[1] |
刘延娴. 基于水文地球化学特征的濉肖矿区主要充水含水层水循环模式研究[D]. 合肥: 合肥工业大学, 2019.
|
[2] |
汤之铭. 潘谢矿区地下水微量元素地球化学特征与水源识别[D]. 合肥: 安徽大学, 2021.
|
[3] |
朱小平, 吴敬炳. 微量元素的迁移富集及对人体健康的影响[J]. 华东地质学院, 1990, 13(2):68-72.
|
[4] |
GUO Q J, DENG Y N, HIPPLER D, et al. REE and trace element patterns from organic-rich rocks of the Ediacaran-Cambrian transitional interval[J]. Gondwana Research, 2016, 36: 94-106.
|
[5] |
程珂, 王庆, 郑志惠, 等. 山东开元洞滴水微量元素季节变化特征及影响因素[J]. 海洋地质与第四纪地质, 2019, 39(1): 154-162.
|
[6] |
HU T, PANG X Q, JIANG S, et al. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin: a case study of Paleogene organic-rich shale in Dongpu depression, Bohai Bay Basin, eastern China[J]. Energy and Fuels, 2018, 32(4): 5045-5061.
|
[7] |
邓义楠, 任江波, 郭庆军, 等. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征[J]. 地球科学, 2019, 44(9): 3101-3114.
|
[8] |
BISHANGA J M, JIN Q. Trace and rare earth element geochemistry of organic-rich sediments in the lacustrine Rukwa Rift basin, Tanzania: implications for paleoproductivity, paleosalinity, and redox conditions[J]. Arabian Journal of Geosciences, 2021, 14(14): 1332.
|
[9] |
LI W, COOK N J, XIE G Q, et al. Complementary textural, trace element, and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit, South China[J]. Economic Geology, 2021, 116(8): 1825-1848.
|
[10] |
黄胜敏, 李国山, 洪汉烈, 等. 广西中更新世喀斯特洞穴堆积物矿物与元素组成特征及其古气候环境意义[J]. 地理科学, 2022, 42(12): 2198-2206.
DOI
|
[11] |
ZHANG H B, GRIFFITHS M L, CHIANG J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583.
DOI
PMID
|
[12] |
CAROLIN S A, WALKER R T, DAY C C, et al. Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(1): 67-72.
DOI
PMID
|
[13] |
GRIFFITHS M L, KIMBROUGH A K, GAGAN M K, et al. Western Pacific hydroclimate linked to global climate variability over the past two millennia[J]. Nature Communications, 2016, 7: 11719.
DOI
PMID
|
[14] |
LI J Y, LI T Y, WANG J L, et al. Characteristics and environmental significance of Ca, Mg, and Sr in the soil infiltrating water overlying the Furong Cave, Chongqing, China[J]. Science China Earth Sciences, 2013, 56(12): 2126-2134.
|
[15] |
PU T, KONG Y L, KANG S C, et al. New insights into trace elements in the water cycle of a karst-dominated glacierized region, Southeast Tibetan Plateau[J]. Science of the Total Environment, 2021, 751: 141725.
|
[16] |
PENG X D, DAI Q H, LI C L, et al. The underground leakage process of soil patches around bedrock outcrops in a karst rocky desertification area traced using rare earth elements[J]. Journal of Hydrology, 2023, 619: 129316.
|
[17] |
ZHOU J X, WU Q X, GAO S L, et al. Coupled controls of the infiltration of rivers, urban activities and carbonate on trace elements in a karst groundwater system from Guiyang, Southwest China[J]. Ecotoxicology and Environmental Safety, 2023, 249: 114424.
|
[18] |
DUAN W H, RUAN J Y, LUO W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183: 250-266.
|
[19] |
蒲俊兵, 刘文, 姜光辉, 等. 基于锶同位素的亚热带典型岩溶动力系统降雨条件下岩溶作用速率及其意义[J]. 地质论评, 2017, 63(1): 165-176.
|
[20] |
CHEN C J, LI T Y. Geochemical characteristics of cave drip water respond to ENSO based on a 6-year monitoring work in Yangkou Cave, Southwest China[J]. Journal of Hydrology, 2018, 561: 896-907.
|
[21] |
GAUTAM M K, LEE K S, SONG B Y. Strontium isotope composition aided strontium and calcium sourcing in a cool temperate ecosystem, South Korea[J]. Environmental Earth Sciences, 2020, 79(12): 300.
|
[22] |
施晓. 我国北方典型岩溶关键带不同时空微量元素的运移机制[D]. 重庆: 西南大学, 2021.
|
[23] |
ZHANG X D, GAO S L, WU Q X, et al. Buffer zone-based trace elements indicating the impact of human activities on karst urban groundwater[J]. Environmental Research, 2023, 220: 115235.
|
[24] |
曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 2018, 5(5): 1-12.
|
[25] |
曹建华. 岩溶与地球碳循环[J]. 地球, 2021(4): 40-44.
|
[26] |
易世友, 焦恒, 周长松, 等. 基于“三源模式” 的岩溶地下河区污染场地修复治理: 以遵义坪桥地下河系统为例[J]. 中国岩溶, 2023, 42(4): 648-661.
|
[27] |
郭永丽, 吴佩艳, 黄芬, 等. 环境同位素示踪的毛村地下河流域水流特征[J]. 中国岩溶, 2022, 41(4): 577-587.
|
[28] |
尹伟璐. 桂林市毛村流域岩溶含水介质及碳汇效应研究[D]. 北京: 中国地质大学(北京), 2016.
|
[29] |
曹建华, 周莉, 杨慧, 等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3): 431-437.
|
[30] |
HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
|
[31] |
JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
|
[32] |
施春华, 胡瑞忠, 颜佳新. 栖霞组沉积地球化学特征及其环境意义[J]. 矿物岩石地球化学通报, 2004, 23(2): 144-148.
|
[33] |
周长松, 邹胜章, 夏日元, 等. 贵州关岭地区发现地表和地下水体锶超常富集[J]. 中国地质, 2021, 48(3): 961-962.
|
[34] |
涂春霖, 和成忠, 陶兰初, 等. 滇东黔西典型岩溶流域地下水中锶富集特征及成因分析[J]. 环境化学, 2023, 42(2): 456-468.
|
[35] |
ZOLLER W H, GLADNEY E S, DUCE R A. Atmospheric concentrations and sources of trace metals at the South Pole[J]. Science, 1974, 183(4121): 198-200.
PMID
|
[36] |
何建华, 秦文华, 郭嘉兵, 等. 敦煌绿洲地下水微量元素分布特征及其成因[J]. 中国沙漠, 2021, 41(2): 109-119.
DOI
|
[37] |
吕婕梅, 安艳玲, 吴起鑫, 等. 贵州清水江流域丰水期水化学特征及离子来源分析[J]. 环境科学, 2015, 36(5): 1565-1572.
|
[38] |
黄奇波, 覃小群, 刘朋雨, 等. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
DOI
|
[39] |
王增银, 刘娟, 崔银祥, 等. 延河泉岩溶水系统Sr/Mg、Sr/Ca分布特征及其应用[J]. 水文地质工程地质, 2003, 30(2): 15-19.
|
[40] |
李佳佳, 高宗军, 李常锁. 济南岩溶水系统Sr元素分布特征及其指示意义[J]. 地下水, 2021, 43(4): 5-8.
|
[41] |
CLOW D W, MAST M A, BULLEN T D, et al. Strontium 87/strontium 86 as a tracer of mineral weathering reactions and calcium sources in an Alpine/Subalpine watershed, Loch Vale, Colorado[J]. Water Resources Research, 1997, 33(6): 1335-1351.
|