[1] |
郦于杰, 梁忠民, 唐甜甜. 基于支持向量回归机的长期径流预报及不确定性分析[J]. 南水北调与水利科技, 2018, 16(3): 45-50.
|
[2] |
BENNETT J C, WANG Q J, LI M, et al. Reliable long-range ensemble streamflow forecasts: combining calibrated climate forecasts with a conceptual runoff model and a staged error model[J]. Water Resources Research, 2016, 52(10): 8238-8259.
DOI
URL
|
[3] |
LIANG Z M, TANG T T, LI B Q, et al. Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: case study of Danjiangkou Reservoir[J]. Hydrology Research, 2018, 49(5): 1513-1527.
DOI
URL
|
[4] |
刘甜, 梁忠民, 邱辉, 等. 基于CFS的汉江上游梯级水库系统月入库径流预测[J]. 水电能源科学, 2019, 37(8): 14-17, 10.
|
[5] |
HU Y M, SCHMEITS M J, VAN ANDEL S J, et al. A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution[J]. Journal of Hydrometeorology, 2016, 17(9): 2405-2417.
DOI
URL
|
[6] |
赵铜铁钢, 杨大文, 蔡喜明, 等. 基于随机森林模型的长江上游枯水期径流预报研究[J]. 水力发电学报, 2012, 31(3): 18-24, 38.
|
[7] |
ADAMOWSKI J, FUNG CHAN H, PRASHER S O, et al. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada[J]. Water Resources Research, 2012, 48(1): W01528.
|
[8] |
农振学, 王超, 雷晓辉. 基于主成分分析和BP神经网络的赣江流域中长期径流预报[J]. 水电能源科学, 2018, 36(1): 16-19.
|
[9] |
范钟秀. 中长期水文预报[M]. 南京: 河海大学出版社, 1999.
|
[10] |
谢帅, 黄跃飞, 李铁键, 等. 不同流域的自回归径流预报效果对比[J]. 应用基础与工程科学学报, 2018, 26(4): 723-736.
|
[11] |
李福兴, 陈伏龙, 蔡文静, 等. 基于EMD组合模型的径流多尺度预测[J]. 地学前缘, 2021, 28(1): 428-437.
|
[12] |
HUANG S Z, CHANG J X, HUANG Q, et al. Monthly streamflow prediction using modified EMD-based support vector machine[J]. Journal of Hydrology, 2014, 511: 764-775.
DOI
URL
|
[13] |
YASEEN Z M, JAAFAR O, DEO R C, et al. Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq[J]. Journal of Hydrology, 2016, 542: 603-614.
DOI
URL
|
[14] |
李伶杰, 王银堂, 胡庆芳, 等. 基于随机森林与支持向量机的水库长期径流预报[J]. 水利水运工程学报, 2020(4): 33-40.
|
[15] |
陶思铭, 梁忠民, 陈在妮, 等. 长短期记忆网络在中长期径流预报中的应用[J]. 武汉大学学报(工学版), 2021, 54(1): 21-27.
|
[16] |
NI L L, WANG D, SINGH V P, et al. Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296.
|
[17] |
SHEN C P. A transdisciplinary review of deep learning research and its relevance for water resources scientists[J]. Water Resources Research, 2018, 54(11): 8558-8593.
DOI
URL
|
[18] |
王健宗, 瞿晓阳. 深入理解AutoML和AutoDL: 构建自动化机器学习与深度学习平台[M]. 北京: 机械工业出版社, 2019.
|
[19] |
HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572.
DOI
URL
|
[20] |
洪瑾, 甘成势, 刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54.
|
[21] |
游文霞, 申坤, 杨楠, 等. 基于AdaBoost集成学习的窃电检测研究[J]. 电力系统保护与控制, 2020, 48(19): 151-159.
|
[22] |
中华人民共和国水利部.SD 250-2000水文情报预报规范[S]. 北京: 中国水利水电出版社, 2000.
|
[23] |
BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13: 281-305.
|