地学前缘 ›› 2020, Vol. 27 ›› Issue (3): 191-201.DOI: 10.13745/j.esf.sf.2020.1.1
洪东铭1(), 简星1,*(
), 黄鑫1, 张巍1, 马金戈2
收稿日期:
2018-05-28
修回日期:
2019-01-02
出版日期:
2020-05-20
发布日期:
2020-05-20
通信作者:
简星
作者简介:
洪东铭(1994—),男,硕士研究生,海洋地质专业,主要从事沉积物源研究。E-mail: dmhong@stu.xmu.edu.cn
基金资助:
HONG Dongming1(), JIAN Xing1,*(
), HUANG Xin1, ZHANG Wei1, MA Jinge2
Received:
2018-05-28
Revised:
2019-01-02
Online:
2020-05-20
Published:
2020-05-20
Contact:
JIAN Xing
摘要:
石榴石是沉积物中常见的重矿物,其可来源于多种岩石,而且不同类型母岩中石榴石具有多样的地球化学组成,因此碎屑石榴石的地球化学分析在沉积物源研究中应用广泛。通过电子探针分析可以容易地获得单颗粒碎屑石榴石的主量元素地球化学组成,可借此探讨其母岩类型,但也存在一定的局限性,比如中酸性火成岩和部分变沉积岩来源的石榴石通常都具有高Fe、Mn的特征,不易于区分。本文系统地收集了不同岩石类型的石榴石微量元素数据,尝试利用微量元素地球化学的差异性对碎屑石榴石物源分析进行补充。最终得出以下结论:(1)石榴石的稀土元素(REE)组成与钇(Y)元素指标可区分中酸性火成岩和变沉积岩来源的碎屑石榴石;(2)基性岩(橄榄岩、辉石岩)及所对应的变基性岩石(榴辉岩)中石榴石的微量元素地球化学组成相近,但部分橄榄岩来源的石榴石在镨/钬(PrN/HoN)值和重稀土总量(ΣHREE含量)上与辉石岩和榴辉岩的有显著差别,这一特点可运用于以基性岩母岩为主的碎屑沉积物源研究中;(3)夕卡岩中的石榴石在主量元素地球化学组成上表现为高度一致的高Ca特征,而稀土元素组成具有两种典型的分配模式,岩浆型(指示富铁、氧化环境)与热液型(指示富铝、还原环境)。综上所述,石榴石微量元素地球化学可以有效地运用于沉积物源分析研究中,是其主量元素物源分析方法的重要补充。
中图分类号:
洪东铭, 简星, 黄鑫, 张巍, 马金戈. 石榴石微量元素地球化学及其在沉积物源分析中的应用[J]. 地学前缘, 2020, 27(3): 191-201.
HONG Dongming, JIAN Xing, HUANG Xin, ZHANG Wei, MA Jinge. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers, 2020, 27(3): 191-201.
图1 基于石榴石主量元素的母岩类型判别图解 A—石榴石Mg-(Fe+Mn)-Ca三元判别图解,来源于文献[21]。B—Mn-Mg-Ca三元判别图解,来源于文献[22,23]。l—低p-T;la—中p-T(直至角闪岩相);e—榴辉岩;g—钙铝铁榴石;h—高p-T;lg1,lg2—中p-T(麻粒岩相)。C—Mg-(Fe+Mn)-Ca三元判别图解,来源于文献[24]。Type A—高级麻粒岩相变沉积岩、紫苏花岗岩和中酸性火成岩(来源于地壳深部,高Mg,低Ca);Type Bi—中酸性火成岩(高Fe,高Mn);Type Bii—中低级变沉积岩,最高至角闪岩相(低Mg,Ca含量不一);Type Ci—变基性岩;Type Cii—超基性岩(高Mg,Ci与Cii以Mg含量50%为界);Type D—低级变基性岩或接触交代变质岩(高Ca)。D,E—Mg-Fe-Ca和Mg-Fe-Mn三元判别图解,来源于文献[25]。a—高压(HP)和超高压(UHP)岩石;b—榴辉岩和麻粒岩相岩石;c—角闪岩相岩石,可再分为两个亚类,c1—高级角闪岩相到麻粒岩相,c2—角闪岩相,包括其他岩石,如蓝片岩、夕卡岩、蛇纹岩、火成岩;1—UHP榴辉岩或石榴石橄榄岩;2—HP榴辉岩和HP基性麻粒岩;3—中酸性麻粒岩;4—片麻岩过渡到麻粒岩和角闪岩相;5—角闪岩过渡到麻粒岩和角闪岩相;6—角闪岩相变质作用下的片麻岩;7—角闪岩相变质作用下的角闪岩。Prp、Alm、Sps、Grs分别为镁铝榴石、铁铝榴石、锰铝榴石、钙铝榴石,表示石榴石端员分子的百分数。石榴石主量元素数据来源于文献[30]所提供的附录。
Fig.1 Discrimination diagrams of mother rock based on major elements of garnet.(A)Mg-(Fe+Mn)-Ca(after [21]); (B)Mn-Mg-Ca (after [22-23]); (C)Mg-(Fe+Mn)-Ca (after [24]);(D) Mg-Fe-Ca (after [25]); and (E) Mg-Fe-Mn (after [25]). Major elemental compositions of garnet adapted from [30].
图解 | 在不同判别图解中利用石榴石主量元素判定母岩来源的正确比例/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
榴辉岩 | 角闪岩 | 麻粒岩 | 橄榄岩 | 金伯利岩 | 辉石岩 | 花岗岩 | 绿片岩 | 角闪岩相变泥质岩 | 麻粒岩相变泥质岩 | ||
Wright | 23 | 57 | 70 | 51 | |||||||
Teraoka | 87 | 62 | 87 | 85 | 22 | 74 | |||||
Morton | 92 | 86 | 99 | 99 | 99 | 72 | 73 | 52 | 68 | ||
Aubrecht | 45 | 93 | 83 | 96 | 96 | 96 | 96 | 100 | 96 | 72 |
表1 不同母岩来源石榴石的主量元素数据投点落在预期范围内的比例[21-22,24-25]
Table 1 The proportion of garnet major elemental data from different mother rocks falling within the expected range. Adapted from [21-22,24-25].
图解 | 在不同判别图解中利用石榴石主量元素判定母岩来源的正确比例/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
榴辉岩 | 角闪岩 | 麻粒岩 | 橄榄岩 | 金伯利岩 | 辉石岩 | 花岗岩 | 绿片岩 | 角闪岩相变泥质岩 | 麻粒岩相变泥质岩 | ||
Wright | 23 | 57 | 70 | 51 | |||||||
Teraoka | 87 | 62 | 87 | 85 | 22 | 74 | |||||
Morton | 92 | 86 | 99 | 99 | 99 | 72 | 73 | 52 | 68 | ||
Aubrecht | 45 | 93 | 83 | 96 | 96 | 96 | 96 | 100 | 96 | 72 |
图2 不同岩石来源石榴石中的REE特征图(部分花岗岩、榴辉岩、橄榄岩、辉石岩石榴石REE数据特征图展示。CI球粒陨石标准据文献[55]) a—麻粒岩相变泥质岩石榴石数据来源于文献[34,35],角闪岩相变泥质岩石榴石数据来源于文献[34,36],花岗岩石榴石数据来源于文献[37,38,39,40,41];b—榴辉岩石榴石数据来源于文献[42,43,44,45,46],橄榄岩石榴石数据来源于文献[43,47-50],辉石岩石榴石数据来源于文献[18];c—夕卡岩石榴石数据来源于文献[51,52,53,54]。
Fig.2 REE features in garnet from different rocks. CI chondrite standard values adapted from [55].
岩石 | w(ΣLREE)/10-6 | w(ΣHREE,除Y)/10-6 | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN |
---|---|---|---|---|---|---|
淡色花岗岩 | 0.34~3.28 | 200.8~1 836.8 | 0.002~0.034 | 0~0.047 | 0.008~0.176 | 0.047~0.175 |
A型花岗岩 | 3.4~40.78 | 2 029.5~9 951.1 | 0.008~0.03 | 0~0.001 | 0.027~0.302 | 0.087~0.181 |
过铝质花岗岩 | 12.75~116.63 | 557~5 917.5 | 0.002~0.487 | 0.160~0.772 | 0.071~0.397 | 0.121~0.365 |
中粒黑云母花岗岩 | 2.53~545.9 | 701.3~7 913.7 | 0.001~0.004 | 0.002~0.322 | 0.019~0.176 | 0.117~0.673 |
细粒二云母花岗岩 | 2.85~101.34 | 1 462.6~9 172.6 | 0.001~0.002 | 0.012~0.378 | 0.017~0.189 | 0.123~0.682 |
S型花岗岩 | 1.3~7 | 211.2~771.7 | 0.133~0.251 | 0.033~0.105 | 0.044~0.245 | 0.151~0.346 |
麻粒岩相变泥质岩 | 0.426~41.730 | 3.089~676.760 | 0.006~1.440 | 0~0.440 | 0.102~11.266 | 0.015~0.948 |
角闪岩相变泥质岩 | 0.120~7.933 | 21.226~1 661.220 | 0.102~1.151 | 0~0.419 | 0.012~4.503 | 0.038~0.348 |
表2 不同花岗岩中石榴石的REE特征参数
Table 2 REE characteristic parameters of garnet in different types of granite
岩石 | w(ΣLREE)/10-6 | w(ΣHREE,除Y)/10-6 | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN |
---|---|---|---|---|---|---|
淡色花岗岩 | 0.34~3.28 | 200.8~1 836.8 | 0.002~0.034 | 0~0.047 | 0.008~0.176 | 0.047~0.175 |
A型花岗岩 | 3.4~40.78 | 2 029.5~9 951.1 | 0.008~0.03 | 0~0.001 | 0.027~0.302 | 0.087~0.181 |
过铝质花岗岩 | 12.75~116.63 | 557~5 917.5 | 0.002~0.487 | 0.160~0.772 | 0.071~0.397 | 0.121~0.365 |
中粒黑云母花岗岩 | 2.53~545.9 | 701.3~7 913.7 | 0.001~0.004 | 0.002~0.322 | 0.019~0.176 | 0.117~0.673 |
细粒二云母花岗岩 | 2.85~101.34 | 1 462.6~9 172.6 | 0.001~0.002 | 0.012~0.378 | 0.017~0.189 | 0.123~0.682 |
S型花岗岩 | 1.3~7 | 211.2~771.7 | 0.133~0.251 | 0.033~0.105 | 0.044~0.245 | 0.151~0.346 |
麻粒岩相变泥质岩 | 0.426~41.730 | 3.089~676.760 | 0.006~1.440 | 0~0.440 | 0.102~11.266 | 0.015~0.948 |
角闪岩相变泥质岩 | 0.120~7.933 | 21.226~1 661.220 | 0.102~1.151 | 0~0.419 | 0.012~4.503 | 0.038~0.348 |
岩石 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Ce/Ce* | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN | PrN/HoN |
---|---|---|---|---|---|---|---|---|
榴辉岩 | 0.332~27.69 | 2.41~78.09 | 0.048~1.019 | 0.683~2.784 | 0~0.587 | 0.120~2.823 | 0.220~1.899 | 0.002~0.835 |
橄榄岩 | 0.11~38.28 | 0.35~24.37 | 0.455~2.244 | 0.588~2.075 | 0~3.739 | 0.103~7.090 | 0.241~5.313 | 0.036~21.775 |
辉石岩 | 0.69~5.06 | 9.33~28.62 | 0.064~1.534 | 0.508~1.584 | 0.005~0.865 | 0.313~1.590 | 0.247~0.756 | 0.002~0.201 |
表3 榴辉岩、橄榄岩、辉石岩中石榴石的REE特征值
Table 3 REE characteristic values of garnets in eclogite (after [42-46]), peridotite (after [43,47-50]) and pyroxenite (after [18])
岩石 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Ce/Ce* | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN | PrN/HoN |
---|---|---|---|---|---|---|---|---|
榴辉岩 | 0.332~27.69 | 2.41~78.09 | 0.048~1.019 | 0.683~2.784 | 0~0.587 | 0.120~2.823 | 0.220~1.899 | 0.002~0.835 |
橄榄岩 | 0.11~38.28 | 0.35~24.37 | 0.455~2.244 | 0.588~2.075 | 0~3.739 | 0.103~7.090 | 0.241~5.313 | 0.036~21.775 |
辉石岩 | 0.69~5.06 | 9.33~28.62 | 0.064~1.534 | 0.508~1.584 | 0.005~0.865 | 0.313~1.590 | 0.247~0.756 | 0.002~0.201 |
模式 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Eu/Eu* | LaN/YbN |
---|---|---|---|---|
模式1 | 6.52~468.26 | 1.19~395.86 | 1.39~5.98 | 1.45~159.67 |
模式2 | 14.42~144.26 | 10.74~176.84 | 0.39~1.23 | 0.01~0.62 |
模式3 | 11.67~130.55 | 1.61~20.72 | 0.51~1.09 | 4.38~14.53 |
模式4 | 14.73~24.58 | 4.54~10.22 | 2.38~3.86 | 0.07~0.97 |
表4 夕卡岩石榴石4种REE配分模式对应特征参数
Table 4 The characteristic parameters of four REE patterns of garnet in skarn
模式 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Eu/Eu* | LaN/YbN |
---|---|---|---|---|
模式1 | 6.52~468.26 | 1.19~395.86 | 1.39~5.98 | 1.45~159.67 |
模式2 | 14.42~144.26 | 10.74~176.84 | 0.39~1.23 | 0.01~0.62 |
模式3 | 11.67~130.55 | 1.61~20.72 | 0.51~1.09 | 4.38~14.53 |
模式4 | 14.73~24.58 | 4.54~10.22 | 2.38~3.86 | 0.07~0.97 |
[1] | 王成善, 李祥辉, 胡修棉. 再论印度-亚洲大陆碰撞的启动时间[J]. 地质学报, 2003, 77(1):16-24. |
[2] | BASU A. A perspective on quantitative provenance analysis[J]. Quantitative Provenance Studies in Italy, 2003, 61:11-22. |
[3] |
WELTJE G J, EYNATTEN H V. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 2004, 171(1):1-11.
DOI URL |
[4] | MORTON A C. Heavy minerals in provenance studies[M]//ZUFFA G G. Provenance of arenites. Dordrecht: Reidel Publishing Company, 1985: 249-277. |
[5] |
MORTON A C, HALLSWORTH C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/2/3/4):3-29.
DOI URL |
[6] |
BHATIA M R. Plate tectonics and geochemical composition of sandstone[J]. Journal of Geology, 1983, 91(6):611-627.
DOI URL |
[7] | DICKINSON W R. Interpreting provenance relations from detrital modes of sandstones[M]//ZUFFA G G. Provenance of arenites. Dordrecht: Reidel Publishing Company, 1985: 333-361. |
[8] | MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284:21-40. |
[9] |
MORTON A C, HALLSWORTH C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4):241-256.
DOI URL |
[10] | HENRY D J, GUIDOTTI C V. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine[J]. American Mineralogist, 1985, 70(1/2):1-15. |
[11] |
FEDO C M, SIRCOMBE K N, RAINBIRD R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303.
DOI URL |
[12] |
CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4):228-242.
DOI URL |
[13] |
TRIEBOLD S, EYNATTEN H V, LUVIZOTTO G L, et al. Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany[J]. Chemical Geology, 2007, 244(3/4):421-436.
DOI URL |
[14] |
MEINHOLD G. Rutile and its applications in earth sciences[J]. Earth-Science Reviews, 2010, 102(1):1-28.
DOI URL |
[15] |
ZHANG Z M, LIOU J G, ZHAO X D, et al. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic belt, eastern China[J]. Journal of Metamorphic Geology, 2006, 24(8):727-741.
DOI URL |
[16] |
SONG S, SU L, NIU Y, et al. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China[J]. Lithos, 2007, 96(1/2):243-265.
DOI URL |
[17] |
XU L, XIAO Y, WU F, et al. Anatomy of garnets in a Jurassic granite from the south-eastern margin of the North China Craton: magma sources and tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 78(12):198-221.
DOI URL |
[18] | 罗彦, 高山, 袁洪林, 等. 大别-苏鲁榴辉岩和石榴辉石岩中矿物Ce异常: 对氧化环境下形成沉积物深俯冲作用的示踪[J]. 中国科学: 地球科学, 2004, 34(1):14-23. |
[19] |
LENAZ D, MAZZOLI C, VELICOGNA M, et al. Trace and rare earth elements chemistry of detrital garnets in the SE Alps and Outer Dinarides flysch basins: an important tool to better define the source areas of sandstones[J]. Marine and Petroleum Geology, 2018, 98:653-661.
DOI URL |
[20] |
BIZIMIS M, SEN G, SALTERS V J M, et al. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism[J]. Geochimica et Cosmochimica Acta, 2005, 69(10):2629-2646.
DOI URL |
[21] | WRIGHT W I. The composition and occurrence of garnets[J]. American Mineralogist, 1938, 23:436-449. |
[22] | TERAOKA Y, SUZUKI M, HAYASHI T, et al. Detrital garnets from Paleozoic and Mesozoic sandstones in the Onogawa area, East Kyushu, Southwest Japan[J]. Bulletin of the Faculty of School Education, 1997, 19:87-101. |
[23] | TERAOKA Y, SUZUKI M, KAWAKAMI K. Provenance of Cretaceous and Paleogene sediments in the Median Zone of Southwest Japan[J]. Bulletin of the Geological Survey of Japan, 1998, 49:395-411. |
[24] | MANGE M A, MORTON A C. Geochemistry of heavy minerals[M]//MANGE M A, WRIGHT D T. Heavy minerals in use. Developments in sedimentology. Amsterdam: Elsevier, 2007: 345-391. |
[25] |
AUBRECHT R, MÉRES Š, SÝKORA M, et al. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia)[J]. Geologica Carpathica, 2009, 60(6):463-483.
DOI URL |
[26] | 朱琳. 红色-黄色系列石榴石的宝石学特征研究[D]. 北京: 中国地质大学(北京) 2015. |
[27] |
MIYASHIRO A. Calcium-poor garnet in relation to metamorphism[J]. Geochimica et Cosmochimica Acta, 1953, 4(4):179-208.
DOI URL |
[28] |
SPEAR F S, CHENEY J T. A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O[J]. Contributions to Mineralogy and Petrology, 1989, 101(2):149-164.
DOI URL |
[29] |
DAHLQUIST J A, GALINDO C, PANKHURST R J, et al. Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids[J]. Lithos, 2007, 95(3):177-207.
DOI URL |
[30] |
KRIPPNER A, MEINHOLD G, MORTON A C, et al. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks[J]. Sedimentary Geology, 2014, 306(6):36-52.
DOI URL |
[31] |
MORTON A C, HALLSWORTH C, CHALTON B. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance[J]. Marine and Petroleum Geology, 2004, 21(3):393-410.
DOI URL |
[32] |
JIAN X, GUAN P, ZHANG D W, et al. Provenance of Tertiary sandstone in the northern Qaidam Basin, northeastern Tibetan Plateau: integration of framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 2013, 290(1):109-125.
DOI URL |
[33] | 陈能松, 孙敏, 杨勇, 等. 变质石榴石的成分环带与变质过程[J]. 地学前缘, 2003, 10(3):315-320. |
[34] |
BEA F, MONTERO P. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy[J]. Geochimica et Cosmochimica Acta, 1999, 63(7/8):1133-1153.
DOI URL |
[35] |
HERMANN J, RUBATTO D. Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust[J]. Journal of Metamorphic Geology, 2003, 21(9):833-852.
DOI URL |
[36] |
BEA F, MONTERO P, GARUTI G, et al. Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets: a LA-ICP-MS study[J]. Geostandards and Geoanalytical Research, 1997, 21(2):253-270.
DOI URL |
[37] | 高利娥, 曾令森, 石卫刚, 等. 喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义[J]. 岩石学报, 2012, 28(9):2963-2980. |
[38] |
HÖNIG S, ČOPJAKOVÁ R, ŠKODA R, et al. Garnet as a major carrier of the Y and REE in the granitic rocks: an example from the layered anorogenic granite in the Brno Batholith, Czech Republic[J]. American Mineralogist, 2014, 99(10):1922-1941.
DOI URL |
[39] |
BRAY E A D. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis: southeastern Arabian Shield[J]. Contributions to Mineralogy and Petrology, 1988, 100(2):205-212.
DOI URL |
[40] |
YANG J H, PENG J T, HU R Z, et al. Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China[J]. Lithos, 2013, 177(1):79-90.
DOI URL |
[41] |
VILLAROS A, STEVENS G, BUICK I S. Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112(3):217-235.
DOI URL |
[42] | 李静. 大别山榴辉岩石榴石和绿辉石中稀土元素配分特征[D]. 北京: 中国地震局地震预测研究所, 2012. |
[43] | 张宏福, MENZIES M A, 路凤香, 等. 华北古生代地幔岩捕虏体中石榴石和巨晶石榴石的主、微量元素[J]. 中国科学: 地球科学, 2000, 30(2):128-134. |
[44] |
JERDE E A, TAYLOR L A, CROZAZ G, et al. Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths[J]. Contributions to Mineralogy and Petrology, 1993, 114(2):189-202.
DOI URL |
[45] |
SNYDER G A, TAYLOR L A, CROZAZ G, et al. The origins of Yakutian eclogite xenoliths[J]. Journal of Petrology, 1997, 38(1):85-113.
DOI URL |
[46] | 石超, 张泽明. 超高压变质过程中的元素地球化学行为: CCSD主孔榴辉岩的矿物化学研究[J]. 岩石学报, 2007, 23(12):3180-3200. |
[47] |
BURGESS S R, HARTE B. Tracing lithosphere evolution through the analysis of heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry[J]. Journal of Petrology, 2004, 45(3):609-633.
DOI URL |
[48] |
LIATI A, GEBAUER D. Crustal origin of zircon in a garnet peridotite: a study of U-Pb SHRIMP dating, mineral inclusions and REE geochemistry (Erzgebirge, Bohemian Massif)[J]. European Journal of Mineralogy, 2009, 21(4):737-750.
DOI URL |
[49] |
POKHILENKO N P, AGASHEV A M, LITASOV K D, et al. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism[J]. Russian Geology and Geophysics, 2015, 56(1/2):280-295.
DOI URL |
[50] |
AGASHEV A M, IONOV D A, POKHILENKO N P, et al. Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya[J]. Lithos, 2013, 160/161(1):201-215.
DOI URL |
[51] | 郑震, 杜杨松, 曹毅, 等. 安徽冬瓜山夕卡岩铜矿石榴石成分特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(2):235-242. |
[52] | 肖成东, 刘学武. 东蒙地区夕卡岩石榴石稀土元素地球化学及其成因[J]. 中国地质, 2002, 29(3):311-316. |
[53] | 王剑波. 安徽铜陵包村夕卡岩型金矿特征和成因[D]. 北京: 中国地质大学(北京), 2016. |
[54] |
GASPAR M, KNAACK C, MEINERT L D, et al. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica Et Cosmochimica Acta, 2008, 72(1):185-205.
DOI URL |
[55] | BOYNTON W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2(2):63-114. |
[56] | PALME H, O'NEILL H S C. Cosmochemical estimates of mantle composition[J]. Treatise on Geochemistry, 2007, 2:1-38. |
[57] | SHIMIZU N. Chemical zoning of garnets in peridotites and diamonds[J]. Mineralogical Magazine, 1994, 58(2):831-832. |
[58] |
HOAL K E O, HOAL B G, ERLANK A J, et al. Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets[J]. Earth and Planetary Science Letters, 1994, 126(4):303-313.
DOI URL |
[59] |
ČOPJAKOVÁ R, SULOVSKÝ P, PATERSON B A. Major and trace elements in pyrope-almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif[J]. Lithos, 2005, 82(1/2):51-70.
DOI URL |
[1] | 吴庆, 黄芬, 郭永丽, 肖琼, 孙平安, 杨慧, 白冰. 西南岩溶小流域水体中微量元素地球化学特征及其指示意义[J]. 地学前缘, 2024, 31(5): 397-408. |
[2] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
[3] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[4] | 孙文博, 李欢. 伟晶岩中锆石研究进展及其对稀有金属成矿的启示[J]. 地学前缘, 2023, 30(5): 171-184. |
[5] | 朱紫怡, 周飞, 王瑀, 周统, 侯照亮, 邱昆峰. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475. |
[6] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[7] | 何明倩, 黄文辉, 久博. 鄂尔多斯盆地膏质白云岩有利储层的成因及演化[J]. 地学前缘, 2021, 28(4): 327-336. |
[8] | 杜一帆, 朱筱敏, 高园, 李玲珑, 叶蕾, 李小冬, 刘强虎, 李成海, 赵铁东, 陈亚青. 饶阳凹陷蠡县斜坡古近系沙河街组一段物源特征研究[J]. 地学前缘, 2021, 28(1): 115-130. |
[9] | 郭飞, 王智琳, 许德如, 于得水, 董国军, 宁钧陶, 康博, 彭尔柯. 湖南栗山铅锌铜多金属矿床闪锌矿微量元素特征及成矿指示意义[J]. 地学前缘, 2020, 27(4): 66-81. |
[10] | 欧阳永棚, 周显荣, 尧在雨, 饶建锋, 宋世伟, 魏锦, 卢弋. 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示[J]. 地学前缘, 2020, 27(4): 219-231. |
[11] | 段文晶, 赵甫峰, 任科法, 刘显凡, 邓江红, 杨蜜蜜, 楚亚婷. 滇西六合正长斑岩和花岗岩包体中锆石U-Pb年代和微量元素地球化学研究[J]. 地学前缘, 2020, 27(3): 154-167. |
[12] | 甄世民, 庞振山, 朱晓强, 薛建玲, 方永财, 贾宏翔, 石光耀, 王大钊, 查钟健, 宋晓航. 山西梨园金矿黄铁矿微量元素及S-Pb-He-Ar同位素地球化学特征及其地质意义[J]. 地学前缘, 2020, 27(2): 373-390. |
[13] | 邵龙义,常玲利,张梦媛,李杰,李耀炜,李文君,冯晓蕾. 《攻坚行动方案》实施后北京市PM2.5中微量元素组成特征 [J]. 地学前缘, 2019, 26(6): 298-308. |
[14] | 马健,吕新彪,但荣飞,朱丁云,卢飞,袁波,殷新. 西秦岭左家庄金矿成因研究:来自黄铁矿微量元素及多元同位素地球化学的制约[J]. 地学前缘, 2019, 26(5): 146-162. |
[15] | 朱赖民,郑俊,熊潇,姜航,刘凯,丁乐乐,郭延辉,李声浩. 南秦岭柞水—山阳矿集区园子街岩体岩石地球化学与成矿潜力探讨[J]. 地学前缘, 2019, 26(5): 189-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||