地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 498-510.DOI: 10.13745/j.esf.sf.2023.6.7

• 人工智能与地质应用 • 上一篇    下一篇

基于深度学习的镜下岩石、矿物薄片识别

张利军1,2,3(), 鲁文豪2, 张建东2,*(), 彭光雄2, 卜建财1, 唐凯1, 谢渐成1, 徐质彬1, 杨海燕1   

  1. 1.湖南省遥感地质调查监测所, 湖南 长沙 410015
    2.中南大学 有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083
    3.湖南省自然资源事务中心 洞庭湖区生态环境遥感监测湖南省重点实验室, 湖南 长沙 410004
  • 收稿日期:2022-12-30 修回日期:2023-05-14 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: *张建东(1978—),男,博士,讲师,硕士生导师,矿物学、岩石学、矿床学专业。E-mail: csuzjd@sina.com
  • 作者简介:张利军(1987—),男,硕士,高级工程师,主要从事资源遥感方向研究。E-mail: 275328308@qq.com
  • 基金资助:
    湖南省地质勘查项目“湖南省雪峰弧形成矿带转折段遥感信息提取及找矿靶区优选(20200806)”;湖南省重点研发计划项目“湖南省锂铌钽稀有金属资源高效勘查与开发(2019SK2261)”;湖南省地质院科研项目“基于全谱段波谱特征的岩矿精准识别技术研究(HNGSTP202315)”

Rock and mineral thin section identification based on deep learning

ZHANG Lijun1,2,3(), LU Wenhao2, ZHANG Jiandong2,*(), PENG Guangxiong2, BU Jiancai1, TANG Kai1, XIE Jiancheng1, XU Zhibin1, YANG Haiyan1   

  1. 1. Hunan Remote Sensing Geological Survey and Monitoring Institute, Changsha 410015, China
    2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China
    3. Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area,Hunan Natural Resources Affairs Center, Changsha 410004, China
  • Received:2022-12-30 Revised:2023-05-14 Online:2024-05-25 Published:2024-05-25

摘要:

岩石、矿物显微图像的识别是岩矿鉴定的基础手段之一,对地质资源勘探有着重要意义。薄片显微图像一般情况下是在实验室中进行的,这项工作繁琐费时,需要大量的人力资源,并且准确性受限于鉴定者的经验。深度学习智能图像识别算法可以通过卷积神经网络提取显微图像的深层特征,从而达到对显微图像进行快速、准确分类识别的目的。本研究以PyCharm平台为深度学习框架,以中国科学数据网上的南京大学教学岩石薄片数据集、南华北石炭纪灰岩显微图像数据集等6个数据集为基础制作了可以应用于岩石-矿物显微图像分类识别训练的数据集,搭建具有针对性的VGG卷积神经网络模型,该模型具有对整个岩石薄片图像与单个矿物图像分别提取其深层中的特征信息的能力,从而达到识别岩石薄片的目的。实验结果显示,随着模型训练迭代的进行,预测值与真实值之间的损失函数在不断减小,识别准确率在不断增加,在分别经过50个和30个循环训练之后,模型的损失函数与识别准确率已经基本收敛。模型对显微图像测试集的识别成功率均高于90%,说明搭建的模型对于图像有很好的特征提取效果,可以完成岩石-矿物显微图像识别的任务。通过本文的研究,可以认识到,深度学习对于处理岩矿鉴定这样的任务有着高超的效率与准确度,开发相关的模型并运用到前端软件上,可以加快矿产资源勘探工作的速度,对于生产实践有着重要的应用意义。

关键词: 岩矿鉴定, 深度学习, 卷积神经网络, 机器学习, 图像识别

Abstract:

Rock-mineral microscopic image identification is one of the basic means of rock and mineral identification, which is of great significance to the exploration of geological resources. Thin-section microscopic images are generally carried out in the laboratory. This work is tedious and time-consuming, requires a lot of human resources, and the accuracy is limited by the experience of the expert. Deep learning intelligent image recognition algorithm can extract the deep features of microscopic images by convolutional neural network, to achieve the purpose of fast and accurate classification and recognition of microscopic images. In this study, the PyCharm platform is used as the deep learning framework, and the data set that can be applied to the classification and recognition of rock-mineral microscopic images is made based on six data sets such as the teaching rock slice dataset of Nanjing University and the Carboniferous limestone microscopic image dataset of South North China on the China Science Data Network. We design a VGG convolutional neural network model. The model can analyze the feature information in the deep layer of the whole rock slice image and the single mineral image respectively, to achieve the purpose of identifying rock slices. The test results show that with the increase of model training times, the loss function between the predicted value and the real value is decreasing, and the recognition accuracy is increasing. After 50 and 30 cycles of training, the loss function and recognition accuracy of the model have been basically convergent. The recognition success rate of the model for the microscopic image test set is higher than 90%, indicating that the model has a good feature extraction effect for the image and can complete the task of rock-mineral microscopic image recognition. Through the research of this paper, it can be realized that deep learning has high efficiency and accuracy for dealing with such tasks as rock and mineral identification. Developing relevant models and applying them to front-end software can speed up the speed of mineral resources exploration and has important application significance for production practice.

Key words: rock identification, deep learning, convolutional neural network, machine learning, image recognition

中图分类号: