地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 106-114.DOI: 10.13745/j.esf.sf.2023.5.6
收稿日期:
2022-11-29
修回日期:
2022-12-13
出版日期:
2023-09-25
发布日期:
2023-10-20
作者简介:
饶 灿(1978—),男,博士,教授,主要从事战略性关键金属成矿矿物学研究工作。E-mail: canrao@zju.edu.cn
基金资助:
RAO Can(), WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu
Received:
2022-11-29
Revised:
2022-12-13
Online:
2023-09-25
Published:
2023-10-20
摘要:
NYF型伟晶岩作为重要的战略性矿产资源,一直未受到广泛关注。相对于LCT型伟晶岩,NYF型伟晶岩的内部结构分带较差,极少存在区域性分带,但发育大量Nb、Y、F等矿物。铌铁矿族矿物、云母族矿物、电气石等矿物的地球化学特征能精细揭示NYF型伟晶岩的岩浆-热液演化过程,反映其演化程度。挥发分F、B、P和H2O等不仅影响NYF型伟晶岩的结晶分异程度,对稀有稀土金属元素超常富集也起至关重要的作用。稀有稀土金属元素的富集、迁移与结晶贯穿整个NYF型伟晶岩的岩浆阶段、岩浆-热液过渡阶段以及热液阶段;高度演化的NYF型伟晶岩中,可以发生铌矿化、铍矿化、铷矿化、稀土 (Y、Ce、Sc等) 矿化以及锆-钍-铀矿化等。今后我国应将碱性岩-碱性花岗岩区域作为NYF型伟晶岩重点勘查区,加强NYF型伟晶岩的研究力度和指导找矿。
中图分类号:
饶灿, 王吴梦雨, 王琪, 张志琦, 吴润秋. NYF型伟晶岩岩浆-热液演化与稀有稀土金属超常富集[J]. 地学前缘, 2023, 30(5): 106-114.
RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites[J]. Earth Science Frontiers, 2023, 30(5): 106-114.
图1 NYF型伟晶岩结构示意图(a)及浙江临安地区石室寺NYF伟晶岩样品(b-e) 1—细晶岩相;2—梳状伟晶岩相;3—块体钾长石;4—片状云母;5—块体石英;6—伟晶岩接触带;Qtz—石英;Ab—钠长石;Ms—白云母;Fsp—钾长石。
Fig.1 Internal zonal structure of NYF pegmatites (a) and specimens of the Shishsi NYF pegmatite (b-e) in Lin’an, Zhejiang Province
图3 浙江临安地区河桥花岗质岩石中云母中 (Fe+Mn+Ti+AlVI)-(Mg-Li)分类图解
Fig.3 Quadrilateral classification diagram showing chemical variation of mica-group minerals from the Heqiao granite in Lin’an, Zhejiang Province
矿物种类 | 矿物名 | 晶体化学式 | 岩浆 ![]() |
---|---|---|---|
铌钽钨氧化物 | 铌铁矿 | FeNb2O6 | ![]() |
铌锰矿 | MnNb2O6 | ![]() | |
钽铁矿 | FeTa2O6 | ![]() | |
钽锰矿 | MnTa2O6 | ![]() | |
重钽铁矿 | FeTa2O6 | ![]() | |
铌钨矿物 | (Fe,Mn,Nb,W,Ta)2O4 | ![]() | |
黑钨矿 | FeWO4 | ![]() | |
白钨矿 | CaWO4 | ![]() | |
细晶石 | (Ca,Na)2(Ta,Nb)2O6(O,OH,F) | ![]() | |
铈矿物 | 独居石 | CePO4 | ![]() |
氟铈矿 | CeF3 | ![]() | |
氟碳铈矿 | CeCO3F | ![]() | |
直氟碳钙铈矿 | CaCe(CO3)2F | ![]() | |
铈易解石 | Ce(Ti,Nb)2O6 | ![]() | |
钇矿物 | 磷钇矿 | YPO4 | ![]() |
褐钇铌矿 | YNbO4 | ![]() | |
黑稀金矿 | (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)2O6 | ![]() | |
钇易解石 | Y(Ti,Nb)2O6 | ![]() | |
铍矿物 | 绿柱石 | Be3Al2(SiO3)6 | ![]() |
整柱石 | Ca2K(Be2Al)Si12O30(H2O) | ![]() | |
钛矿物 | 金红石 | TiO2 | ![]() |
钛铁矿 | FeTiO3 | ![]() | |
钍石-锆石 | 钍石 | ThSiO4 | ![]() |
锆石 | ZrSiO4 | ![]() |
表1 NYF型伟晶岩中的稀有稀土金属矿物及其结晶阶段
Table 1 Rare minerals in NYF pegmatites and their crystallization stages
矿物种类 | 矿物名 | 晶体化学式 | 岩浆 ![]() |
---|---|---|---|
铌钽钨氧化物 | 铌铁矿 | FeNb2O6 | ![]() |
铌锰矿 | MnNb2O6 | ![]() | |
钽铁矿 | FeTa2O6 | ![]() | |
钽锰矿 | MnTa2O6 | ![]() | |
重钽铁矿 | FeTa2O6 | ![]() | |
铌钨矿物 | (Fe,Mn,Nb,W,Ta)2O4 | ![]() | |
黑钨矿 | FeWO4 | ![]() | |
白钨矿 | CaWO4 | ![]() | |
细晶石 | (Ca,Na)2(Ta,Nb)2O6(O,OH,F) | ![]() | |
铈矿物 | 独居石 | CePO4 | ![]() |
氟铈矿 | CeF3 | ![]() | |
氟碳铈矿 | CeCO3F | ![]() | |
直氟碳钙铈矿 | CaCe(CO3)2F | ![]() | |
铈易解石 | Ce(Ti,Nb)2O6 | ![]() | |
钇矿物 | 磷钇矿 | YPO4 | ![]() |
褐钇铌矿 | YNbO4 | ![]() | |
黑稀金矿 | (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)2O6 | ![]() | |
钇易解石 | Y(Ti,Nb)2O6 | ![]() | |
铍矿物 | 绿柱石 | Be3Al2(SiO3)6 | ![]() |
整柱石 | Ca2K(Be2Al)Si12O30(H2O) | ![]() | |
钛矿物 | 金红石 | TiO2 | ![]() |
钛铁矿 | FeTiO3 | ![]() | |
钍石-锆石 | 钍石 | ThSiO4 | ![]() |
锆石 | ZrSiO4 | ![]() |
[1] |
ČERNÝ P. Distribution, affiliation and derivation of rare-element granitic pegmatites in the Canadian Shield[J]. Geologische Rundschau, 1990, 79(2): 183-226.
DOI URL |
[2] |
ČERNÝ P. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991, 51(1/2/3/4): 429-468.
DOI URL |
[3] | LONDON D. Geochemical features of peraluminous granites, pegmatites, and rhyolites as sources of lithophile metal deposits[C]//THOMPSON J F H. Magmas, fluids, and ore deposits. Mineral Association Canada Short Course, 1995, 23: 175-202. |
[4] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026.
DOI URL |
[5] | 袁忠信, 白鸽. 中国碱性侵入岩的空间分布及有关金属矿床[J]. 地质与勘探, 1997, 33(1): 42-48. |
[6] | 王德滋, 周新民. 中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M]. 北京: 科学出版社, 2002. |
[7] | 邢光福, 陈荣, 杨祝良, 等. 东南沿海晚白垩世火山岩浆活动特征及其构造背景[J]. 岩石学报, 2009, 25 (1): 77-91. |
[8] | LONDON D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. Canadian Mineralogist, 1992, 30(3): 499-540. |
[9] | ČERNÝ P. Rare-element granitic pegmatites, part I: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canadian, 1991, 18: 49-67. |
[10] |
SIMMONS W B S, WEBBER K L. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438.
DOI URL |
[11] |
SMEDS S A. Zoning and fractionation trends of a peraluminous NYF granitic pegmatite field at Falun, south-central Sweden[J]. GFF, 1994, 116(3): 175-184.
DOI URL |
[12] |
FÖRSTER H J, TISCHENDORF G, RHEDE D, et al. Cs-rich lithium micas and Mn-rich lithian siderophyllite in miarolitic NYF pegmatites of the konigshain granite, Lausitz, Germany[J]. Neues Jahrbuch für Mineralogie - Abhandlungen, 2005, 182(1): 81-93.
DOI URL |
[13] |
PRŠEK J, MAJKA J, UHER P, et al. Niobium-tantalum minerals in the Skoddefjellet NYF granitic pegmatite, Svalbard Archipelago, Norway: primary versus secondary assemblage[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2010, 187(3): 235-248.
DOI URL |
[14] | COLOMBO F, SIMMONS W B, FALSTER A U, et al. Occurrence, crystal chemistry and alteration of thorite from the NYF-type miarolitic pegmatites of the El Portezuelo granite, Papachacra (Catamarca, NW Argentina)[C]// International symposium on granitic pegmatites. Buenos Aires: Asociation Geological Argentina, 2011: 65-67. |
[15] |
NOVAK M, SKODA R, FILIP J, et al. Compositional trends in tourmaline from intragranitic NYF pegmatites of the Trebic pluton, Czech Republic: an electron microprobe, Mossbauer and LA-ICP-MS study[J]. The Canadian Mineralogist, 2011, 49(1): 359-380.
DOI URL |
[16] |
MARTIN R F, DE VITO C, PEZZOTTA F. Why is amazonitic K-feldspar an earmark of NYF-type granitic pegmatites? Clues from hybrid pegmatites in Madagascar[J]. American Mineralogist, 2008, 93(2/3): 263-269.
DOI URL |
[17] |
ČOPJAKOVÁ R, ŠKODA R, GALIOVÁ M V, et al. Sc- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF+LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic)[J]. American Mineralogist, 2015, 100(7): 1434-1451.
DOI URL |
[18] |
GOODENOUGH K M, SHAW R A, SMITH M, et al. Economic mineralization in pegmatites: comparing and contrasting NYF and LCT examples[J]. The Canadian Mineralogist, 2019, 57(5): 753-755.
DOI URL |
[19] | SIMMONS W B, WEBBER K L, FALSTER A U. NYF pegmatites of the South Platte district, Colorado[J]. The Canadian Mineralogist, 1999, 37(37): 836-838. |
[20] |
ČERNÝ P, BLEVIN P L, CUNEY M,et al. Granite-related ore deposits[J]. Economic Geology, 2005, 107(2): 383-384.
DOI URL |
[21] |
王吴梦雨, 饶灿, 董传万, 等. 浙江临安石室寺NYF型伟晶岩中稀有稀土金属的矿物学行为与成矿过程[J]. 高校地质学报, 2019, 25(6):914-931.
DOI |
[22] |
WILSON M R, FALLICK A E, HAMILTON P J, et al. Magma sources for some mid-Proterozoic granitoids in SE Sweden: geochemical and isotopic constraints[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1986, 108(1): 79-91.
DOI URL |
[23] | MARTIN R F. Metasomatic “ground preparation” and the origin of anorogenic granites[C]// Symposium on Precambrian granitoids. Helsinki: Geologian Tutkimuskeskus, 1989: 87. |
[24] | WHITE A J R. Source of granite magmas[J]. Geological Society of America Bulletin, 1979(11): 539. |
[25] |
COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200.
DOI URL |
[26] |
WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
DOI URL |
[27] | BUCK H M, ČERNÝ P, HAWTHORNE F C. The Shatford Lake pegmatite group, southeastern Manitoba: NYF or not? In the Eugene E. Foord Memorial Symposium on NYF-type Pegmatites (Denver)[J]. The Canadian Mineralogist, 1999, 37: 830-831. |
[28] | ANDERSSON U B, WIKSTRÖM A. Mafic-felsic plutonic interaction in the Transscandinavian Igneous Belt, southern Sweden[C]// Precambrian granitoids symposium. Helsinki: Geologian Tutkimuskeskus, 1989: 7-8. |
[29] |
JACKSON N J, WALSH J N, PEGRAM E. Geology, geochemistry and petrogenesis of late Precambrian granitoids in the central hijaz region of the Arabian shield[J]. Contributions to Mineralogy and Petrology, 1984, 87(3): 205-219.
DOI URL |
[30] |
ÖHLANDER B, ZUBER J. Genesis of the Fellingsbro-type granites: evidence from gravity measurements and geochemistry[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1988, 110(1): 39-54.
DOI URL |
[31] | MARTIN R F. Petrogenetic considerations: A-type granites, NYF granitic pegmatites, and beyond In the Eugene E. Foord Memorial Symposium on NYF-type Pegmatites (Denver)[J]. The Canadian Mineralogist, 1999, 37: 804-805. |
[32] | BURNHAM C W, NEKVASIL H. Equilibrium properties of granite pegmatite magmas[J]. American Mineralogist, 1986, 71(3): 239-263. |
[33] | JAHNS R H. Internal evolution of pegmatite bodies[M]//CERNY P. Granitic pegmatites in science and industry. Ottawa: Mineralogical Association of Canada, 1982: 293-327. |
[34] |
JAHNS R H, BURNHAM C W. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8): 843-864.
DOI URL |
[35] |
LONDON D, HERVIG R L, MORGAN G B VI. Melt-vapor solubilities and element partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99: 360-373.
DOI URL |
[36] |
LONDON D, MORGAN G B, HERVIG R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1): 1-17.
DOI URL |
[37] | LONDON D. Internal differentiation of rare-element pegmatites: a synthesis of recent research[M]// STEINH J, HANNAHJ L. Ore-bearing granite systems:petrogenesis and mineralizing processes. Boulder: Geological Society of America, 1990: 35-50. |
[38] |
ALFONSO ABELLA P, MELGAREJO I DRAPER J C, CORBELLA I CORDOMI M. Nb-Ta-minerals from the cap de creus pegmatite field, eastern Pyrenees: distribution and geochemical trends[J]. Mineralogy and Petrology, 1995, 55(1/2/3): 53-69.
DOI URL |
[39] | 张爱铖, 王汝成, 胡欢, 等. 阿尔泰可可托海3号伟晶岩脉中铌铁矿族矿物环带构造及其岩石学意义[J]. 地质学报, 2004, 78(2): 181-189. |
[40] |
MANNING D A C. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb[J]. Contributions to Mineralogy and Petrology, 1981, 76(2): 206-215.
DOI URL |
[41] | 熊小林, 饶冰, 朱金初, 等. 黑鳞云母花岗质岩浆的结晶分异及钠长花岗质岩浆的形成[J]. 岩石学报, 2002, 18(2):223-230. |
[42] |
JOHAN Z, JOHAN V. Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution[J]. Mineralogy and Petrology, 2005, 83(1/2): 113-150.
DOI URL |
[43] |
SELWAY J B. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
DOI URL |
[44] | 赵劲松, 赵斌, 饶冰. Ta, Nb, W在钠长花岗岩岩浆结晶分异过程中于各相间分配行为的实验研究[J]. 科学通报, 1996, 41(15): 1413-1417. |
[45] |
BORODULIN G P, CHEVYCHELOV V Y, ZARAYSKY G P. Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts[J]. Doklady Earth Sciences, 2009, 427(1): 868-873.
DOI URL |
[46] |
LONDON D. Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 403-420.
DOI URL |
[47] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
[48] |
KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4): 479-488.
DOI URL |
[49] | 赵友东, 吴俊奇, 凌洪飞, 等. 赣南富城岩体黑云母及其蚀变产物绿泥石的矿物化学研究: 对铀成矿的指示意义[J]. 矿床地质, 2016, 35(1): 153-168. |
[50] |
STYLES M T, YOUNG B R. Fluocerite and its alteration products from the Afu Hills, Nigeria[J]. Mineralogical Magazine, 1983, 47(342): 41-46.
DOI URL |
[51] |
WOOD S A, RICKETTS A. Allanite-(ce) from the Eocene Casto granite, Idaho: response to hydrothermal alteration[J]. The Canadian Mineralogist, 2000, 38(1): 81-100.
DOI URL |
[52] | ALEKSEEV V I, GEMBITSKAYA I M, MARIN Y B. Wolframoixiolite and niobian ferberite from zinnwaldite granitic rocks of the Chukchi Peninsula[J]. Geology of Ore Deposits, 2011, 53(7): 639-648. |
BREITER K, VAŇKOVÁ M, GALIOVÁ M V, et al. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS[J]. Mineralogical Magazine, 2017, 81(1): 15-33. | |
[54] |
HUANG F F, WANG R C, XIE L, et al. Differentiated rare-element mineralization in an ongonite-topazite composite dike at the Xianghualing tin district, southern China: an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite[J]. Ore Geology Reviews, 2015, 65: 761-778.
DOI URL |
[55] |
NOVÁK M, JOHAN Z, KODA R, et al. Primary oxide minerals in the system WO3-Nb2O5-TiO2-Fe2O3-FeO and their breakdown products from the pegmatite No. 3 at Dolni Bory-Hate, Czech Republic[J]. European Journal of Mineralogy, 2008, 20(4): 487-499.
DOI URL |
[56] | 华仁民, 陈培荣, 张文兰, 等. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 2005, 24(2):99-107. |
[57] |
O’NEILL H St C, BERRY A J, EGGINS S M. The solubility and oxidation state of tungsten in silicate melts: implications for the comparative chemistry of W and Mo in planetary differentiation processes[J]. Chemical Geology, 2008, 255(3/4): 346-359.
DOI URL |
[58] |
HIGGINS N C. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions[J]. Canadian Journal of Earth Sciences, 1980, 17(7): 823-830.
DOI URL |
[59] |
PEZZOTTA F. Scandium silicates from the Baveno and Cuasso al Monte NYF-granites, southern Alps (Italy): mineralogy and genetic inferences[J]. American Mineralogist, 2005, 90(8/9): 1442-1452.
DOI URL |
[60] |
NOVÁK M, CÍCHA J, ČOPJAKOVÁ R, et al. Milarite-group minerals from the NYF pegmatite Velká skála, Písek district, Czech Republic: sole carriers of Be from the magmatic to hydrothermal stage[J]. European Journal of Mineralogy, 2017, 29(4): 755-766.
DOI URL |
[61] |
ŠKODA R, NOVÁK M, ČOPJAKOVÁ R, et al. Bismuth minerals from the intragranitic La Elsa NYF pegmatite, Potrerillos granite, Argentina: monitors of fluid evolution from magmatic to hydrothermal stage[J]. The Canadian Mineralogist, 2020, 58(6): 717-732.
DOI URL |
[62] | 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. |
[63] | 刘琰, 陈超, 舒小超, 等. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式: 以大陆槽REE矿床为例[J]. 岩石学报, 2017, 33(7):1978-2000. |
[64] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[1] | 陈旭, 范洪海, 陈东欢, 陈金勇, 王生云. 纳米比亚罗辛地区白岗岩成因及铀成矿作用[J]. 地学前缘, 2023, 30(5): 59-73. |
[2] | 周起凤, 秦克章, 朱丽群, 赵俊兴. 花岗伟晶岩成因探讨:岩浆分异与深熔[J]. 地学前缘, 2023, 30(5): 26-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||