地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 464-475.DOI: 10.13745/j.esf.sf.2022.2.75
朱紫怡1(), 周飞1, 王瑀1, 周统1, 侯照亮2, 邱昆峰1,3,*(
)
收稿日期:
2021-12-16
修回日期:
2022-03-18
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
邱昆峰
作者简介:
朱紫怡(2000—),女,本科生,地质学专业。E-mail: ziyizhuuu@qq.com
基金资助:
ZHU Ziyi1(), ZHOU Fei1, WANG Yu1, ZHOU Tong1, HOU Zhaoliang2, QIU Kunfeng1,3,*(
)
Received:
2021-12-16
Revised:
2022-03-18
Online:
2022-09-25
Published:
2022-08-24
Contact:
QIU Kunfeng
摘要:
锆石是在自然界中多种温压条件下能够稳定保存,并记录原岩年龄信息的副矿物。锆石微量元素能完整记录地质演化过程信息。通过微量元素分析锆石成因的研究已久,通常利用Th-U图解和LaN-(Sm/La)N图解等二元图解对锆石进行分类研究。然而,随着锆石研究的深入,以及二元图解无法呈现数据高维度信息的局限性,传统图解已经不能满足对锆石类型进行准确判别,且对已知类型的锆石出现判定偏差。因此,本文将地质大数据与机器学习相结合,训练出高维度锆石成因分类器。文中收集了3 498条不同成因类型的锆石微量元素数据,并通过测试和运用随机森林、支持向量机、人工神经网络和k近邻等4种机器学习算法,最终得出准确率为86.8%的线性支持向量机锆石成因分类器,用于锆石类型的判定与预测。这项工作为锆石分类研究提供了更高维度的判别手段,极大提高了微量元素分析成因结果的精度。将锆石微量元素数据与机器学习方法相结合,是大数据分析与机器学习技术在地球化学研究中的积极探索。
中图分类号:
朱紫怡, 周飞, 王瑀, 周统, 侯照亮, 邱昆峰. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475.
ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination[J]. Earth Science Frontiers, 2022, 29(5): 464-475.
图1 不同类型的锆石微量元素散点图(底图区域据文献[9])
Fig.1 Scatter plot of the published zircon-associated trace elements from various rock types. Background region based on [9].
判别图解 | 准确率/% | |||
---|---|---|---|---|
岩浆锆石 | 热液锆石 | 变质锆石 | 平均 | |
Th/U | 81.65 | - | 23.5 | 73.1 |
LaN-(Sm/La)N | 42.4 | 20.9 | - | 38.5 |
表1 已发表的锆石成因类型判别图解准确率
Table 1 The accuracy of the published diagram to classify different zircon provenance
判别图解 | 准确率/% | |||
---|---|---|---|---|
岩浆锆石 | 热液锆石 | 变质锆石 | 平均 | |
Th/U | 81.65 | - | 23.5 | 73.1 |
LaN-(Sm/La)N | 42.4 | 20.9 | - | 38.5 |
序号 | 母岩类型 | 数据量 | 参考文献 |
---|---|---|---|
1 | 岩浆锆石 | 2466 | [ |
2 | 热液锆石 | 508 | [ |
3 | 变质锆石 | 524 | [ |
表2 不同母岩类型锆石微量元素数据量
Table 2 Published data of zircon trace elements from different provenance
序号 | 母岩类型 | 数据量 | 参考文献 |
---|---|---|---|
1 | 岩浆锆石 | 2466 | [ |
2 | 热液锆石 | 508 | [ |
3 | 变质锆石 | 524 | [ |
元素 | 元素数据缺失率 | 元素 | 元素数据缺失率 | ||||
---|---|---|---|---|---|---|---|
热液 锆石 | 岩浆 锆石 | 变质 锆石 | 热液 锆石 | 岩浆 锆石 | 变质 锆石 | ||
La | 0% | 7% | 23% | Tm | 4% | 1% | 17% |
Ce | 0% | 0% | 0% | Yb | 0% | 0% | 0% |
Pr | 0% | 1% | 4% | Lu | 0% | 0% | 12% |
Nd | 0% | 0% | 2% | Y | 20% | 7% | 38% |
Sm | 0% | 0% | 1% | Hf | 27% | 8% | 41% |
Eu | 1% | 0% | 1% | Nb | 38% | 23% | 58% |
Gd | 0% | 0% | 0% | Ta | 36% | 67% | 65% |
Tb | 5% | 1% | 20% | Ti | 40% | 23% | 47% |
Dy | 0% | 0% | 0% | Pb | 42% | 79% | 78% |
Ho | 5% | 0% | 14% | Th | 13% | 2% | 15% |
Er | 0% | 0% | 2% | U | 13% | 2% | 15% |
表3 不同母岩类型锆石微量元素数据量缺失情况
Table 3 Missing data of zircon trace elements from different provenance
元素 | 元素数据缺失率 | 元素 | 元素数据缺失率 | ||||
---|---|---|---|---|---|---|---|
热液 锆石 | 岩浆 锆石 | 变质 锆石 | 热液 锆石 | 岩浆 锆石 | 变质 锆石 | ||
La | 0% | 7% | 23% | Tm | 4% | 1% | 17% |
Ce | 0% | 0% | 0% | Yb | 0% | 0% | 0% |
Pr | 0% | 1% | 4% | Lu | 0% | 0% | 12% |
Nd | 0% | 0% | 2% | Y | 20% | 7% | 38% |
Sm | 0% | 0% | 1% | Hf | 27% | 8% | 41% |
Eu | 1% | 0% | 1% | Nb | 38% | 23% | 58% |
Gd | 0% | 0% | 0% | Ta | 36% | 67% | 65% |
Tb | 5% | 1% | 20% | Ti | 40% | 23% | 47% |
Dy | 0% | 0% | 0% | Pb | 42% | 79% | 78% |
Ho | 5% | 0% | 14% | Th | 13% | 2% | 15% |
Er | 0% | 0% | 2% | U | 13% | 2% | 15% |
模型 | 准确率 | 最优超参数 |
---|---|---|
SVM(linear) | 0.868 | C = 16 |
SVM(RBF) | 0.802 | C=16,gamma = 0.5 |
KNN | 0.860 | weights = distance, n neighbors = 1 |
ANN | 0.899 | alpha = 0.001, activation = tanh, hidden layer sizes = (20,1) |
Random Forest | 0.878 | n estimators = 100, max depth = 30, max features = 16 |
表4 4种模型的最优超参数和在测试集的准确率
Table 4 Hyper-parameters of the 4 models and the accuracy on the test set
模型 | 准确率 | 最优超参数 |
---|---|---|
SVM(linear) | 0.868 | C = 16 |
SVM(RBF) | 0.802 | C=16,gamma = 0.5 |
KNN | 0.860 | weights = distance, n neighbors = 1 |
ANN | 0.899 | alpha = 0.001, activation = tanh, hidden layer sizes = (20,1) |
Random Forest | 0.878 | n estimators = 100, max depth = 30, max features = 16 |
锆石类型 | 精确率 | 召回率 | F1分数 | 数量 |
---|---|---|---|---|
热液锆石 | 0.855 | 0.855 | 0.855 | 76 |
岩浆锆石 | 0.857 | 0.868 | 0.863 | 76 |
变质锆石 | 0.893 | 0.882 | 0.887 | 76 |
宏平均(macro) | 0.868 | 228 |
表5 测试集在支持向量机模型中的精确率、召回率、F1分数
Table 5 Accuracy, recall, and F1 score of the test set in the SVM
锆石类型 | 精确率 | 召回率 | F1分数 | 数量 |
---|---|---|---|---|
热液锆石 | 0.855 | 0.855 | 0.855 | 76 |
岩浆锆石 | 0.857 | 0.868 | 0.863 | 76 |
变质锆石 | 0.893 | 0.882 | 0.887 | 76 |
宏平均(macro) | 0.868 | 228 |
[1] | 陈道公, 李彬贤, 夏群科, 等. 变质岩中锆石U-Pb计时问题评述: 兼论大别造山带锆石定年[J]. 岩石学报, 2001, 17 (1): 129-138. |
[2] | 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 32(3): 161-174. |
[3] |
VAVRA G, SCHMID R, GEBAUER D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 1999, 134(4): 380-404.
DOI URL |
[4] |
VAVRA G, GEBAUER D, SCHMID R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996, 122(4): 337-358.
DOI URL |
[5] |
MEZGER K, KROGSTAD E J. Interpretation of discordant U-Pb zircon ages: an evaluation[J]. Journal of Metamorphic Geology, 1997, 15(1): 127-140.
DOI URL |
[6] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[7] |
HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
DOI URL |
[8] |
HERMANN J, RUBATTO D, KORSAKOV A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan)[J]. Contributions to Mineralogy and Petrology, 2001, 141(1): 66-82.
DOI URL |
[9] |
HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648.
DOI URL |
[10] | 雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(4): 273-284. |
[11] | 周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3173-3178. |
[12] |
RECANATI A, GROZAVU N, BENNANI Y, et al. Apatite (U-Th-Sm)/He date dispersion: first insights from machine learning algorithms[J]. Earth and Planetary Science Letters, 2021, 554: 116655.
DOI URL |
[13] | WANG Y, QIU K F, MÜLLER A, et al. Machine learning prediction of quartz forming-environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): 1-11. |
[14] | 黄发明, 潘李含, 姚池, 等. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713. |
[15] | GUO P, YANG T, XU W L, et al. Machine learning reveals source compositions of intraplate basaltic rocks[J]. Geochemistry Geophysics Geosystems, 2021, 22(9): e2021GC009946. |
[16] |
ZHONG R C, DENG Y, LI W B, et al. Revealing the multi-stage ore-forming history of a mineral deposit using pyrite geochemistry and machine learning-based data interpretation[J]. Ore Geology Reviews, 2021, 133: 104079.
DOI URL |
[17] | 周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2): 327-331, 344. |
[18] | 周志华. 机器学习[J]. 中国民商, 2016 (3): 93. |
[19] | 王瑀, 邱昆峰, 侯照亮, 等. 石英Ti/Ge-P: 基于机器学习的矿床类型判别新图解[J]. 岩石学报, 2022, 38(1): 281-290. |
[20] | 周统, 邱昆峰, 王瑀, 等. 磷灰石Eu/Y-Ce: 基于大数据的源区类型判别新图解[J]. 岩石学报, 2022, 38(1): 291-299. |
[21] | 周子扬. 机器学习与深度学习的发展及应用[J]. 电子世界, 2017 (23): 72-73. |
[22] |
SAMUEL A L. Some studies in machine learning using the game of checkers[J]. IBM Journal of Research and Development, 2000, 44(1/2): 206-226.
DOI URL |
[23] | 耿厅, 周永章, 李兴远, 等. 锆石微量元素对成矿岩体的判别: 来自大数据思维的应用[J]. 地质通报, 2019, 38(12): 1992-1998. |
[24] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777. |
[25] |
HARTMANN L A, BAGGIO S B, BRÜCKMANN M P, et al. U-Pb geochronology of Paranávolcanics combined with trace element geochemistry of the zircon crystals and zircon Hf isotope data[J]. Journal of South American Earth Sciences, 2019, 89: 219-226.
DOI URL |
[26] |
GUO L, ZHANG H F, HARRIS N, et al. Detrital zircon U-Pb geochronology, trace-element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan syntaxis: tectonic and paleogeographic implications[J]. Gondwana Research, 2017, 41: 207-221
DOI URL |
[27] |
YAN L L, HE Z Y, BEIER C, et al. Zircon trace element constrains on the link between volcanism and plutonism in SE China[J]. Lithos, 2018, 320/321: 28-34.
DOI URL |
[28] |
YAN L L, HE Z Y, KLEMD R, et al. Tracking crystal-melt segregation and magma recharge using zircon trace element data[J]. Chemical Geology, 2020, 542: 119596.
DOI URL |
[29] |
MELO M G, LANA C, STEVENS G, et al. Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon[J]. Lithos, 2017, 284/285: 730-750.
DOI URL |
[30] |
YUAN F, LIU J J, CARRANZA E J M, et al. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: a case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China[J]. Lithos, 2018, 302/303: 20-36.
DOI URL |
[31] |
TURLIN F, VANDERHAEGHE O, GERVAIS F, et al. Petrogenesis of LREE-rich pegmatitic granite dykes in the central Grenville Province by partial melting of Paleoproterozoic-Archean metasedimentary rocks: evidence from zircon U-Pb-Hf-O isotope and trace element analyses[J]. Precambrian Research, 2019, 327: 327-360.
DOI URL |
[32] |
WANG Q, ZHU D C, ZHAO Z D, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66.
DOI URL |
[33] |
DONG X, ZHANG Z M, NIU Y L, et al. Reworked Precambrian metamorphic basement of the Lhasa terrane, southern Tibet: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry[J]. Precambrian Research, 2020, 336: 105496.
DOI URL |
[34] |
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al. Neoarchean (2.7-2.8 Ga) accretion beneath the North China Craton: U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites[J]. Lithos, 2009, 112(3/4): 188-202.
DOI URL |
[35] |
BORBA M L, TASSINARI C C G, MATOS F M V, et al. Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil[J]. Journal of Geochemical Exploration, 2021, 221: 106679.
DOI URL |
[36] | 张小文, 向华, 钟增球, 等. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定[J]. 地球科学: 中国地质大学学报, 2009, 34(6): 921-930. |
[37] | JIANG W C, LI H, EVANS N J, et al. Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W-Sn-Mo-Bi polymetallic deposit, South China[J]. Ore Geology Reviews, 2019, 115: 103160. |
[38] |
TOSCANO M, PASCUAL E, NESBITT R W, et al. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian pyrite belt, Spain[J]. Ore Geology Reviews, 2014, 56: 301-311.
DOI URL |
[39] |
SUN Y, WU T, XIAO L, et al. U-Pb ages, Hf-O isotopes and trace elements of zircons from the ore-bearing and ore-barren adakitic rocks in the Handan-Xingtai district: implications for petrogenesis and iron mineralization[J]. Ore Geology Reviews, 2019, 104: 14-25.
DOI URL |
[40] |
WANG M, GUO W F, YANG W T. Detrital zircon trace elements from the Mesozoic Jiyuan Basin, central China and its implication on tectonic transition of the Qinling Orogenic Belt[J]. Open Geosciences, 2019, 11(1): 125-139.
DOI URL |
[41] |
WANG R, JEON H, EVANS N J. Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: implications for post-magmatic fluid activity and ore genesis[J]. American Mineralogist, 2018, 103(12): 1891-1905.
DOI URL |
[42] |
ZENG L J, NIU H C, BAO Z W, et al. Chemical lattice expansion of natural zircon during the magmatic-hydrothermal evolution of A-type granite[J]. American Mineralogist, 2017, 102(3): 655-665.
DOI URL |
[43] |
ZHANG W, JIANG S Y, GAO T S, et al. The effect of magma differentiation and degassing on ore metal enrichment during the formation of the world-class Zhuxi W-Cu skarn deposit: evidence from U-Pb ages, Hf isotopes and trace elements of zircon, and whole-rock geochemistry[J]. Ore Geology Reviews, 2020, 127: 103801.
DOI URL |
[44] |
WU M Q, TIAN B F, ZHANG D H, et al. Zircon of the No. 782 deposit from the Great Xing'an Range in NE China: implications for Nb-REE-Zr mineralization during magmatic-hydrothermal evolution[J]. Ore Geology Reviews, 2018, 102: 284-299.
DOI URL |
[45] |
ZHANG S H, ZHAO Y, YANG Z Y, et al. The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 588-600.
DOI URL |
[46] |
ZHAO L, GUO F, FAN W M, et al. Early Cretaceous potassic volcanic rocks in the Jiangnan Orogenic Belt, East China: crustal melting in response to subduction of the Pacific-Izanagi ridge?[J]. Chemical Geology, 2016, 437: 30-43.
DOI URL |
[47] |
ZHU M T, ZHANG L C, DAI Y P, et al. Hydrothermal modification of zircon geochemistry and Lu-Hf isotopes from the Hongtoushan Cu-Zn deposit, China[J]. Ore Geology Reviews, 2017, 86: 707-718.
DOI URL |
[48] | 秦亚, 冯佐海, 黄靖哲, 等. 桂北地区三门韧性剪切带的厘定及其构造意义[J]. 地球科学, 2021, 46(11): 4017-4032. |
[49] |
LI H, LI J W, ALGEO T J, et al. Zircon indicators of fluid sources and ore genesis in a multi-stage hydrothermal system: the Dongping Au deposit in North China[J]. Lithos, 2018, 314/315: 463-478.
DOI URL |
[50] |
TAKEHARA M, HORIE K, HOKADA T, et al. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth Gabbro[J]. Chemical Geology, 2018, 484: 168-178.
DOI URL |
[51] |
LEI W Y, SHI G H, SANTOSH M, et al. Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: a case study from the Myanmar jadeitite[J]. Lithos, 2016, 266/267: 16-27.
DOI URL |
[52] |
BAO Z W, SUN W D, LI C J, et al. U-Pb dating of hydrothermal zircon from the Dongping gold deposit in North China: constraints on the mineralization processes[J]. Ore Geology Reviews, 2014, 61: 107-119.
DOI URL |
[53] |
WU J H, LI H, ALGEO T J, et al. Genesis of the Xianghualing Sn-Pb-Zn deposit, South China: a multi-method zircon study[J]. Ore Geology Reviews, 2018, 102: 220-239.
DOI URL |
[54] |
HAN J S, CHEN H Y, HOLLINGS P, et al. The formation of modified zircons in F-rich highly-evolved granites: an example from the Shuangji granites in Eastern Tianshan, China[J]. Lithos, 2019, 324/325: 776-788.
DOI URL |
[55] |
JIANG W C, LI H, TURNER S, et al. Timing and origin of multi-stage magmatism and related W-Mo-Pb-Zn-Fe-Cu mineralization in the Huangshaping deposit, South China: an integrated zircon study[J]. Chemical Geology, 2020, 552: 119782.
DOI URL |
[56] |
WEBER B, SCHMITT A K, CISNEROS DE LEÓN A, et al. Neoproterozoic extension and the Central Iapetus Magmatic Province in southern Mexico- New U-Pb ages, Hf-O isotopes and trace element data of zircon from the Chiapas Massif Complex[J]. Gondwana Research, 2020, 88: 1-20.
DOI URL |
[57] |
YANG Y, LIANG C Y, ZHENG C Q, et al. Metamorphic evolution of high-grade granulite-facies rocks of the Mashan Complex, Liumao area, eastern Heilongjiang Province, China: evidence from zircon U-Pb geochronology, geochemistry and phase equilibria modelling[J]. Precambrian Research, 2021, 355: 106095.
DOI URL |
[58] |
KIRKLAND C L, SLAGSTAD T, JOHNSON T E. Zircon as a metamorphic timekeeper: a case study from the Caledonides of central Norway[J]. Gondwana Research, 2018, 61: 63-72.
DOI URL |
[59] |
ZHANG S B, TANG J, ZHENG Y F. Contrasting Lu-Hf isotopes in zircon from Precambrian metamorphic rocks in the Jiaodong Peninsula: constraints on the tectonic suture between North China and South China[J]. Precambrian Research, 2014, 245: 29-50.
DOI URL |
[60] |
XIE S W, WU Y B, ZHANG Z M, et al. U-Pb ages and trace elements of detrital zircons from Early Cretaceous sedimentary rocks in the Jiaolai Basin, north margin of the Sulu UHP terrane: provenances and tectonic implications[J]. Lithos, 2012, 154: 346-360.
DOI URL |
[61] |
KOOIJMAN E, UPADHYAY D, MEZGER K, et al. Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: the Kadavur anorthosite complex, southern India[J]. Chemical Geology, 2011, 290(3/4): 177-188.
DOI URL |
[62] |
ROCHA B C, MORAES R, MÖLLER A, et al. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: insights from trace element composition of zircon, monazite and garnet coupled to U-Pb geochronology[J]. Lithos, 2017, 277: 337-355.
DOI URL |
[63] |
ZHONG R C, DENG Y, YU C. Multi-layer perceptron-based tectonic discrimination of basaltic rocks and an application on the Paleoproterozoic Xiong'er volcanic province in the North China Craton[J]. Computers and Geosciences, 2021, 149: 104717.
DOI URL |
[64] | HELSEL D R. More than obvious: better methods for interpreting nondetect data[J]. Environmental Science and Technology, 2005, 39(20): 419A-423A. |
[65] |
ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
DOI URL |
[66] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
DOI URL |
[67] |
CRACKNELL M J, READING A M. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers and Geosciences, 2014, 63: 22-33.
DOI URL |
[68] | BREIMAN L. Arcing classifiers[J]. The Annals of Statistics, 1998, 26(3): 801-824. |
[69] |
BREIMAN L. Using iterated bagging to debias regressions[J]. Machine Learning, 2001, 45(3): 261-277.
DOI URL |
[70] | 韩帅, 李明超, 任秋兵, 等. 基于大数据方法的玄武岩大地构造环境智能挖掘判别与分析[J]. 岩石学报, 2018, 34(11): 3207-3216. |
[71] | CHANG C C, LIN C J. Libsvm[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. |
[72] |
HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[J]. BJU International, 2008, 101(1): 1396-1400.
DOI URL |
[73] | KOHONEN T. An introduction to neural computing[J]. Neural Networks, 1988, 1(1): 3-16. |
[74] |
BELOUSOVA E, GRIFFIN W, O'REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
DOI URL |
[75] | 邹心宇, 蒋济莲, 秦克章, 等. 锆石微量元素的理论基础及其应用研究进展[J]. 岩石学报, 2021, 37(4): 985-999. |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 吴庆, 黄芬, 郭永丽, 肖琼, 孙平安, 杨慧, 白冰. 西南岩溶小流域水体中微量元素地球化学特征及其指示意义[J]. 地学前缘, 2024, 31(5): 397-408. |
[3] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[4] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
[5] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[6] | 尹青青, 唐菊兴, 项新葵, 赵晓彦, 汪方跃, 徐裕敏, 郭虎, 余振东, 谢金玲, 代晶晶, 彭勃. 赣北彭山还原性S型花岗岩成因及其对Sn富集的启示:来自锆石微量元素的证据[J]. 地学前缘, 2024, 31(3): 133-149. |
[7] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[8] | 张家志, 姜在兴, 徐杰, 魏思源, 宋立舟, 刘桐, 沈志晗, 姜晓龙, 李永飞, 张玺. 朝阳盆地白垩系九佛堂组火山沉积作用及其对有机质富集的影响[J]. 地学前缘, 2024, 31(3): 284-297. |
[9] | 张健, 何雨蓓, 范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘, 2024, 31(3): 392-401. |
[10] | 张利军, 鲁文豪, 张建东, 彭光雄, 卜建财, 唐凯, 谢渐成, 徐质彬, 杨海燕. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510. |
[11] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[12] | 苏恺明, 徐耀辉, 徐旺林, 张月巧, 白斌, 李阳, 严刚. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究[J]. 地学前缘, 2024, 31(3): 530-540. |
[13] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[14] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[15] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||