0.11 | 207 | 2.5 | |
K6145-15 | 0.051 48 | 0.001 43 | 0.032 73 | 0.000 56 | 0.68 | 207 | 3.5 | |
K6145-16 | 0.049 70 | 0.001 36 | 0.032 68 | 0.000 49 | 0.49 | 207 | 3.1 | |
K6145-17 | 0.050 96 | 0.001 43 | 0.032 75 | 0.000 41 | 0.29 | 208 | 2.6 | |
K6145-18 | 0.057 64 | 0.002 97 | 0.033 19 | 0.000 51 | 0.18 | 209 | 3.3 | |
K6145-19 | 0.055 79 | 0.002 88 | 0.033 34 | 0.000 64 | 0.25 | 210 | 4.1 | |
K6145-20 | 0.147 02 | 0.003 80 | 0.037 70 | 0.000 64 | 0.72 | 210 | 3.7 | |
K6145-21 | 0.050 68 | 0.002 95 | 0.033 19 | 0.000 51 | 0.04 | 210 | 3.3 | |
K6145-22 | 0.175 33 | 0.005 67 | 0.039 42 | 0.000 54 | 0.29 | 211 | 3.4 | |
K6145-23 | 0.335 93 | 0.004 41 | 0.052 59 | 0.000 75 | 0.73 | 214 | 3.8 |
表4 宁陕绿柱石-铌铁矿型伟晶岩中铌铁矿的LA-ICP-MS U-Pb年龄
Table 4 LA-ICP-MS U-Pb ages for CGM from pegmatite specimens
样品名 | 同位素比值及误差 | 年龄及误差/Ma | ||||||
---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 206Pb/238U | 1σ | rho | 207Pb-corrected | 1σ | ||
K6145-1 | 0.060 74 | 0.001 73 | 0.031 41 | 0.000 43 | 0.32 | 197 | 2.7 | |
K6145-2 | 0.058 46 | 0.003 34 | 0.031 68 | 0.000 85 | 0.45 | 199 | 5.4 | |
K6145-3 | 0.053 10 | 0.001 33 | 0.032 12 | 0.000 59 | 0.63 | 203 | 3.7 | |
K6145-4 | 0.061 38 | 0.003 20 | 0.032 52 | 0.000 65 | 0.16 | 204 | 4.1 | |
K6145-5 | 0.053 73 | 0.001 57 | 0.032 39 | 0.000 46 | 0.34 | 205 | 2.9 | |
K6145-6 | 0.051 47 | 0.001 49 | 0.032 31 | 0.000 50 | 0.59 | 205 | 3.2 | |
K6145-7 | 0.089 15 | 0.004 54 | 0.034 05 | 0.000 86 | 0.68 | 206 | 5.3 | |
K6145-8 | 0.049 75 | 0.002 30 | 0.032 41 | 0.000 49 | 0.21 | 206 | 3.1 | |
K6145-9 | 0.053 81 | 0.002 76 | 0.032 59 | 0.000 62 | 0.01 | 206 | 3.9 | |
K6145-10 | 0.050 16 | 0.001 31 | 0.032 49 | 0.000 38 | 0.26 | 206 | 2.4 | |
K6145-11 | 0.052 79 | 0.001 05 | 0.032 61 | 0.000 38 | 0.41 | 206 | 2.4 | |
K6145-12 | 0.053 12 | 0.002 34 | 0.032 67 | 0.000 54 | 0.13 | 207 | 3.4 | |
K6145-13 | 0.049 57 | 0.001 09 | 0.032 57 | 0.000 48 | 0.54 | 207 | 3.0 | |
K6145-14 | 0.052 13 | 0.001 36 | 0.032 70 | 0.000 40 | 0.11 | 207 | 2.5 | |
K6145-15 | 0.051 48 | 0.001 43 | 0.032 73 | 0.000 56 | 0.68 | 207 | 3.5 | |
K6145-16 | 0.049 70 | 0.001 36 | 0.032 68 | 0.000 49 | 0.49 | 207 | 3.1 | |
K6145-17 | 0.050 96 | 0.001 43 | 0.032 75 | 0.000 41 | 0.29 | 208 | 2.6 | |
K6145-18 | 0.057 64 | 0.002 97 | 0.033 19 | 0.000 51 | 0.18 | 209 | 3.3 | |
K6145-19 | 0.055 79 | 0.002 88 | 0.033 34 | 0.000 64 | 0.25 | 210 | 4.1 | |
K6145-20 | 0.147 02 | 0.003 80 | 0.037 70 | 0.000 64 | 0.72 | 210 | 3.7 | |
K6145-21 | 0.050 68 | 0.002 95 | 0.033 19 | 0.000 51 | 0.04 | 210 | 3.3 | |
K6145-22 | 0.175 33 | 0.005 67 | 0.039 42 | 0.000 54 | 0.29 | 211 | 3.4 | |
K6145-23 | 0.335 93 | 0.004 41 | 0.052 59 | 0.000 75 | 0.73 | 214 | 3.8 |
图9 (a)本研究伟晶岩中用于U-Pb年代学分析的晶质铀矿颗粒的BSE图像(圆圈指U-Pb年代学分析测试点位);(b,c)晶质铀矿U-Pb年代学分析谐和图和平均年龄
Fig.9 LA-ICP-MS U-Pb dating data for single-grain uraninite from pegmatite specimens. (a) Representative BSE images. (b) Concordia diagram. (c) Weighted mean ages.
[1] |
李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13.
DOI |
[2] | 邹天人, 徐建国. 论花岗伟晶岩的成因和类型的划分[J]. 地球化学, 1975, 4(3): 161-174. |
[3] | LONDON D. Internal differentiation of rare-element pegmatites: a synthesis of recent research[M]// Geological Society of America Special Papers. Boulder: Geological Society of America, 1990: 35-50. |
[4] |
LONDON D. The origin of primary textures in granitic pegmatites[J]. The Canadian Mineralogist, 2009, 47(4): 697-724.
DOI URL |
[5] | ČERNÝ P. Rare-element granitic pegmatites, part II: regional to global environments and petrogenesis[J]. Geoscience Canada, 1991, 18(2), 68-81. |
[6] | ČERNÝ P. Rare-element granitic pegmatites. part I: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 1991, 18(2), 49-67. |
[7] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026.
DOI URL |
[8] |
MARTIN R F, DE VITO C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. The Canadian Mineralogist, 2005, 43(6): 2027-2048.
DOI URL |
[9] |
SIMMONS W BS, WEBBER K L. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438.
DOI URL |
[10] | 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106. |
[11] |
BARROS R, KAETER D, MENUGE J F, et al. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: constraints from mineral chemistry[J]. Lithos, 2020, 352/353: 105289.
DOI URL |
[12] |
VAN LICHTERVELDE M, SALVI S, BEZIAT D, et al. Texturalfeatures and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the tanco lower pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2): 257-276.
DOI URL |
[13] |
DEMARTIS M, MELGAREJO J C, COLOMBO F, et al. Extremef activities in late pegmatitic events as a key factor for lile and hfse enrichment: the ángel pegmatite, central Argentina[J]. The Canadian Mineralogist, 2014, 52(2): 247-269.
DOI URL |
[14] |
RAO C, WANG R C, YANG Y Q, et al. Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No.31 pegmatite (SE China)[J]. Ore Geology Reviews, 2017, 91: 864-876.
DOI URL |
[15] |
YIN R, HUANG X L, XU Y G, et al. Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China[J]. Lithos, 2020, 352/353: 105208.
DOI URL |
[16] | 秦克章, 周起凤, 唐冬梅, 等. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜[J]. 地质学报, 2021, 95(10): 3039-3053. |
[17] | 彭海练, 李维成, 李武杰, 等. 陕西宁陕县铷等稀有金属成矿地质特征及找矿前景分析[J]. 陕西地质, 2016, 34(2): 21-26. |
[18] |
NIE X, WANG Z Q, CHEN L, et al. Geochemical contrasts between late Triassic Rb-rich and barren pegmatites from Ningshan pegmatite district, South Qinling orogen, China: implications for petrogenesis and rare metal exploration[J]. Minerals, 2020, 10(7): 582.
DOI URL |
[19] |
MENG Q R, ZHANG G W. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 1999, 27(2): 123-126.
DOI URL |
[20] |
YAN Z, WANG Z Q, CHEN J L, et al. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U-Pb geochronology and petrography of sandstones[J]. Journal of Asian Earth Sciences, 2010, 37(4): 322-334.
DOI URL |
[21] |
MATTAUER M, MATTE P, MALAVIEILLE J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500.
DOI |
[22] |
DONG Y, ZHANG G, NEUBAUER F, et al. Tectonic evolution of the Qinling orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
DOI URL |
[23] | 陈西京, 王淑荣, 张秀颖. 秦岭花岗伟晶岩基本特征与成矿作用[M]. 北京: 地质出版社. 1993, 1-75. |
[24] | 卢欣祥, 祝朝辉, 谷德敏, 等. 东秦岭花岗伟晶岩的基本地质矿化特征[J]. 地质论评, 2010, 56(1): 21-30. |
[25] | 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11(2): 101-114. |
[26] |
LIU S W, LI Q G, TIAN W, et al. Petrogenesis of indosinian granitoids in middle-segment of South Qinling tectonic belt: constraints from Sr-Nd isotopic systematics[J]. Acta Geologica Sinica (English Edition), 2011, 85(3): 610-628.
DOI URL |
[27] |
DONG Y P, LIU X M, ZHANG G W, et al. Triassic diorites and granitoids in the Foping area: constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 2012, 47: 123-142.
DOI URL |
[28] |
WANG X X, WANG T, ZHANG C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151.
DOI URL |
[29] |
YANG P T, LIU S W, LI Q G, et al. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the South Qinling belt, Central China: constraints on petrogenesis and geodynamic processes[J]. Journal of Asian Earth Sciences, 2012, 61: 166-186.
DOI URL |
[30] |
LIU Z C, WU F Y, YANG Y H, et al. Neodymium isotopic compositions of the standard monazites used in U-Th-Pb geochronology[J]. Chemical Geology, 2012, 334: 221-239.
DOI URL |
[31] | 赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347. |
[32] |
MELCHER F, GRAUPNER T, GÄBLER H E, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719.
DOI URL |
[33] |
CHE X D, WU F Y, WANG R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989.
DOI URL |
[34] |
LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[35] |
STACEY J T, KRAMERS J. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221.
DOI URL |
[36] | LUDWIG K R. User’s manual for Isoplot 3. 00: a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003: 1-74. |
[37] |
ZONG K Q, CHEN J Y, HU Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China Earth Sciences, 2015, 58(10): 1731-1740.
DOI URL |
[38] |
HU Z C, ZHANG W, LIU Y S, et al. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157.
DOI URL |
[39] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[40] |
RODA E, PESQUERA A, FONTAN F, et al. Phosphate mineral associations in the Cañada pegmatite (Salamanca, Spain): paragenetic relationships, chemical compositions, and implications for pegmatite evolution[J]. American Mineralogist, 2004, 89(1): 110-125.
DOI URL |
[41] |
RODA-ROBLES E, GALLISKI M A, ROQUET M B, et al. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis Province, Argentina: paragenesis, composition and significance[J]. The Canadian Mineralogist, 2012, 50(4): 913-931.
DOI URL |
[42] |
GALLISKI M Á, ČERNÝ P, MÁRQUEZ-ZAVALÍA M F, et al. An association of secondary Al-Li-Be-Ca-Sr phosphates in the San Elias pegmatite, San Luis, Argentina[J]. The Canadian Mineralogist, 2012, 50(4): 933-942.
DOI URL |
[43] |
VIGNOLA P, ZUCALI M, ROTIROTI N, et al. The chrysoberyl- and phosphate-bearing albite pegmatite of Malga Garbella, val di Rabbi, Trento Province, Italy[J]. The Canadian Mineralogist, 2018, 56(4): 411-424.
DOI URL |
[44] |
SHA L K, CHAPPELL B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861-3881.
DOI URL |
[45] |
BELOUSOVA E A, GRIFFIN W L, O’REILLY S Y, et al. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69.
DOI URL |
[46] |
SWANSON S E. Mineralogy of spodumene pegmatites and related rocks in the tin-spodumene belt of North Carolina and South Carolina, USA[J]. The Canadian Mineralogist, 2012, 50(6): 1589-1608.
DOI URL |
[47] |
CAO M J, ZHOU Q F, QIN K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No.3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6): 985-1005.
DOI URL |
[48] |
SELWAY J B, BREAKS F W, TINDLE A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
DOI URL |
[49] |
PIECZKA A. Beusite and an unusualmn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland[J]. The Canadian Mineralogist, 2007, 45(4): 901-914.
DOI URL |
[50] |
JIANG Y H, JIN G D, LIAO S Y, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117(1/2/3/4): 183-197.
DOI URL |
[51] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[52] |
WANG H, GAO H, ZHANG X Y, et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360/361: 105449.
DOI URL |
[53] | 徐兴旺, 洪涛, 李杭, 等. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 2020, 36(12): 3572-3592. |
[54] |
SIMMONS W, FALSTER A, WEBBER K, et al. Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 2016, 54(4): 1053-1070.
DOI URL |
[55] |
MÜLLER A, ROMER R L, PEDERSEN R B. The Sveconorwegian pegmatite province: thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2): 283-315.
DOI URL |
[56] |
LV Z H, ZHANG H, TANG Y, et al. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 2018, 95: 161-181.
DOI URL |
[57] |
FEI G, MENUGE J F, LI Y, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364/365: 105555.
DOI URL |
[58] |
CHEN B, HUANG C, ZHAO H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551: 119769.
DOI URL |
[59] | LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization, in Linnen R L and Samson I M, eds., rare-element geochemistry and mineral deposits[J]. Geological Association of Canada Short Course Notes, 2005, 17: 45-68. |
[60] |
LONDON D, MORGAN G B BABB H A, et al. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O)[J]. Contributions to Mineralogy and Petrology, 1993, 113(4): 450-465.
DOI URL |
[61] | MYSEN B O, RYERSON F J, VIRGO D. The structural role of phosphorus in silicate melts[J]. American Mineralogist. 1981, 66(1/2), 106-117. |
[62] |
XIONG X L, ZHAO Z H, ZHU J C, et al. Phase relations in albite granite-H2O-HF system and their petrogenetic applications[J]. Geochemical Journal, 1999, 33(3): 199-214.
DOI URL |
[63] | CHEVYCHELOV V Y, ZARAISKY G, BORISOVSKII S, et al. Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites[J]. Petrology, 2005, 13(4): 305-321. |
[64] |
MULJA T, WILLIAMS-JONES A E, MARTIN R F, et al. Compositional variation and structural state of columbite-tantalite in rare-element granitic pegmatites of the Preissac-Lacorne Batholith, Quebec, Canada[J]. American Mineralogist, 1996, 81(1/2): 146-157.
DOI URL |
[65] |
LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793-810.
DOI URL |
[66] |
STEPANOV A, MAVROGENES J A, MEFFRE S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1009.
DOI URL |
[67] | RAIMBAULT L, BURNOL L. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites[J]. The Canadian Mineralogist, 1998, 36(2), 265-282. |
[68] |
BREITER K, KORBELOVÁ Z, CHLÁDEK Š, et al. Diversity of Ti-Sn-W-Nb-Ta oxide minerals in the classic granite-related magmatic-hydrothermal Cínovec/Zinnwald Sn-W-Li deposit (Czech Republic)[J]. European Journal of Mineralogy, 2017, 29(4): 727-738.
DOI URL |
[69] |
WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan deposit, Nanling range, southeastern China[J]. Economic Geology, 2017, 112(4): 855-887.
DOI URL |
[70] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China[J]. Economic Geology, 2018, 113(4): 937-960.
DOI URL |
[71] |
XIE L, WANG Z J, WANG R C, et al. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China)[J]. Ore Geology Reviews, 2018, 95: 695-712.
DOI URL |
[72] |
BALLOUARD C, ELBURG M A, TAPPE S, et al. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 2020, 116: 103252.
DOI URL |
[73] |
HUANG W T, WU J, LIANG H Y, et al. Ages and genesis of W-Sn and Ta-Nb-Sn-W mineralization associated with the Limu granite complex, Guangxi, China[J]. Lithos, 2020, 352/353: 105321.
DOI URL |
[74] |
LAHTI S I. Zoning in columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area, southern Finland[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 509-517.
DOI URL |
[75] | ČERNÝ P, NOVÁK M, CHAPMAN R. Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites, Marsikov, northern Moravia, Czechoslovakia[J]. Canadian Mineralogist, 1992, 30(3): 699-718. |
[76] |
TINDLE A G, BREAKS F W. Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: separation Lakeh area, N.W. Ontario, Canada[J]. Mineralogy and Petrology, 2000, 70(3/4): 165-198.
DOI URL |
[77] |
THOMAS R, DAVIDSON P, BADANINA E. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems[J]. Mineralogy and Petrology, 2009, 96(3): 129-140.
DOI URL |
[78] |
ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 ℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3): 287-300.
DOI URL |
[79] |
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2015, 158: 103-111.
DOI URL |
[80] |
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2017, 197: 294-304.
DOI URL |
[81] |
VAN LICHTERVELDE M, GRÉGOIRE M, LINNEN R L, et al. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada[J]. Contributions to Mineralogy and Petrology, 2008, 155(6): 791-806.
DOI URL |
[82] |
ZHANG A C, WANG R C, HU H, et al. Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No.3 granitic pegmatite, Altai, northwestern China[J]. Mineralogical Magazine, 2004, 68(5): 739-756.
DOI URL |
[83] |
ALFONSO P, MELGAREJO J C. Fluid evolution in the zoned rare-element pegmatite field at Cap de Creus, Catalonia, Spain[J]. The Canadian Mineralogist, 2008, 46(3): 597-617.
DOI URL |
[84] |
ROMER R L, WRIGHT J E. U-Pb dating of columbites: a geochronologic tool to date magmatism and ore deposits[J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 2137-2142.
DOI URL |
[85] |
NOVÁK M, PROKOP J, LOSOS Z, et al. Tourmaline, an indicator of external Mg-contamination of granitic pegmatites from host serpentinite: examples from the Moldanubian Zone, Czech Republic[J]. Mineralogy and Petrology, 2017, 111(4): 625-641.
DOI URL |
[1] | 刘金萍, 王改云, 简晓玲, 朱传庆, 胡小强, 袁晓蔷, 王超. 北黄海东部次盆地构造热机制与成烃效应[J]. 地学前缘, 2024, 31(4): 206-218. |
[2] | 杨双, 王瑞. 铌钽分异富集成矿机制及铌钽矿物测试新技术研究进展[J]. 地学前缘, 2023, 30(5): 151-170. |
[3] | 付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆-热液过程的指示[J]. 地学前缘, 2023, 30(5): 134-150. |
[4] | 张卫民, 王振, 钱程, 郭亚丹, 刘海燕. 方解石负载羟基磷灰石复合材料去除水中铀离子的PRB活性介质研究[J]. 地学前缘, 2021, 28(5): 175-185. |
[5] | 吉利明, 李剑锋, 张明震, 贺聪, 马博, 金培红. 鄂尔多斯盆地延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响[J]. 地学前缘, 2021, 28(1): 388-401. |
[6] | 李源, 王长秋, 鲁安怀, 李艳, 杨重庆, 李康. 脑动脉粥样硬化斑块中不同类型钙化集合体的矿物学特征及分布规律[J]. 地学前缘, 2020, 27(5): 291-299. |
[7] | 骆少勇, 周跃飞, 刘星. 磷灰石对湖泊沉积物中水铁矿稳定性的制约[J]. 地学前缘, 2020, 27(5): 218-226. |
[8] | 周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. |
[9] | 赵新福, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示[J]. 地学前缘, 2020, 27(2): 197-217. |
[10] | 蒋俊毅,苏尚国,王菁姣. 俄罗斯塔尔纳赫岩浆铜镍硫化物矿床中流体参与成矿的矿物学证据 [J]. 地学前缘, 2019, 26(6): 228-243. |
[11] | 陈雪,袁万明,袁二军,王珂,冯子睿. 青海东昆仑东山根矿区构造活动的磷灰石裂变径迹分析[J]. 地学前缘, 2018, 25(6): 330-337. |
[12] | 朱传庆,邱楠生,曹环宇,刘一锋,江强. 四川盆地东部构造热演化:来自镜质体反射率和磷灰石裂变径迹的约束[J]. 地学前缘, 2017, 24(3): 94-104. |
[13] | 常健,邱楠生. 磷灰石低温热年代学技术及在塔里木盆地演化研究中的应用[J]. 地学前缘, 2017, 24(3): 79-93. |
[14] | 高洪雷, 刘红旭, 何建国, 田明明, 车永飞. 东天山地区中—新生代隆升剥露过程:来自磷灰石裂变径迹的证据[J]. 地学前缘, 2014, 21(1): 249-260. |
[15] | 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||