地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 151-170.DOI: 10.13745/j.esf.sf.2023.5.15
收稿日期:
2022-12-08
修回日期:
2023-01-19
出版日期:
2023-09-25
发布日期:
2023-10-20
通信作者:
*王 瑞(1986—),男,博士,教授,博士生导师,主要从事矿床学和地球化学方面的研究工作。E-mail: rw@cugb.edu.cn
作者简介:
杨 双(1997—),女,博士研究生,矿物学、岩石学、矿床学专业。E-mail: yangs717@163.com
基金资助:
Received:
2022-12-08
Revised:
2023-01-19
Online:
2023-09-25
Published:
2023-10-20
摘要:
铌、钽作为稀有金属,其熔点高、密度大、耐高温、超导性等优异性能使其在人类社会多个领域具有不可替代性,也是近20年及未来全球都极为重视的战略资源。了解铌钽在不同岩浆系统中的分异富集及不同类型铌钽矿床的成矿机制是至关重要的。前人已有研究认为影响铌钽分异富集的主要因素有岩浆系统的碱性程度、熔体中水的含量、熔体温度,以及主要含铌、钽的矿物(铌钽铁矿、黑云母、多硅白云母等)的分离结晶和部分熔融过程中的结晶与熔融。此外,高浓度的助熔剂(F,Li,Be,P,H2O)对铌钽分异富集也有不可忽视的作用。前人研究发现一些铌钽矿床表现出岩浆结晶分异成矿作用特征,但在铌钽矿化发育区域,常伴有强烈的钠长石化和锂云母化等交代作用现象,因此单一的岩浆结晶分异作用或热液交代作用都不能全面地解释复杂的铌钽成矿作用。铌钽分异富集成矿过程中,结晶分异和热液交代作用占比如何,哪个阶段更加富集铌和钽,这些问题有待进一步解决。此外,由于其高铀低普通铅的特性,铌铁矿族矿物也被广泛应用于LA-ICP-MS U-Pb定年,常用标样为Coltan139,其激光分辨率有待进一步提高以解决铌钽矿物复杂化学分带的激光原位定年问题。铌钽矿物Lu-Hf同位素工作开展较少,未来需继续开展同位素工作以示踪物源并指示铌钽分异富集成矿机制。
中图分类号:
杨双, 王瑞. 铌钽分异富集成矿机制及铌钽矿物测试新技术研究进展[J]. 地学前缘, 2023, 30(5): 151-170.
YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review[J]. Earth Science Frontiers, 2023, 30(5): 151-170.
图1 世界各国铌钽矿产量占比(2017年)(数据来源于USGS,2018)
Fig.1 Proportion of global production of niobium (left) and tantalum (right) minerals in 2017, by country (from USGS, 2018)
图2 中国铌钽成矿区带与大地构造关系(据文献[11,51]修改) 矿床编号对应的钽(铌)矿床(田)名称: 1—可可托海; 2—大红柳滩; 3—扎乌龙; 4—可尔因; 5—甲基卡; 6—赫德; 7—官坡; 8—李家堡子; 9—苏州; 10—断峰山; 11—仁里; 12—宜春; 13—松树岗黄山; 14—栗木; 15—尖峰岭; 16—南平; 17—姜坑里; 18—黄连沟。矿床编号对应的铌(钽) 矿床(田)名称: 19—波孜果尔; 20—瓦吉里塔格; 21—白云鄂博; 22—巴尔哲; 23—赛马; 24—华阳川; 25—庙垭; 26—甘洛地; 27—炉库。
Fig.2 Distribution of Nb-Ta metallogenic belts within the tectonic framework of China. Modified after [11,51].
图3 中国主要铌钽成矿带铌钽成矿时代(据文献[11]修改,新增数据来自文献[18,55⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-69]) 蓝色边框代表造山带内花岗岩类锂铍铌钽矿床的形成时限;黄色边框代表陆缘断裂带或裂谷中碱性岩和碳酸岩型稀土-铌矿床的形成时限。
Fig.3 Niobium-tantalum metallogenic epochs in major Nb-Ta metallogenic belts of China. Blocks indicate the age ranges of granite type Li-Be-Nb-Ta deposits in orogenic belts (blue borders) and rare earth-niobium deposits in alkaline and carbonate rocks in continental margin faults or rifts (yellow borders). Modified after [11].
中文名 | 英文名 | 化学式 | 含量/% | |
---|---|---|---|---|
Ta2O5 | Nb2O5 | |||
铌铁矿族矿物(包括铌铁矿、 钽铁矿、铌锰矿、钽锰矿) | Columbite group minerals | (Fe,Mn)(Nb,Ta)2O6 | 1.4~86.2 | 2.0~78.7 |
重钽铁矿 | Tapiolite | (Fe,Mn)(Ta,Nb)2O6 | 65.7~84.0 | 1.2~1.4 |
烧绿石-细晶石 | Pyrochlore-microlite | (Na,Ca)(Nb,Ta,Ti)2O6(F,OH) | 0~83.5 | 0~75.1 |
锡锰钽矿 | Wodginite | (Ta,Nb,Sn,Mn,Fe,Ti)O2 | 69.6 | 8.4 |
褐钇铌矿 | Fergusonite | YNbO4 | 2.5~17.0 | 33.6~47.0 |
易解石 | Aeschynite | (Ce,Ca,Fe,Th)(Ti,Nb,Ta)2(O,OH)6 | 0~6.9 | 23.8~32.5 |
铈铌钙钛矿 | Loparite | (Ce,Na,Ca)2(Ti,Nb,Ta)2O6 | 0.8 | 16.2 |
铌铁金红石 | Ilmenorutile | (Ti,Nb,Fe)O2 | 0.4~14.9 | 0.9~43.0 |
表1 常见铌钽矿物化学成分(据文献[51,71])
Table 1 Chemical composition of common Nb-Ta-bearing minerals. Adapted from [51,71].
中文名 | 英文名 | 化学式 | 含量/% | |
---|---|---|---|---|
Ta2O5 | Nb2O5 | |||
铌铁矿族矿物(包括铌铁矿、 钽铁矿、铌锰矿、钽锰矿) | Columbite group minerals | (Fe,Mn)(Nb,Ta)2O6 | 1.4~86.2 | 2.0~78.7 |
重钽铁矿 | Tapiolite | (Fe,Mn)(Ta,Nb)2O6 | 65.7~84.0 | 1.2~1.4 |
烧绿石-细晶石 | Pyrochlore-microlite | (Na,Ca)(Nb,Ta,Ti)2O6(F,OH) | 0~83.5 | 0~75.1 |
锡锰钽矿 | Wodginite | (Ta,Nb,Sn,Mn,Fe,Ti)O2 | 69.6 | 8.4 |
褐钇铌矿 | Fergusonite | YNbO4 | 2.5~17.0 | 33.6~47.0 |
易解石 | Aeschynite | (Ce,Ca,Fe,Th)(Ti,Nb,Ta)2(O,OH)6 | 0~6.9 | 23.8~32.5 |
铈铌钙钛矿 | Loparite | (Ce,Na,Ca)2(Ti,Nb,Ta)2O6 | 0.8 | 16.2 |
铌铁金红石 | Ilmenorutile | (Ti,Nb,Fe)O2 | 0.4~14.9 | 0.9~43.0 |
图4 铌铁矿族矿物四分判别图解 (底图据文献[45,72];落点数据来自于文献[20,27,45]以及本人未发表数据)
Fig.4 Quadrilateral diagram of columbite-group minerals. Base map adapted from [45,72]; data adapted from [20,27,45] and from authors’ unpublished data.
图5 江西宜春黄玉锂云母花岗岩Ta-Nb氧化物的背散射电子显微照片(据文献[20]修改) Ab—钠长石;Clb-(Mn)—铌锰矿;Ttl-(Mn)—钽锰矿。
Fig.5 BSE images of Ta-Nb oxides in topaz lepidolite granite in Yichun, Jiangxi. Modified after [20].
熔体铝饱和指数 (ASI) | (mol2·kg-2) | (mol2·kg-2) |
---|---|---|
1.22(过铝质) | 1.7×10-4 | 4.6×10-4 |
1.02(准铝质) | 1.2×10-4 | 2.6×10-4 |
0.64(过碱性) | 202×10-4 | 255×10-4 |
表2 800 ℃和200 MPa条件下花岗岩熔体中铌和钽的溶度积(据文献[23])
Table 2 Solubility of niobium and tantalum in granitic melts at 800 ℃ and 200 MPa. Adaped from [23].
熔体铝饱和指数 (ASI) | (mol2·kg-2) | (mol2·kg-2) |
---|---|---|
1.22(过铝质) | 1.7×10-4 | 4.6×10-4 |
1.02(准铝质) | 1.2×10-4 | 2.6×10-4 |
0.64(过碱性) | 202×10-4 | 255×10-4 |
图6 (a)白云母(Ms)的Mg-Na-Ti三端员分类图;(b)不同过铝质花岗岩全岩(WR)样品Nb/Ta值与其次生白云母的MgO/(Na2O+TiO2)平均值的关系(据文献[81-82]修改)
Fig.6 (a) Mg-Na-Ti ternary classification diagram of muscovite (Ms), and (b) evolution of Nb/Ta ratios for whole rock (WR) samples from different peraluminous granites against average value of MgO/(Na2O+TiO2) ratios of their secondary micas.Modified after [81-82].
图7 花岗岩成分随主要矿物分异演化的矢量图解(据文献[74]修改) 分异矢量根据50%结晶程度计算,矢量上的菱形表示10%的分异增量,初始成分含量为1 % TiO2、5×10-6 Nb和1×10-6Ta。
Fig.7 Vectors of compositional evolution in granite melt with crystallization of the principal minerals. Modified after [74].
图8 雅山岩体稀有金属花岗岩中稀有金属的分离结晶和富集过程示意图(据文献[100]修改)
Fig.8 Schematic illustration of rare-metal fractional crystallization and enrichment in granite during magmatic and hydrothermal evolution of the Yashan pluton. Modified after [100].
图9 与花岗岩有关的Nb-Ta-Sn伟晶岩和Sn-W石英脉型矿床发育的端员成矿模式(据文献[111]修改)
Fig.9 End-member metallogenic models for granitic pegmatite Nb-Ta-Sn deposits and quartz vein-hosted Sn-W deposits. Modified after [111].
[1] | LINNEN R L, SAMSON I M, WILLIAMS-JONES A E, et al. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits//Treatise on geochemistry. Amsterdam: Elsevier, 2014: 543-568. |
[2] |
LINNEN R L, VAN LICHTERVELDE M, CERNY P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280.
DOI URL |
[3] | 王登红, 陈毓川, 徐志刚. 新疆阿尔泰印支期伟晶岩的成矿年代学研究[J]. 矿物岩石地球化学通报, 2003, 22(1): 14-17. |
[4] | 王汝成, 谢磊, 诸泽颖, 等. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1): 69-75. |
[5] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[6] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[7] | 周振华, 车合伟, 马星华, 等. 初论稀有金属矿床研究的一些重要进展[J]. 地质与勘探, 2016, 52(4): 614-626. |
[8] | 刘汉粮, 王学求, 聂兰仕, 等. 阿尔泰成矿带中蒙边界地区稀有元素铌和钽区域地球化学特征[J]. 现代地质, 2018, 32(5): 1063-1073. |
[9] | 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106. |
[10] | 王汾连, 赵太平, 陈伟. 铌钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质, 2012, 31(2): 293-308. |
[133] |
ROMER R L, SMEDS S A, ČERNÝP. Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite[J]. Mineralogy and Petrology, 1996, 57(3/4): 243-260.
DOI URL |
[134] |
ROMER R L, SMEDS S A. U-Pb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden[J]. Precambrian Research, 1997, 82(1/2): 85-99.
DOI URL |
[135] |
LEGROS H, MERCADIER J, VILLENEUVE J, et al. U-Pb isotopic dating of columbite-tantalite minerals: development of reference materials and in situ applications by ion microprobe[J]. Chemical Geology, 2019, 512: 69-84.
DOI URL |
[136] |
KAETER D, BARROS R, MENUGE J F, et al. The magmatic-hydrothermal transition in rare-element pegmatites from Southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta, 2018, 240: 98-130.
DOI URL |
[137] |
PATCHETT P J, TATSUMOTO M. A routine high-precision method for Lu-Hf isotope geochemistry and chronology[J]. Contributions to Mineralogy and Petrology, 1981, 75(3): 263-267.
DOI URL |
[138] |
VERVOORT J D, BLICHERT-TOFT J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 533-556.
DOI URL |
[139] |
BLICHERT-TOFT J, CHAUVEL C, ALBARÈDE F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology, 1997, 127(3): 248-260.
DOI URL |
[140] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[141] |
CHENG H, LIU X C, VERVOORT J D, et al. Micro-sampling Lu-Hf geochronology reveals episodic garnet growth and multiple high-P metamorphic events[J]. Journal of Metamorphic Geology, 2016, 34(4): 363-377.
DOI URL |
[11] | LI J K, LI P, WANG D H, et al. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545-1566. |
[12] |
ABDALLA H M, HELBA H, MOHAMED F H. Chemistry of columbite-tantalite minerals in rare metal granitoids, Eastern Desert, Egypt[J]. Mineralogical Magazine, 1998, 62(6): 821-836.
DOI URL |
[13] |
KEMPE U, GÖTZE J, DANDAR S, et al. Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): indications from a combined CL-SEM study[J]. Mineralogical Magazine, 1999, 63(2): 165-177.
DOI URL |
[14] |
BELKASMI M, CUNEY M, POLLARD P J, et al. Chemistry of the Ta-Nb-Sn-W oxide minerals from the Yichun rare metal granite (SE China): genetic implications and comparison with Moroccan and French Hercynian examples[J]. Mineralogical Magazine, 2000, 64(3): 507-523.
DOI URL |
[15] |
MELCHER F, GRAUPNER T, GÄBLER H E, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719.
DOI URL |
[16] |
ZHU J C, LI R K, LI F C, et al. Topaz-albite granites and rare-metal mineralization in the Limu District, Guangxi Province, Southeast China[J]. Mineralium Deposita, 2001, 36(5): 393-405.
DOI URL |
[17] |
ZHOU Z H, BREITER K, WILDE S A, et al. Ta-Nb mineralization in the shallow-level highly-evolved P-poor Shihuiyao granite, Northeast China[J]. Lithos, 2022, 416/417: 106655.
DOI URL |
[18] |
ZHAO Z, YANG X Y, LU S M, et al. Genesis of Late Cretaceous granite and its related Nb-Ta-W mineralization in Shangbao, Nanling Range: insights from geochemistry of whole-rock and Nb-Ta minerals[J]. Ore Geology Reviews, 2021, 131: 103975.
DOI URL |
[19] |
BREITER K, ŠKODA R, UHER P. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic[J]. Mineralogy and Petrology, 2007, 91(3/4): 225-248.
DOI URL |
[142] |
CHENG H, ZHOU Y, DU K Y, et al. Microsampling Lu-Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt[J]. Journal of Metamorphic Geology, 2018, 36(8): 987-1008.
DOI URL |
[143] |
ZHENG Y, WU Y, ZHAO Z, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 2005, 240(2): 378-400.
DOI URL |
[144] |
WANG H, WU Y B, GAO S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019-1031.
DOI URL |
[145] |
WANG H, WU Y B, GAO S, et al. Continental growth through accreted oceanic arc: zircon Hf-O isotope evidence for granitoids from the Qinling orogen[J]. Geochimica et Cosmochimica Acta, 2016, 182: 109-130.
DOI URL |
[146] |
WALDER A J, PLATZNER I, FREEDMAN P A. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 19-23.
DOI URL |
[147] |
THIRLWALL M F, WALDER A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry[J]. Chemical Geology, 1995, 122(1/2/3/4): 241-247.
DOI URL |
[148] |
HALLIDAY A N, LEE D C, CHRISTENSEN J N, et al. Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 919-940.
DOI URL |
[149] |
KÜSTER D, ROMER R L, TOLESSA D, et al. The Kenticha rare-element pegmatite, Ethiopia: internal differentiation, U-Pb age and Ta mineralization[J]. Mineralium Deposita, 2009, 44(7): 723-750.
DOI URL |
[150] |
FENG Y G, LIANG T, LINNEN R, et al. LA-ICP-MS dating of high uranium columbite from no.1 pegmatite at Dakalasu, the Chinese Altay orogen: assessing effect of metamictization on age concordance[J]. Lithos, 2020, 362/363: 105461.
DOI URL |
[20] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China[J]. Economic Geology, 2018, 113(4): 937-960.
DOI URL |
[21] | ČERNÝP, GOAD B E, HAWTHORNE F, et al. Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba[J]. American Mineralogist, 1986, 71(3-4): 501-517. |
[22] | POLLARD P J. Geochemistry of Granites Associated with Tantalum and Niobium Mineralization[C]// MÖLLER P, ČERNÝP, SAUPÉ F. Lanthanides, tantalum and niobium. Berlin, Heidelberg: Springer, 1989: 145-168. |
[23] |
LINNEN R L, KEPPLER H. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2/3): 213-227.
DOI URL |
[24] |
LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025.
DOI URL |
[25] |
DOSTAL J, CHATTERJEE A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1/2/3/4): 207-218.
DOI URL |
[26] |
STEPANOV A S, HERMANN J. Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox”[J]. Geology, 2013, 41(3): 303-306.
DOI URL |
[27] |
VAN LICHTERVELDE M, SALVI S, BEZIAT D, et al. Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2): 257-276.
DOI URL |
[28] |
BALLOUARD C, MASSUYEAU M, ELBURG M A, et al. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations[J]. Earth-Science Reviews, 2020, 203: 103115.
DOI URL |
[29] |
WANG Y R, LI J T, LU J L, et al. Geochemical mechanism of Nb-, Ta-mineralization during the late stage of granite crystallization[J]. Geochemistry, 1982, 1(2): 175-185.
DOI |
[30] |
SUWIMONPRECHA P, CERNY P, FRIEDRICH G. Rare metal mineralization related to granites and pegmatites, Phuket, Thailand[J]. Economic Geology, 1995, 90(3): 603-615.
DOI URL |
[31] | 陈国建. 福建南平花岗伟晶岩型钽铌矿床地质特征与成因[J]. 地质通报, 2014, 33(10): 1550-1561. |
[32] |
AKOH J U, OGUNLEYE P O, IBRAHIM A A. Geochemical evolution of micas and Sn-, Nb-, Ta-mineralization associated with the rare metal pegmatite in Angwan Doka, central Nigeria[J]. Journal of African Earth Sciences, 2015, 112: 24-36.
DOI URL |
[33] |
LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793-810.
DOI URL |
[34] |
ZHU Z Y, WANG R C, CHE X D, et al. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): insights from an electron-microprobe study of Nb-Ta-Zr minerals[J]. Ore Geology Reviews, 2015, 65: 749-760.
DOI URL |
[35] | MELCHER F, GRAUPNER T, HENJES-KUNST F, et al. Analytical fingerprint of columbite-tantalite (coltan): mineralisation in pegmatites[C]// Proceedings of the ninth international congress for applied mineralogy. Brisbane: Focus on Africa, 2008: 615-624. |
[36] |
SMITH S R, FOSTER G L, ROMER R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147(5): 549-564.
DOI URL |
[37] |
DEWAELE S, HENJES-KUNST F, MELCHER F, et al. Late neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (central Africa)[J]. Journal of African Earth Sciences, 2011, 61(1): 10-26.
DOI URL |
[38] |
DENG X D, LI J W, ZHAO X F, et al. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: implications for geochronology of pegmatite and associated ore deposits[J]. Chemical Geology, 2013, 344: 1-11.
DOI URL |
[39] |
BADANINA E V, SITNIKOVA M A, GORDIENKO V V, et al. Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia)[J]. Ore Geology Reviews, 2015, 64: 720-735.
DOI URL |
[40] |
YIN R, WANG R C, ZHANG A C, et al. Chemical evolution and late-stage re-equilibration of Zr-Hf-U-bearing columbite-group minerals in the Koktokay No.1 granitic pegmatite, Altai, northwestern China[J]. The Canadian Mineralogist, 2015, 53(3): 461-478.
DOI URL |
[41] |
VAN LICHTERVELDE M, GRAND’HOMME A, SAINT-BLANQUAT M, et al. U-Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain[J]. Mineralogy and Petrology, 2017, 111(1): 1-21.
DOI URL |
[42] |
FOSSO TCHUNTE P M, TCHAMENI R, ANDRÉ-MAYER A S, et al. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah leucogranite (northern Cameroon): constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite[J]. Minerals, 2018, 8(5): 188.
DOI URL |
[43] |
LUPULESCU M, CHIARENZELLI J, PECHA M, et al. Columbite-group minerals from New York pegmatites: insights from isotopic and geochemical analyses[J]. Geosciences, 2018, 8(5): 169.
DOI URL |
[44] |
SINGH Y, SASTRY D V L N, BAGORA S, et al. Dating of columbite-tantalite and monazite from pegmatites of the Kawadgaon-Challanpara area, Bastar craton, central India[J]. Journal of the Geological Society of India, 2018, 92(1): 7-10.
DOI |
[45] |
CHE X D, WU F Y, WANG R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989.
DOI URL |
[46] |
TANG Z M, CHE X D, YANG Y H, et al. Precise and accurate Lu-Hf isotope analysis of columbite-group minerals by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1643-1656.
DOI URL |
[47] |
DILL H G. The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews, 2010, 100(1/2/3/4): 1-420.
DOI URL |
[48] |
SELWAY J B. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the superior province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
DOI URL |
[49] |
KOVALENKO V I, TSARYEVA G M, GOREGLYAD A V, et al. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia[J]. Economic Geology, 1995, 90(3): 530-547.
DOI URL |
[50] | 邓攀, 陈玉明, 叶锦华, 等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业, 2019, 28(4): 63-68. |
[51] | 王汝成, 车旭东, 邬斌, 等. 中国铌钽锆铪资源[J]. 科学通报, 2020, 65(33): 3763-3777. |
[52] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
[53] |
MCCAULEY A, BRADLEY D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2): 183-190.
DOI URL |
[54] | 翟明国, 张旗, 陈国能, 等. 大陆演化与花岗岩研究的变革[J]. 科学通报, 2016, 61(13): 1414-1420. |
[55] |
YUAN F, JIANG S Y, WANG C L, et al. U-Pb geochronology of columbite-group mineral, cassiterite, and zircon and Hf isotopes for Devonian rare-metal pegmatite in the Nanyangshan deposit, North Qinling orogenic belt, China[J]. Ore Geology Reviews, 2022, 140: 104634.
DOI URL |
[56] |
LIU J H, WANG Q, XU C B, et al. Geochronology of the Chakabeishan Li-(Be) rare-element pegmatite, Zongwulong orogenic belt, Northwest China: constraints from columbite-tantalite U-Pb and muscovite-lepidolite 40Ar/39Ar dating[J]. Ore Geology Reviews, 2022, 146: 104930.
DOI URL |
[57] |
ZHOU Q F, QIN K Z, TANG D M. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, central China: implications for formation times and ore genesis[J]. Journal of Asian Earth Sciences, 2021, 218: 104879.
DOI URL |
[58] |
ZHANG L, JIANG S Y. Two episodic Nb-Ta mineralization events and genesis of the Zhaojinggou rare-metal deposit, north margin of the North China Craton[J]. Ore Geology Reviews, 2021, 131: 103994.
DOI URL |
[59] |
PAN T, DING Q F, ZHOU X, et al. Columbite-tantalite group mineral U-Pb geochronology of Chaqiabeishan Li-rich granitic pegmatites in the Quanji massif, NW China: implications for the genesis and emplacement ages of pegmatites[J]. Frontiers in Earth Science, 2021, 8: 606951.
DOI URL |
[60] |
WEI B, WANG C Y, ZHAO Z H, et al. Columbite-group minerals and mica of peraluminous granite record the magmatic-hydrothermal processes that formed the Zhaojinggou Ta Nb deposit in the North China Craton[J]. Lithos, 2020, 370/371: 105648.
DOI URL |
[61] |
FENG Y G, LIANG T, ZHANG Z, et al. Columbite U-Pb geochronology of Kalu’an lithium pegmatites in northern Xinjiang, China: implications for genesis and emplacement history of rare-element pegmatites[J]. Minerals, 2019, 9(8): 456.
DOI URL |
[62] |
CHE X D, WANG R C, WU F Y, et al. Episodic Nb-Ta mineralisation in South China: constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105: 71-85.
DOI URL |
[63] |
ZHOU Q F, QIN K Z, TANG D M, et al. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40 muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China[J]. Geological Magazine, 2018, 155(3): 707-728.
DOI URL |
[64] |
YAN Q H, QIU Z W, WANG H, et al. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 2018, 100: 561-573.
DOI URL |
[65] |
TANG Y, ZHAO J Y, ZHANG H, et al. Precise columbite-(Fe) and zircon U-Pb dating of the Nanping No.31 pegmatite vein in northeastern Cathaysia Block, SE China[J]. Ore Geology Reviews, 2017, 83: 300-311.
DOI URL |
[66] |
XIANG L, WANG R C, ROMER R L, et al. Neoproterozoic Nb-Ta-W-Sn bearing tourmaline leucogranite in the western part of Jiangnan Orogen: implications for episodic mineralization in South China[J]. Lithos, 2020, 360/361: 105450.
DOI URL |
[67] |
YANG K F, FAN H R, PIRAJNO F, et al. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology, 2019, 47(12): 1198-1202.
DOI URL |
[68] |
SMITH M P, CAMPBELL L S, KYNICKY J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476.
DOI URL |
[69] | 陈倩. 白云鄂博REE-Nb-Fe矿床的铌矿成因研究[D]. 西安: 西北大学, 2022. |
[70] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.
DOI URL |
[71] | 曹飞, 杨卉芃, 张亮, 等. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 2019(5): 56-67, 89. |
[72] | 张爱铖, 王汝成, 胡欢, 等. 阿尔泰可可托海3号伟晶岩脉中铌铁矿族矿物环带构造及其岩石学意义[J]. 地质学报, 2004, 78(2): 181-189. |
[73] |
ERCIT T S, WISE M A, CERNY P. Compositional and structural systematics of the Columbite group[J]. American Mineralogist, 1995, 80(5/6): 613-619.
DOI URL |
[74] | STEPANOV A, MAVROGENES J, MEFFRE S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1-8. |
[75] | ANDERSON M O, LENTZ D R, MCFARLANE C R M, et al. A geological, geochemical and textural study of an LCT pegmatite: implications for the magmatic versus metasomatic origin of Nb-Ta mineralization in the Moose II pegmatite, Northwest Territories, Canada[J]. Journal of Geosciences, 2013: 299-320. |
[76] |
LAHTI S I. Zoning in columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area, southern Finland[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 509-517.
DOI URL |
[77] |
CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 1992, 87(7): 1766-1794.
DOI URL |
[78] | LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[C]// Rare-element geochemistry and mineral deposits. Newfoundland, Canada: Geological Association of Canada, 2005, 17: 45-68. |
[79] |
ČERNÝP, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026.
DOI URL |
[80] |
BALLOUARD C, POUJOL M, BOULVAIS P, et al. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3): 231-234.
DOI URL |
[81] | PIRAJNO F. Effects of metasomatism on mineral systems and their host rocks: alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites[M]// HARLOVD E, AUSTRHEIMH.Metasomatism and the chemical transformation of rock. Berlin, Heidelberg: Springer, 2013: 203-251. |
[82] | MILLER F, GEOLOGY D, STODDARD E F, et al. Compositioonf plutonicmusgoviteg: enetigimplications[J]. The Canadian Mineralogist, 1981, 19: 25-34. |
[83] |
SHAW D M. A review of K-Rb fractionation trends by covariance analysis[J]. Geochimica et Cosmochimica Acta, 1968, 32(6): 573-601.
DOI URL |
[84] |
MONECKE T, DULSKI P, KEMPE U. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 335-353.
DOI URL |
[85] |
IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 489-508.
DOI URL |
[86] |
ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 ℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3/4): 287-300.
DOI URL |
[87] |
TIEPOLO M, VANNUCCI R, OBERTI R, et al. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems[J]. Earth and Planetary Science Letters, 2000, 176(2): 185-201.
DOI URL |
[88] | RAIMBAULT L, BURNOL L. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites[J]. The Canadian Mineralogist, 1998, 36(2): 265-282. |
[89] |
RUDNICK R L, BARTH M, HORN I, et al. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle[J]. Science, 2000, 287(5451): 278-281.
PMID |
[90] |
MUNKER C, PFANDER J A, WEYER S, et al. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics[J]. Science, 2003, 301(5629): 84-87.
PMID |
[91] |
JOCHUM K P, STOLZ A J, MCORIST G. Niobium and tantalum in carbonaceous chondrites: constraints on the solar system and primitive mantle niobium/tantalum, zirconium/niobium, and niobium/uranium ratio[J]. Meteoritics and Planetary Science, 2000, 35(2): 229-235.
DOI URL |
[92] |
AULBACH S, O’REILLY S Y, GRIFFIN W L, et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios ineclogites[J]. Nature Geoscience, 2008, 1(7): 468-472.
DOI |
[93] | LONDON D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184/185/186/187: 74-104. |
[94] | 张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10): 2955-2970. |
[95] |
THOMAS R, DAVIDSON P, BEURLEN H. Tantalite-(Mn) from the Borborema pegmatite province, northeastern Brazil: conditions of formation and melt- and fluid-inclusion constraints on experimental studies[J]. Mineralium Deposita, 2011, 46(7): 749-759.
DOI URL |
[96] |
ČERNÝP. Rare-element granitic pegmatites. Part I: anatomy and internal evolution of pegmatitic deposits[J]. Precambrian Research, 1991, 51: 429-468.
DOI URL |
[97] | 王玉荣, 李加田, 卢家烂, 等. 花岗岩浆结晶过程晚期铌、钽富集成矿的地球化学机理探讨[J]. 地球化学, 1979, 8(4): 283-291. |
[98] | HILDRETH W. The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers[M]// Geological Society of America special papers. Boulder: Geological Society of America, 1979: 43-76. |
[99] |
WANG Y R, GU F, YUAN Z Q. Partitioning and hydrolysis of Nb and Ta and their implications with regard to mineralization[J]. Chinese Journal of Geochemistry, 1993, 12(1): 84-91.
DOI URL |
[100] | YIN R, HUANG X L, WANG R C, et al. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites: evidence from zoned micas from the Yashan pluton, South China[J]. Journal of Petrology, 2022, 63(10): egac093. |
[101] | BEUS A, SEVEROV E, SITNIN A, et al. Albitized and greisenized granites (apogranites)[D]. Moscow: Academic Press, 1962: 196. |
[102] |
ZOZULYA D, MACDONALD R, BAGIŃSKI B, et al. Nb/Ta, Zr/Hf and REE fractionation in exotic pegmatite from the Keivy Province, NW Russia, with implications for rare-metal mineralization in alkali feldspar granite systems[J]. Ore Geology Reviews, 2022, 143: 104779.
DOI URL |
[103] |
XIANG Y X, YANG J H, CHEN J Y, et al. Petrogenesis of Lingshan highly fractionated granites in the Southeast China: implication for Nb-Ta mineralization[J]. Ore Geology Reviews, 2017, 89: 495-525.
DOI URL |
[104] |
KONTAK D J. Nature and origin of an lct-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia. i. geological setting and petrology[J]. The Canadian Mineralogist, 2006, 44(3): 563-598.
DOI URL |
[105] | LONDON D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71(3/4): 376-395. |
[106] |
PERETYAZHKO I S, SAVINA E A. Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems[J]. Petrology, 2010, 18(5): 514-543.
DOI URL |
[107] |
KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4): 479-488.
DOI URL |
[108] |
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A E. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2015, 158: 103-111.
DOI URL |
[109] |
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A E. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2017, 197: 294-304.
DOI URL |
[110] |
XIE L, TAO X Y, WANG R C, et al. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization[J]. Lithos, 2020, 354/355: 105286.
DOI URL |
[111] | HULSBOSCH N. Nb-Ta-Sn-W distribution in granite-related ore systems: fractionation mechanisms and examples from the Karagwe-Ankole Belt of Central Africa[M]// DECRÉES, ROBBL. Geophysical monograph series. New York: John Wiley and Sons, 2019: 75-107. |
[112] |
VARLAMOFF N. Central and West African rare-metal granitic pegmatites, related aplites, quartz veins and mineral deposits[J]. Mineralium Deposita, 1972, 7(2): 202-216.
DOI URL |
[113] |
WEBSTER J D, THOMAS R, RHEDE D, et al. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2589-2604.
DOI URL |
[114] |
AUDÉTAT A, GÜNTHER D, HEINRICH C A. Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the mole granite, Australia[J]. Economic Geology, 2000, 95(8): 1563-1581.
DOI URL |
[115] |
CHICHARRO E, MARTÍN-CRESPO T, GÓMEZ-ORTIZ D, et al. Geology and gravity modeling of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain)[J]. Ore Geology Reviews, 2015, 65: 294-307.
DOI URL |
[116] |
HULSBOSCH N, BOIRON M C, DEWAELE S, et al. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: evidence from the Karagwe-Ankole Belt (Rwanda)[J]. Geochimica et Cosmochimica Acta, 2016, 175: 299-318.
DOI URL |
[117] |
MOURA A, DÓRIA A, NEIVA A M R, et al. Metallogenesis at the Carris W-Mo-Sn deposit (Gerês, Portugal): constraints from fluid inclusions, mineral geochemistry, Re-Os and He-Ar isotopes[J]. Ore Geology Reviews, 2014, 56: 73-93.
DOI URL |
[118] | DEWAELE S, CLERCQ F D, MUCHEZ P, et al. Geology of the cassiterite mineralisation in the Rutongo area, Rwanda (Central Africa): current state of knowledge[J]. Geologica Belgica, 2010, 13(1/2): 91-112. |
[119] |
MARIGNAC C, CUNEY M. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt[J]. Mineralium Deposita, 1999, 34(5/6): 472-504.
DOI URL |
[120] |
VINDEL E, LOPEZ J A, BOIRON M C, et al. P-V-T-X-fO2 evolution from wolframite to sulphide depositional stages in intragranitic W-veins. An example from the Spanish Central System[J]. European Journal of Mineralogy, 1995, 7(3): 675-688.
DOI URL |
[121] |
DENG M, XU C, SONG W L, et al. REE mineralization in the Bayan obo deposit, China: evidence from mineral paragenesis[J]. Ore Geology Reviews, 2017, 91: 100-109.
DOI URL |
[122] |
邓淼, 韦春婉, 许成, 等. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28.
DOI |
[123] |
YING Y C, CHEN W, LU J, et al. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China[J]. Lithos, 2017, 290/291: 159-171.
DOI URL |
[124] |
YING Y C, CHEN W, SIMONETTI A, et al. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 2020, 280: 340-359.
DOI URL |
[125] |
ZHU J, WANG L X, PENG S G, et al. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China[J]. Geological Journal, 2017, 52(6): 938-954.
DOI URL |
[126] | 邱啸飞, 蔡应雄, 江拓, 等. 庙垭铌-稀土矿床的热液蚀变作用: 来自碳酸岩碳-氧同位素的制约[J]. 华南地质与矿产, 2017, 33(3): 275-281. |
[127] |
ROMER R L, LEHMANN B. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi[J]. Economic Geology, 1995, 90(8): 2303-2309.
DOI URL |
[128] |
ROMER R L, SMEDS S A. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90-1.85 Ga magmatic arcs to the Baltic Shield[J]. Precambrian Research, 1994, 67(1/2): 141-158.
DOI URL |
[129] |
ROMER R L, WRIGHT J E. U-Pb dating of columbites: a geochronologic tool to date magmatism and ore deposits[J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 2137-2142.
DOI URL |
[130] | 钟龙, 王政华, 刘玉琳. 阿尔泰花岗伟晶岩年代学研究现状: 兼谈常规年代学方法在花岗伟晶岩定年中之困惑[J]. 新疆地质, 2011, 29(4): 412-415. |
[131] |
ALDRICH L T, DAVIS G L, TILTON G R, et al. Radioactive ages of minerals from the Brown Derby mine and the Quartz Creek granite near Gunnison, Colorado[J]. Journal of Geophysical Research, 1956, 61(2): 215-232.
DOI URL |
[132] |
ROMER R. U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden[J]. Precambrian Research, 1996, 76(1/2): 15-30.
DOI URL |
[1] | 李方兰, 刘学龙, 周云满, 赵成峰, 李守奎, 王基元, 陆波德, 李庆锐, 张卫文, 王海, 曹振梁, 周杰虎. 滇西保山地块陡崖铁铜多金属矿床石榴子石年代学及其地球化学特征[J]. 地学前缘, 2024, 31(3): 113-132. |
[2] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[3] | 刘超, 付晓飞, 李扬成, 王海学, 孙冰, 郝炎, 胡慧婷, 杨子成, 李依霖, 谷社峰, 周爱红, 马成龙. 烃源岩作为铀源岩的可能性:研究现状与展望[J]. 地学前缘, 2024, 31(2): 284-298. |
[4] | 胡瑞忠, 高伟, 付山岭, 苏文超, 彭建堂, 毕献武. 华南中生代陆内成矿作用[J]. 地学前缘, 2024, 31(1): 226-238. |
[5] | 陈雷, 聂潇, 刘凯, 庞绪勇, 张英利. 东秦岭官坡地区火炎沟伟晶岩型锡铌钽矿床矿物学和年代学特征[J]. 地学前缘, 2023, 30(5): 40-58. |
[6] | 陈瑜, 徐飞, 程宏飞, 陈贤哲, 温汉捷. 锂同位素地球化学研究新进展[J]. 地学前缘, 2023, 30(5): 469-490. |
[7] | 骆念岗, 高莲凤, 张振国, 尹志刚, 崔建宇, 吴君飞, 邢杰, 丁恺, 高晨阳, 王月. 早白垩世华北克拉通东部岩石圈减薄过程和机制:来自辽宁本溪北大山岩体的证据[J]. 地学前缘, 2023, 30(3): 340-365. |
[8] | 何陈诚, 陈红汉, 肖雪薇, 刘秀岩, 苏奥. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析[J]. 地学前缘, 2023, 30(3): 44-65. |
[9] | 杨誉博, 苏尚国, 霍延安, 宁亚格, 顾大鹏. 邯邢式铁矿形成机制:来自河北武安斑状二长岩中“含铁熔体-流体”的证据[J]. 地学前缘, 2022, 29(3): 304-318. |
[10] | 万渝生, 董春艳, 李鹏川, 苗培森, 王惠初, 李建荣. 五台地区高凡群形成时代新证据:锆石SHRIMP U-Pb定年[J]. 地学前缘, 2022, 29(2): 45-55. |
[11] | 孔志岗, 张斌臣, 吴越, 张长青, 刘益, 张锋, 李杨林. 四川大梁子富锗铅锌矿床的控矿构造样式及成矿机制研究[J]. 地学前缘, 2022, 29(1): 143-159. |
[12] | 陈雪锋, 范裕, 周涛发, 庾江华, 钱仕龙, 陆中秋, 杨张一, 洪建民. 江南隆起带安徽宁国西坞口矿床铷的赋存状态及其成矿机制研究[J]. 地学前缘, 2022, 29(1): 65-80. |
[13] | 石康兴, 王长明, 杜斌, 陈奇, 祝佳萱, 饶世成, 段泓羽. 华北克拉通东南缘1.90~1.80 Ga陆-陆碰撞作用:来自胶北地体花岗-绿岩带的证据[J]. 地学前缘, 2021, 28(6): 295-317. |
[14] | 龙政宇, 余晓艳, 郑育宇, 郭碧君. 云南大丫口祖母绿矿床中电气石的地球化学特征及其对成矿的指示意义[J]. 地学前缘, 2021, 28(2): 333-347. |
[15] | 杜一帆, 朱筱敏, 高园, 李玲珑, 叶蕾, 李小冬, 刘强虎, 李成海, 赵铁东, 陈亚青. 饶阳凹陷蠡县斜坡古近系沙河街组一段物源特征研究[J]. 地学前缘, 2021, 28(1): 115-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||