地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 1-19.DOI: 10.13745/j.esf.sf.2023.9.42
陈国超1,2,3(), 张晓飞4,*(
), 裴先治2, 裴磊2, 李佐臣2, 刘成军2, 李瑞保2
收稿日期:
2023-03-01
修回日期:
2023-10-27
出版日期:
2024-05-25
发布日期:
2024-05-25
通信作者:
*张晓飞(1985—),男,博士,高级工程师,主要从事构造地质学和区域地质学研究。E-mail: 作者简介:
陈国超(1979—),男,博士,副教授,主要从事造山带构造岩浆作用研究。E-mail: chaoschen@126.com
基金资助:
CHEN Guochao1,2,3(), ZHANG Xiaofei4,*(
), PEI Xianzhi2, PEI Lei2, LI Zuochen2, LIU Chengjun2, LI Ruibao2
Received:
2023-03-01
Revised:
2023-10-27
Online:
2024-05-25
Published:
2024-05-25
摘要:
日喀则蛇绿岩是雅鲁藏布江缝合带的重要组成部分,但是对该蛇绿岩的成因和构造背景还存在较大的争议。本文以日喀则地区却顶布—路曲蛇绿岩为研究对象,通过详细的野外地质、岩石学、矿物化学及岩石地球化学研究,显示该蛇绿岩主要由方辉橄榄岩组成,另有少量辉长岩、辉绿岩和玄武岩。与路曲方辉橄榄岩相比,却顶布方辉橄榄岩中橄榄石的Fo值较低,斜方辉石Al2O3和Cr2O3含量较高,单斜辉石Al2O3含量和Cr#值较高,尖晶石Cr#值和TiO2含量较低。却顶布—路曲方辉橄榄岩具有较高的MgO含量和较低的Al2O3、CaO、TiO2含量,稀土元素总量为(0.17~1.63)×10-6,低于原始地幔和亏损地幔。路曲方辉橄榄岩的LREE/HREE和(La/Yb)N比值较高,分别为1.34~9.22和0.56~12.14;却顶布方辉橄榄岩与其相反,LREE/HREE和(La/Yb)N比值分别为0.29~0.81和0.11~0.25。路曲方辉橄榄岩呈轻稀土富集型的U型稀土元素配分模式;却顶布方辉橄榄岩为轻稀土亏损型的左倾型稀土元素配分模式。路曲方辉橄榄岩和却顶布方辉橄榄岩具有近似的微量元素分布特征,但是又有一定区别,路曲方辉橄榄岩大离子亲石元素Rb、Ba高于却顶布方辉橄榄岩,但K、Sr低于却顶布方辉橄榄岩。却顶布—路曲方辉橄榄岩的源区可能来源于地幔中的尖晶石相二辉橄榄岩。却顶布—路曲方辉橄榄岩矿物化学和全岩地球化学特征与深海地幔橄榄岩相似。矿物学和全岩岩石地球化学特征显示却顶布方辉橄榄岩为经历了10%~15%部分熔融的残余,路曲方辉橄榄岩为经历了20%~25%部分熔融的残余。却顶布—路曲方辉橄榄岩形成于慢速-超慢速拉张的洋中脊环境。日喀则蛇绿岩的多样性与源区部分熔融程度和后期流体交代密切相关。
中图分类号:
陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19.
CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone[J]. Earth Science Frontiers, 2024, 31(3): 1-19.
图1 青藏高原构造格架图(a)、雅鲁藏布江缝合带地质简图(b)和日喀则蛇绿岩地质图(c) ν—辉长岩;βν—辉绿岩;β—玄武岩;δο—石英闪长岩;ψι—辉石岩;γο—斜长花岗岩;σ—异剥钙榴岩。 (据文献[26]修改。图中数据的参考文献来源:(1)—[33];(2)—[34];(3)—[35];(4)—[36];(5)—[37];(6)—[25];(7)—[20];(8)—[38];(9)—[23];(10)—[21];(11)—[39];(12)—[18];(13)—[40])
Fig.1 Geological sketch map of the Tibetan Plateau showing major tectonic units (a), the simplified geological map of the Yarlung-Zangbo Suture Zone (b) and the schematic tectonic map of Xigaze ophiolite (c). Modified after [26].
测点 | wB/% | Fo | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | NiO | CaO | Na2O | K2O | Total | ||
PM802-19-1-1 | 40.68 | 0.00 | 0.05 | 0.03 | 8.88 | 0.14 | 50.32 | 0.25 | 0.08 | 0.03 | 0.00 | 100.20 | 91.08 |
PM802-19-1-2 | 40.19 | 0.05 | 0.01 | 0.03 | 8.91 | 0.15 | 48.15 | 0.34 | 0.13 | 0.04 | 0.00 | 98.01 | 90.68 |
PM802-19-1-3 | 40.70 | 0.00 | 0.02 | 0.06 | 9.01 | 0.15 | 48.73 | 0.25 | 0.07 | 0.00 | 0.00 | 98.97 | 90.69 |
PM802-19-1-4 | 41.07 | 0.01 | 0.01 | 0.00 | 9.04 | 0.09 | 50.11 | 0.30 | 0.04 | 0.02 | 0.00 | 100.68 | 90.89 |
PM802-19-1-5 | 40.98 | 0.02 | 0.02 | 0.02 | 8.72 | 0.12 | 48.94 | 0.27 | 0.12 | 0.03 | 0.00 | 99.23 | 90.99 |
表1 日喀则地区却顶布方辉橄榄岩中橄榄石电子探针分析结果
Table 1 Microprobe analyses of olivine in Quedingbu harzburgites from the Xigaze area
测点 | wB/% | Fo | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | NiO | CaO | Na2O | K2O | Total | ||
PM802-19-1-1 | 40.68 | 0.00 | 0.05 | 0.03 | 8.88 | 0.14 | 50.32 | 0.25 | 0.08 | 0.03 | 0.00 | 100.20 | 91.08 |
PM802-19-1-2 | 40.19 | 0.05 | 0.01 | 0.03 | 8.91 | 0.15 | 48.15 | 0.34 | 0.13 | 0.04 | 0.00 | 98.01 | 90.68 |
PM802-19-1-3 | 40.70 | 0.00 | 0.02 | 0.06 | 9.01 | 0.15 | 48.73 | 0.25 | 0.07 | 0.00 | 0.00 | 98.97 | 90.69 |
PM802-19-1-4 | 41.07 | 0.01 | 0.01 | 0.00 | 9.04 | 0.09 | 50.11 | 0.30 | 0.04 | 0.02 | 0.00 | 100.68 | 90.89 |
PM802-19-1-5 | 40.98 | 0.02 | 0.02 | 0.02 | 8.72 | 0.12 | 48.94 | 0.27 | 0.12 | 0.03 | 0.00 | 99.23 | 90.99 |
测点 | wB/% | En | Fs | Wo | Mg# | Cr# | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | NiO | Total | ||||||
PM802-19-1-21 | 55.84 | 0.00 | 2.90 | 1.19 | 5.69 | 0.14 | 32.85 | 0.88 | 0.11 | 0.00 | 0.05 | 99.77 | 89.66 | 8.63 | 1.71 | 91.04 | 21.60 |
PM802-19-1-22 | 55.23 | 0.02 | 3.93 | 0.83 | 5.98 | 0.14 | 33.06 | 0.46 | 0.11 | 0.01 | 0.09 | 99.86 | 90.05 | 9.05 | 0.90 | 90.68 | 12.43 |
PM802-19-1-23 | 56.29 | 0.03 | 3.58 | 0.85 | 5.60 | 0.18 | 32.61 | 1.59 | 0.02 | 0.01 | 0.05 | 100.80 | 88.48 | 8.45 | 3.07 | 91.10 | 13.75 |
PM802-19-1-24 | 55.82 | 0.01 | 3.17 | 0.89 | 5.78 | 0.13 | 33.26 | 1.16 | 0.12 | 0.03 | 0.09 | 100.48 | 89.16 | 8.61 | 2.23 | 91.00 | 15.87 |
PM802-19-1-25 | 55.16 | 0.03 | 3.76 | 0.78 | 6.00 | 0.12 | 34.05 | 0.72 | 0.00 | 0.01 | 0.04 | 102.66 | 89.85 | 8.80 | 1.35 | 90.89 | 12.20 |
PM802-19-1-26 | 55.85 | 0.01 | 3.90 | 0.94 | 5.44 | 0.15 | 32.57 | 1.71 | 0.01 | 0.00 | 0.11 | 100.68 | 88.47 | 8.22 | 3.31 | 91.32 | 13.86 |
PM802-19-1-27 | 55.64 | 0.08 | 3.76 | 0.84 | 5.84 | 0.11 | 32.92 | 1.26 | 0.04 | 0.00 | 0.12 | 100.61 | 88.81 | 8.76 | 2.43 | 90.84 | 13.03 |
表2 日喀则地区却顶布方辉橄榄岩中斜方辉石电子探针分析结果
Table 2 Microprobe analyses of orthopyroxene in Quedingbu harzburgites from the Xigaze area
测点 | wB/% | En | Fs | Wo | Mg# | Cr# | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | NiO | Total | ||||||
PM802-19-1-21 | 55.84 | 0.00 | 2.90 | 1.19 | 5.69 | 0.14 | 32.85 | 0.88 | 0.11 | 0.00 | 0.05 | 99.77 | 89.66 | 8.63 | 1.71 | 91.04 | 21.60 |
PM802-19-1-22 | 55.23 | 0.02 | 3.93 | 0.83 | 5.98 | 0.14 | 33.06 | 0.46 | 0.11 | 0.01 | 0.09 | 99.86 | 90.05 | 9.05 | 0.90 | 90.68 | 12.43 |
PM802-19-1-23 | 56.29 | 0.03 | 3.58 | 0.85 | 5.60 | 0.18 | 32.61 | 1.59 | 0.02 | 0.01 | 0.05 | 100.80 | 88.48 | 8.45 | 3.07 | 91.10 | 13.75 |
PM802-19-1-24 | 55.82 | 0.01 | 3.17 | 0.89 | 5.78 | 0.13 | 33.26 | 1.16 | 0.12 | 0.03 | 0.09 | 100.48 | 89.16 | 8.61 | 2.23 | 91.00 | 15.87 |
PM802-19-1-25 | 55.16 | 0.03 | 3.76 | 0.78 | 6.00 | 0.12 | 34.05 | 0.72 | 0.00 | 0.01 | 0.04 | 102.66 | 89.85 | 8.80 | 1.35 | 90.89 | 12.20 |
PM802-19-1-26 | 55.85 | 0.01 | 3.90 | 0.94 | 5.44 | 0.15 | 32.57 | 1.71 | 0.01 | 0.00 | 0.11 | 100.68 | 88.47 | 8.22 | 3.31 | 91.32 | 13.86 |
PM802-19-1-27 | 55.64 | 0.08 | 3.76 | 0.84 | 5.84 | 0.11 | 32.92 | 1.26 | 0.04 | 0.00 | 0.12 | 100.61 | 88.81 | 8.76 | 2.43 | 90.84 | 13.03 |
测点 | wB/% | En | Fs | Wo | Mg# | Cr# | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | NiO | Total | ||||||
PM802-19-1-6 | 52.90 | 0.00 | 4.01 | 1.24 | 2.22 | 0.10 | 16.68 | 24.02 | 0.11 | 0.00 | 0.04 | 101.35 | 47.55 | 3.52 | 48.93 | 92.96 | 21.60 |
PM802-19-1-7 | 52.00 | 0.08 | 3.95 | 1.17 | 2.14 | 0.10 | 16.14 | 24.32 | 0.10 | 0.01 | 0.06 | 100.13 | 46.51 | 3.42 | 50.07 | 93.00 | 12.43 |
PM802-19-1-8 | 52.44 | 0.03 | 4.16 | 1.14 | 2.01 | 0.07 | 16.37 | 24.72 | 0.22 | 0.01 | 0.04 | 101.26 | 46.57 | 3.18 | 50.25 | 93.47 | 13.75 |
PM802-19-1-9 | 52.39 | 0.02 | 4.12 | 1.24 | 2.22 | 0.07 | 16.56 | 24.15 | 0.07 | 0.00 | 0.08 | 100.92 | 47.25 | 3.52 | 49.23 | 92.92 | 15.87 |
PM802-19-1-10 | 52.74 | 0.05 | 3.94 | 1.30 | 2.08 | 0.02 | 16.74 | 24.29 | 0.06 | 0.00 | 0.03 | 101.26 | 47.49 | 3.28 | 49.22 | 93.40 | 12.20 |
PM802-19-1-11 | 53.21 | 0.02 | 3.99 | 1.21 | 2.23 | 0.08 | 16.70 | 24.30 | 0.15 | 0.00 | 0.02 | 101.94 | 47.32 | 3.51 | 49.17 | 92.95 | 13.86 |
PM802-19-1-12 | 52.86 | 0.09 | 3.82 | 1.08 | 1.95 | 0.03 | 16.42 | 23.87 | 0.29 | 0.07 | 0.02 | 100.61 | 47.52 | 3.14 | 49.34 | 93.67 | 15.99 |
表3 日喀则地区却顶布方辉橄榄岩中单斜辉石电子探针分析结果
Table 3 Microprobe analyses of clinopyroxene in Quedingbu harzburgites from the Xigaze area
测点 | wB/% | En | Fs | Wo | Mg# | Cr# | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | NiO | Total | ||||||
PM802-19-1-6 | 52.90 | 0.00 | 4.01 | 1.24 | 2.22 | 0.10 | 16.68 | 24.02 | 0.11 | 0.00 | 0.04 | 101.35 | 47.55 | 3.52 | 48.93 | 92.96 | 21.60 |
PM802-19-1-7 | 52.00 | 0.08 | 3.95 | 1.17 | 2.14 | 0.10 | 16.14 | 24.32 | 0.10 | 0.01 | 0.06 | 100.13 | 46.51 | 3.42 | 50.07 | 93.00 | 12.43 |
PM802-19-1-8 | 52.44 | 0.03 | 4.16 | 1.14 | 2.01 | 0.07 | 16.37 | 24.72 | 0.22 | 0.01 | 0.04 | 101.26 | 46.57 | 3.18 | 50.25 | 93.47 | 13.75 |
PM802-19-1-9 | 52.39 | 0.02 | 4.12 | 1.24 | 2.22 | 0.07 | 16.56 | 24.15 | 0.07 | 0.00 | 0.08 | 100.92 | 47.25 | 3.52 | 49.23 | 92.92 | 15.87 |
PM802-19-1-10 | 52.74 | 0.05 | 3.94 | 1.30 | 2.08 | 0.02 | 16.74 | 24.29 | 0.06 | 0.00 | 0.03 | 101.26 | 47.49 | 3.28 | 49.22 | 93.40 | 12.20 |
PM802-19-1-11 | 53.21 | 0.02 | 3.99 | 1.21 | 2.23 | 0.08 | 16.70 | 24.30 | 0.15 | 0.00 | 0.02 | 101.94 | 47.32 | 3.51 | 49.17 | 92.95 | 13.86 |
PM802-19-1-12 | 52.86 | 0.09 | 3.82 | 1.08 | 1.95 | 0.03 | 16.42 | 23.87 | 0.29 | 0.07 | 0.02 | 100.61 | 47.52 | 3.14 | 49.34 | 93.67 | 15.99 |
测点 | wB/% | Mg# | Cr# | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TiO2 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | NiO | Total | |||
PM802-19-1-12 | 0.10 | 43.01 | 0.02 | 25.14 | 14.46 | 0.00 | 17.21 | 0.00 | 0.01 | 0.00 | 0.02 | 0.16 | 100.13 | 67.96 | 28.16 |
PM802-19-1-13 | 0.22 | 40.41 | 0.02 | 27.34 | 14.38 | 0.04 | 16.51 | 0.05 | 0.04 | 0.00 | 0.05 | 0.17 | 99.21 | 67.10 | 31.21 |
PM802-19-1-14 | 0.02 | 42.19 | 0.05 | 26.13 | 14.63 | 0.06 | 16.83 | 0.04 | 0.04 | 0.00 | 0.00 | 0.22 | 100.20 | 67.11 | 29.35 |
PM802-19-1-15 | 0.08 | 41.60 | 0.00 | 25.86 | 15.23 | 0.11 | 16.46 | 0.04 | 0.00 | 0.00 | 0.03 | 0.16 | 99.57 | 65.66 | 29.43 |
PM802-19-1-16 | 0.20 | 42.24 | 0.03 | 24.71 | 14.53 | 0.13 | 16.20 | 0.11 | 0.13 | 0.00 | 0.04 | 0.16 | 98.49 | 66.31 | 28.18 |
PM802-19-1-17 | 0.88 | 42.56 | 0.00 | 24.00 | 13.82 | 0.07 | 17.01 | 0.48 | 0.34 | 0.01 | 0.03 | 0.21 | 99.41 | 68.55 | 27.44 |
PM802-19-1-18 | 0.23 | 42.45 | 0.00 | 25.17 | 13.88 | 0.10 | 16.84 | 0.25 | 0.08 | 0.01 | 0.00 | 0.19 | 99.18 | 68.22 | 28.46 |
PM802-19-1-19 | 0.52 | 41.67 | 0.00 | 25.30 | 14.36 | 0.15 | 16.87 | 0.41 | 0.20 | 0.00 | 0.00 | 0.13 | 99.63 | 67.43 | 28.94 |
PM802-19-1-20 | 0.24 | 41.99 | 0.02 | 25.54 | 14.67 | 0.13 | 16.20 | 0.13 | 0.08 | 0.00 | 0.00 | 0.20 | 99.19 | 66.10 | 28.98 |
表4 日喀则地区却顶布方辉橄榄岩中尖晶石电子探针分析结果
Table 4 Microprobe analyses of spinel in Quedingbu harzburgites from the Xigaze area
测点 | wB/% | Mg# | Cr# | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TiO2 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | NiO | Total | |||
PM802-19-1-12 | 0.10 | 43.01 | 0.02 | 25.14 | 14.46 | 0.00 | 17.21 | 0.00 | 0.01 | 0.00 | 0.02 | 0.16 | 100.13 | 67.96 | 28.16 |
PM802-19-1-13 | 0.22 | 40.41 | 0.02 | 27.34 | 14.38 | 0.04 | 16.51 | 0.05 | 0.04 | 0.00 | 0.05 | 0.17 | 99.21 | 67.10 | 31.21 |
PM802-19-1-14 | 0.02 | 42.19 | 0.05 | 26.13 | 14.63 | 0.06 | 16.83 | 0.04 | 0.04 | 0.00 | 0.00 | 0.22 | 100.20 | 67.11 | 29.35 |
PM802-19-1-15 | 0.08 | 41.60 | 0.00 | 25.86 | 15.23 | 0.11 | 16.46 | 0.04 | 0.00 | 0.00 | 0.03 | 0.16 | 99.57 | 65.66 | 29.43 |
PM802-19-1-16 | 0.20 | 42.24 | 0.03 | 24.71 | 14.53 | 0.13 | 16.20 | 0.11 | 0.13 | 0.00 | 0.04 | 0.16 | 98.49 | 66.31 | 28.18 |
PM802-19-1-17 | 0.88 | 42.56 | 0.00 | 24.00 | 13.82 | 0.07 | 17.01 | 0.48 | 0.34 | 0.01 | 0.03 | 0.21 | 99.41 | 68.55 | 27.44 |
PM802-19-1-18 | 0.23 | 42.45 | 0.00 | 25.17 | 13.88 | 0.10 | 16.84 | 0.25 | 0.08 | 0.01 | 0.00 | 0.19 | 99.18 | 68.22 | 28.46 |
PM802-19-1-19 | 0.52 | 41.67 | 0.00 | 25.30 | 14.36 | 0.15 | 16.87 | 0.41 | 0.20 | 0.00 | 0.00 | 0.13 | 99.63 | 67.43 | 28.94 |
PM802-19-1-20 | 0.24 | 41.99 | 0.02 | 25.54 | 14.67 | 0.13 | 16.20 | 0.13 | 0.08 | 0.00 | 0.00 | 0.20 | 99.19 | 66.10 | 28.98 |
样品号 | wB/% | Mg# | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | |||||||||||||||||||||||||||||
PM801-4-1 | 46.12 | 0.01 | 0.18 | 8.22 | 7.23 | 1.78 | 0.07 | 44.49 | 0.08 | 0.01 | 0.002 | 0.01 | 12.24 | 91 | |||||||||||||||||||||||||||
PM801-4-2 | 47.75 | 0.01 | 0.21 | 8.61 | 7.77 | 1.69 | 0.07 | 44.40 | 0.09 | 0.01 | 0.002 | 0.01 | 12.37 | 90 | |||||||||||||||||||||||||||
PM801-26-1 | 43.81 | 0.01 | 0.84 | 8.44 | 1.69 | 6.94 | 0.13 | 45.66 | 0.91 | 0.01 | 0.001 | 0.01 | 0.13 | 91 | |||||||||||||||||||||||||||
PM801-26-2 | 44.28 | 0.01 | 0.88 | 8.31 | 1.89 | 6.63 | 0.13 | 45.17 | 1.00 | 0.01 | 0.001 | 0.01 | 0.15 | 91 | |||||||||||||||||||||||||||
PM801-26-3 | 44.11 | 0.01 | 1.04 | 8.37 | 1.56 | 6.98 | 0.13 | 44.98 | 1.17 | 0.01 | 0.002 | 0.01 | 0.13 | 91 | |||||||||||||||||||||||||||
PM801-35-3 | 46.19 | 0.01 | 0.97 | 8.10 | 5.99 | 2.76 | 0.11 | 43.76 | 0.16 | 0.01 | 0.003 | 0.01 | 12.54 | 91 | |||||||||||||||||||||||||||
PM802-19-2 | 45.50 | 0.02 | 2.09 | 8.03 | 1.91 | 6.63 | 0.13 | 42.14 | 1.85 | 0.03 | 0.003 | 0.01 | 0.39 | 90 | |||||||||||||||||||||||||||
PM802-31-1 | 45.92 | 0.04 | 2.48 | 7.72 | 6.07 | 2.32 | 0.12 | 40.78 | 2.21 | 0.06 | 0.002 | 0.01 | 10.98 | 90 | |||||||||||||||||||||||||||
PM802-35-1 | 44.45 | 0.01 | 0.81 | 8.17 | 2.28 | 6.15 | 0.13 | 45.40 | 0.75 | 0.02 | 0.003 | 0.01 | 0.14 | 91 | |||||||||||||||||||||||||||
样品号 | wB/10-6 | ||||||||||||||||||||||||||||||||||||||||
Li | Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Nb | Cs | Ba | La | Ce | Pr | Nd | Sm | |||||||||||||||||||||
PM801-4-1 | 2.55 | 0.021 | 3.34 | 13.1 | 2 170 | 109 | 2 490 | 3.58 | 27 | 0.58 | 7.06 | 3.63 | 0.48 | 0.2 | 0.06 | 4.27 | 0.45 | 0.63 | 0.076 | 0.25 | 0.045 | ||||||||||||||||||||
PM801-4-2 | 0.45 | 0.015 | 2.97 | 12.1 | 2 630 | 102 | 2 410 | 2.96 | 27.5 | 0.54 | 5.95 | 3.22 | 0.25 | 0.14 | 0.03 | 4.05 | 0.16 | 0.23 | 0.027 | 0.095 | 0.018 | ||||||||||||||||||||
PM801-26-1 | 0.91 | 0.002 | 9.53 | 44.7 | 3 890 | 112 | 2 350 | 9.91 | 43 | 0.88 | 6.21 | 0.72 | 0.5 | 0.12 | 0.01 | 0.74 | 0.12 | 0.18 | 0.02 | 0.067 | 0.016 | ||||||||||||||||||||
PM801-26-2 | 1.28 | 0.005 | 11.4 | 45.3 | 3 610 | 109 | 2 290 | 12 | 40.6 | 0.89 | 5.57 | 0.65 | 0.44 | 0.1 | 0.01 | 0.74 | 0.077 | 0.13 | 0.014 | 0.057 | 0.016 | ||||||||||||||||||||
PM801-26-3 | 0.96 | 0.002 | 11 | 47.5 | 3 450 | 111 | 2 280 | 10.8 | 40.8 | 0.94 | 4.97 | 0.76 | 0.44 | 0.09 | 0.01 | 0.6 | 0.048 | 0.088 | 0.011 | 0.045 | 0.014 | ||||||||||||||||||||
PM801-35-3 | 1.31 | 0.052 | 9.82 | 38.8 | 2 890 | 97.2 | 2 040 | 7.42 | 34.7 | 1.35 | 4.85 | 4.34 | 0.33 | 0.09 | 0.26 | 1.11 | 0.072 | 0.15 | 0.02 | 0.079 | 0.022 | ||||||||||||||||||||
PM802-19-2 | 1.32 | 0.002 | 13.1 | 63.4 | 3 360 | 101 | 2 050 | 20.4 | 40.1 | 1.52 | 4.63 | 1.12 | 0.69 | 0.07 | 0.03 | 0.81 | 0.044 | 0.086 | 0.009 | 0.036 | 0.012 | ||||||||||||||||||||
PM802-31-1 | 2.65 | 0.005 | 11.8 | 59.7 | 2 920 | 91.9 | 1 840 | 16.5 | 35 | 2.31 | 3.94 | 5.34 | 1.39 | 0.06 | 0.12 | 1.44 | 0.035 | 0.062 | 0.009 | 0.059 | 0.04 | ||||||||||||||||||||
PM802-35-1 | 4.38 | 0.005 | 10.4 | 51.4 | 5 660 | 110 | 2 310 | 27.6 | 41.6 | 0.92 | 2.77 | 0.88 | 0.34 | 0.06 | 0.01 | 0.64 | 0.013 | 0.032 | 0.004 | 0.02 | 0.006 | ||||||||||||||||||||
样品号 | wB/10-6 | (La/ Yb)N | (Gd/ Lu)N | δEu | |||||||||||||||||||||||||||||||||||||
Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | Pb | Th | U | Zr | LREE | HREE | REE | ||||||||||||||||||||||||
PM801-4-1 | 0.016 | 0.044 | 0.007 | 0.042 | 0.009 | 0.024 | 0.004 | 0.025 | 0.005 | 0.01 | 0.04 | 0.2 | 0.08 | 0.02 | 0.36 | 1.47 | 0.16 | 1.63 | 12.14 | 1.12 | 1.1 | ||||||||||||||||||||
PM801-4-2 | 0.01 | 0.021 | 0.003 | 0.018 | 0.004 | 0.014 | 0.003 | 0.022 | 0.003 | 0.01 | 0.03 | 0.1 | 0.04 | 0.02 | 0.21 | 0.54 | 0.09 | 0.63 | 4.9 | 0.87 | 1.57 | ||||||||||||||||||||
PM801-26-1 | 0.004 | 0.013 | 0.003 | 0.021 | 0.006 | 0.021 | 0.005 | 0.042 | 0.01 | 0.01 | 0.03 | 0.05 | 0.03 | 0 | 0.43 | 0.41 | 0.12 | 0.53 | 1.93 | 0.17 | 0.83 | ||||||||||||||||||||
PM801-26-2 | 0.004 | 0.017 | 0.003 | 0.021 | 0.006 | 0.026 | 0.006 | 0.05 | 0.01 | 0.01 | 0.03 | 0.07 | 0.02 | 0 | 0.24 | 0.3 | 0.14 | 0.44 | 1.04 | 0.21 | 0.74 | ||||||||||||||||||||
PM801-26-3 | 0.003 | 0.018 | 0.003 | 0.021 | 0.006 | 0.031 | 0.007 | 0.058 | 0.012 | 0.01 | 0.03 | 0.11 | 0.02 | 0 | 0.36 | 0.21 | 0.16 | 0.37 | 0.56 | 0.19 | 0.58 | ||||||||||||||||||||
PM801-35-3 | 0.007 | 0.026 | 0.005 | 0.037 | 0.01 | 0.036 | 0.008 | 0.063 | 0.012 | 0.06 | 0.02 | 0.07 | 0.02 | 0.01 | 1.93 | 0.35 | 0.2 | 0.55 | 0.77 | 0.27 | 0.86 | ||||||||||||||||||||
PM802-19-2 | 0.004 | 0.018 | 0.006 | 0.064 | 0.018 | 0.073 | 0.013 | 0.12 | 0.021 | 0.01 | 0.02 | 0.07 | 0.01 | 0 | 0.21 | 0.19 | 0.33 | 0.52 | 0.25 | 0.11 | 0.79 | ||||||||||||||||||||
PM802-31-1 | 0.017 | 0.091 | 0.023 | 0.19 | 0.048 | 0.15 | 0.026 | 0.21 | 0.033 | 0.02 | 0.02 | 0.09 | 0.01 | 0 | 0.28 | 0.22 | 0.77 | 0.99 | 0.11 | 0.34 | 0.86 | ||||||||||||||||||||
PM802-35-1 | 0.003 | 0.009 | 0.002 | 0.016 | 0.005 | 0.018 | 0.004 | 0.035 | 0.007 | 0.01 | 0.02 | 0.1 | 0.01 | 0 | 0.34 | 0.08 | 0.09 | 0.17 | 0.25 | 0.15 | 1.11 |
表5 日喀则地区却顶布—路曲方辉橄榄岩全岩地球化学分析结果
Table 5 Geochemical analysis of whole rock composition of Quedingbu-Luqu harzburgite from the Xigaze area
样品号 | wB/% | Mg# | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | |||||||||||||||||||||||||||||
PM801-4-1 | 46.12 | 0.01 | 0.18 | 8.22 | 7.23 | 1.78 | 0.07 | 44.49 | 0.08 | 0.01 | 0.002 | 0.01 | 12.24 | 91 | |||||||||||||||||||||||||||
PM801-4-2 | 47.75 | 0.01 | 0.21 | 8.61 | 7.77 | 1.69 | 0.07 | 44.40 | 0.09 | 0.01 | 0.002 | 0.01 | 12.37 | 90 | |||||||||||||||||||||||||||
PM801-26-1 | 43.81 | 0.01 | 0.84 | 8.44 | 1.69 | 6.94 | 0.13 | 45.66 | 0.91 | 0.01 | 0.001 | 0.01 | 0.13 | 91 | |||||||||||||||||||||||||||
PM801-26-2 | 44.28 | 0.01 | 0.88 | 8.31 | 1.89 | 6.63 | 0.13 | 45.17 | 1.00 | 0.01 | 0.001 | 0.01 | 0.15 | 91 | |||||||||||||||||||||||||||
PM801-26-3 | 44.11 | 0.01 | 1.04 | 8.37 | 1.56 | 6.98 | 0.13 | 44.98 | 1.17 | 0.01 | 0.002 | 0.01 | 0.13 | 91 | |||||||||||||||||||||||||||
PM801-35-3 | 46.19 | 0.01 | 0.97 | 8.10 | 5.99 | 2.76 | 0.11 | 43.76 | 0.16 | 0.01 | 0.003 | 0.01 | 12.54 | 91 | |||||||||||||||||||||||||||
PM802-19-2 | 45.50 | 0.02 | 2.09 | 8.03 | 1.91 | 6.63 | 0.13 | 42.14 | 1.85 | 0.03 | 0.003 | 0.01 | 0.39 | 90 | |||||||||||||||||||||||||||
PM802-31-1 | 45.92 | 0.04 | 2.48 | 7.72 | 6.07 | 2.32 | 0.12 | 40.78 | 2.21 | 0.06 | 0.002 | 0.01 | 10.98 | 90 | |||||||||||||||||||||||||||
PM802-35-1 | 44.45 | 0.01 | 0.81 | 8.17 | 2.28 | 6.15 | 0.13 | 45.40 | 0.75 | 0.02 | 0.003 | 0.01 | 0.14 | 91 | |||||||||||||||||||||||||||
样品号 | wB/10-6 | ||||||||||||||||||||||||||||||||||||||||
Li | Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Nb | Cs | Ba | La | Ce | Pr | Nd | Sm | |||||||||||||||||||||
PM801-4-1 | 2.55 | 0.021 | 3.34 | 13.1 | 2 170 | 109 | 2 490 | 3.58 | 27 | 0.58 | 7.06 | 3.63 | 0.48 | 0.2 | 0.06 | 4.27 | 0.45 | 0.63 | 0.076 | 0.25 | 0.045 | ||||||||||||||||||||
PM801-4-2 | 0.45 | 0.015 | 2.97 | 12.1 | 2 630 | 102 | 2 410 | 2.96 | 27.5 | 0.54 | 5.95 | 3.22 | 0.25 | 0.14 | 0.03 | 4.05 | 0.16 | 0.23 | 0.027 | 0.095 | 0.018 | ||||||||||||||||||||
PM801-26-1 | 0.91 | 0.002 | 9.53 | 44.7 | 3 890 | 112 | 2 350 | 9.91 | 43 | 0.88 | 6.21 | 0.72 | 0.5 | 0.12 | 0.01 | 0.74 | 0.12 | 0.18 | 0.02 | 0.067 | 0.016 | ||||||||||||||||||||
PM801-26-2 | 1.28 | 0.005 | 11.4 | 45.3 | 3 610 | 109 | 2 290 | 12 | 40.6 | 0.89 | 5.57 | 0.65 | 0.44 | 0.1 | 0.01 | 0.74 | 0.077 | 0.13 | 0.014 | 0.057 | 0.016 | ||||||||||||||||||||
PM801-26-3 | 0.96 | 0.002 | 11 | 47.5 | 3 450 | 111 | 2 280 | 10.8 | 40.8 | 0.94 | 4.97 | 0.76 | 0.44 | 0.09 | 0.01 | 0.6 | 0.048 | 0.088 | 0.011 | 0.045 | 0.014 | ||||||||||||||||||||
PM801-35-3 | 1.31 | 0.052 | 9.82 | 38.8 | 2 890 | 97.2 | 2 040 | 7.42 | 34.7 | 1.35 | 4.85 | 4.34 | 0.33 | 0.09 | 0.26 | 1.11 | 0.072 | 0.15 | 0.02 | 0.079 | 0.022 | ||||||||||||||||||||
PM802-19-2 | 1.32 | 0.002 | 13.1 | 63.4 | 3 360 | 101 | 2 050 | 20.4 | 40.1 | 1.52 | 4.63 | 1.12 | 0.69 | 0.07 | 0.03 | 0.81 | 0.044 | 0.086 | 0.009 | 0.036 | 0.012 | ||||||||||||||||||||
PM802-31-1 | 2.65 | 0.005 | 11.8 | 59.7 | 2 920 | 91.9 | 1 840 | 16.5 | 35 | 2.31 | 3.94 | 5.34 | 1.39 | 0.06 | 0.12 | 1.44 | 0.035 | 0.062 | 0.009 | 0.059 | 0.04 | ||||||||||||||||||||
PM802-35-1 | 4.38 | 0.005 | 10.4 | 51.4 | 5 660 | 110 | 2 310 | 27.6 | 41.6 | 0.92 | 2.77 | 0.88 | 0.34 | 0.06 | 0.01 | 0.64 | 0.013 | 0.032 | 0.004 | 0.02 | 0.006 | ||||||||||||||||||||
样品号 | wB/10-6 | (La/ Yb)N | (Gd/ Lu)N | δEu | |||||||||||||||||||||||||||||||||||||
Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | Pb | Th | U | Zr | LREE | HREE | REE | ||||||||||||||||||||||||
PM801-4-1 | 0.016 | 0.044 | 0.007 | 0.042 | 0.009 | 0.024 | 0.004 | 0.025 | 0.005 | 0.01 | 0.04 | 0.2 | 0.08 | 0.02 | 0.36 | 1.47 | 0.16 | 1.63 | 12.14 | 1.12 | 1.1 | ||||||||||||||||||||
PM801-4-2 | 0.01 | 0.021 | 0.003 | 0.018 | 0.004 | 0.014 | 0.003 | 0.022 | 0.003 | 0.01 | 0.03 | 0.1 | 0.04 | 0.02 | 0.21 | 0.54 | 0.09 | 0.63 | 4.9 | 0.87 | 1.57 | ||||||||||||||||||||
PM801-26-1 | 0.004 | 0.013 | 0.003 | 0.021 | 0.006 | 0.021 | 0.005 | 0.042 | 0.01 | 0.01 | 0.03 | 0.05 | 0.03 | 0 | 0.43 | 0.41 | 0.12 | 0.53 | 1.93 | 0.17 | 0.83 | ||||||||||||||||||||
PM801-26-2 | 0.004 | 0.017 | 0.003 | 0.021 | 0.006 | 0.026 | 0.006 | 0.05 | 0.01 | 0.01 | 0.03 | 0.07 | 0.02 | 0 | 0.24 | 0.3 | 0.14 | 0.44 | 1.04 | 0.21 | 0.74 | ||||||||||||||||||||
PM801-26-3 | 0.003 | 0.018 | 0.003 | 0.021 | 0.006 | 0.031 | 0.007 | 0.058 | 0.012 | 0.01 | 0.03 | 0.11 | 0.02 | 0 | 0.36 | 0.21 | 0.16 | 0.37 | 0.56 | 0.19 | 0.58 | ||||||||||||||||||||
PM801-35-3 | 0.007 | 0.026 | 0.005 | 0.037 | 0.01 | 0.036 | 0.008 | 0.063 | 0.012 | 0.06 | 0.02 | 0.07 | 0.02 | 0.01 | 1.93 | 0.35 | 0.2 | 0.55 | 0.77 | 0.27 | 0.86 | ||||||||||||||||||||
PM802-19-2 | 0.004 | 0.018 | 0.006 | 0.064 | 0.018 | 0.073 | 0.013 | 0.12 | 0.021 | 0.01 | 0.02 | 0.07 | 0.01 | 0 | 0.21 | 0.19 | 0.33 | 0.52 | 0.25 | 0.11 | 0.79 | ||||||||||||||||||||
PM802-31-1 | 0.017 | 0.091 | 0.023 | 0.19 | 0.048 | 0.15 | 0.026 | 0.21 | 0.033 | 0.02 | 0.02 | 0.09 | 0.01 | 0 | 0.28 | 0.22 | 0.77 | 0.99 | 0.11 | 0.34 | 0.86 | ||||||||||||||||||||
PM802-35-1 | 0.003 | 0.009 | 0.002 | 0.016 | 0.005 | 0.018 | 0.004 | 0.035 | 0.007 | 0.01 | 0.02 | 0.1 | 0.01 | 0 | 0.34 | 0.08 | 0.09 | 0.17 | 0.25 | 0.15 | 1.11 |
图5 日喀则地区却顶布—路曲方辉橄榄岩MgO-主量元素及微量元素图解 原始地幔据文献[50];深海地幔橄榄岩据文献[51-52];弧前地幔橄榄岩据文献[53]。
Fig.5 Variation diagrams of MgO-oxides and trace elements of the Quedingbu-Luqu harzburgite from the Xigaze area
图6 日喀则地区却顶布—路曲方辉橄榄岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (a据文献[57];b据文献[54]) 伊豆-小笠原-马里亚纳弧前地幔橄榄岩稀土配分模式据文献[53];深海地幔橄榄岩稀土配分模式据文献[51,58-59];虚线分别代表地幔橄榄岩成分经历5%~30%部分熔融后的模拟曲线,据文献[60]。
Fig.6 Chondrite-normalized REE patterns (a) and primitive mantle normalized trace elements patterns (b) of the Quedingbu-Luqu harzburgite from the Xigaze area (a after [57];b after [54])
图7 却顶部—路曲方辉橄榄岩全岩Al2O3/SiO2-MgO/SiO2(a)和Al2O3-Tb/Yb图解(据文献[62];地球序列据文献[63])
Fig.7 Whole rock weight ratios of Al2O3/SiO2-MgO/SiO2 diagram (a) and Al2O3-Tb/Yb diagram (b) of Quedingbu-Luqu harzburgite from the Xigaze area (after [62-63])
图8 却顶布—路曲方辉橄榄岩中斜方辉石Mg#-Al2O3图解(a)、尖晶石TiO2-Cr#图解(b)、Fo(Olv)-Cr#(Spl)图解(c)和Cr#(Spl)-Al2O3(Cpx)图解(d) (a据文献[69];b据文献[70];c,d据文献[71]) MORB—大洋中脊型玄武岩;BON—玻安岩;FMM—富集的大洋中脊型地幔;IAT—岛弧拉斑质玄武岩;Abyssal peridotites—深海地幔橄榄岩;Forearc peridotite—俯冲型地幔橄榄岩;OSMA—橄榄石尖晶石地幔演化趋势;Passive margin peridotites—被动大陆边缘地幔橄榄岩;Partial melting—部分熔融趋势;Fractionation trend—结晶演化趋势;Partial melting trends—部分熔融趋势线,据文献[72];Olv—橄榄石;Opx—斜方辉石;Cpx—单斜辉石;Spl—尖晶石。
Fig.8 Mg#-Al2O3 diagram of orthopyroxene (a), TiO2-Cr# diagram of spinel (b), Fo(Olv) -Cr#(Spl) diagram (c) and Cr#(Spl) -Al2O3(Cpx) diagram (d) in Quedingbu-Luqu harzburgites from the Xigaze area (a modified after [69];b modified after [70];c,d modified after [71])
图9 却顶布—路曲方辉橄榄岩LREE-Zr(a)、LREE-Ti(b)、LREE-Nb(c)、Ni-Sc(d)、Ni-Al2O3(e)和Ni-Ti(f)图解(d-f据文献[71])
Fig.9 Plots of LREE-Zr (a), LREE-Ti (b), LREE-Nb (c), Ni-Sc (d), Ni-Al2O3 (e) and Ni-Ti (f) for Quedingbu-Luqu harzburgite from the Xigaze area with partial melting trends. d-f after [71].
图10 却顶布—路曲方辉橄榄岩中橄榄石Fo-NiO图解(a)、斜方辉石Mg#-TiO2图解(b)、单斜辉石Mg#-Al2O3图解(c)和尖晶石Mg#-Cr#图解据(d) (a,b据文献[69];c,d据文献[75]) Mantle olivine array据文献[87];Partial melting据文献[72];Forearc peridotites和Abyssal peridotites据文献[88]。Olv—橄榄石;Opx—斜方辉石;Cpx—单斜辉石;Spl—尖晶石。
Fig.10 Fo-NiO diagram of olivine (a), Mg#-TiO2 diagram of orthopyroxene (b), Mg#-Al2O3 diagram of clinopyroxene (c) and Mg#-Cr# diagram of spinel (d) in Quedingbu-Luqu harzburgites from the Xigaze area (a,b after [69];c,d after [75])
地区 | 岩性 | (87Sr/86Sr)i | εNd(t) | 年龄/Ma | 构造环境 | 参考文献 | |
---|---|---|---|---|---|---|---|
吉定 | 辉绿岩 | 128±2 | SSZ(弧后盆地) | [ | |||
辉长岩 | 0.703 431~0.705 961 | +7.5~+9.5 | 慢速-超慢速扩张的大洋 | [ | |||
辉长岩脉 | 127.1±3.5 | 弧前伸展背景 | [ | ||||
辉绿岩脉 | 128.5±1.0 | [ | |||||
辉长岩 | 125.6 | 慢速-超慢速扩张的大洋 | [ | ||||
得村 | 基性岩 | 0.703 07~0.705 75 | +8.27~+10.10 | 洋中脊 | [ | ||
大竹卡 | 辉长岩 | 0.703 620~0.704 401 | +6.4~+10.9 | 慢速-超慢速扩张的大洋 | [ | ||
石英闪长岩 | 126.0±1.5 | [ | |||||
辉石岩脉 | 126.1±1.3 | 弧前伸展背景 | [ | ||||
橄榄辉石岩 | 124.4±1.3 | 慢速-超慢速扩张的大洋 | [ | ||||
层状辉长岩 | 126.2±1.0 | ||||||
层状辉长岩 | 127.6±1.0 | ||||||
辉长岩 | 124.2±1.3 | ||||||
异剥钙榴岩 | 125.9±1.2 | ||||||
彭仓 | 异剥钙榴岩 | +8.6 | 126.6±1.8 | 弧前过度伸展 | [ | ||
异剥钙榴岩 | +8.4 | 130.5±1.3 | |||||
斜长花岗岩 | 0.704 902 | +8.4~+8.9 | 129.8±1.5 | ||||
辉绿岩 | 0.704 653~0.705 283 | +8.3~+8.6 | |||||
群让 | 辉长岩 | 125.6±0.88 | SSZ(弧后盆地) | [ | |||
白岗 | 辉长岩 | 0.703 736~0.704 875 | +5.8~+8.8 | 慢速-超慢速扩张的大洋 | [ | ||
得几 | 玻安岩 | 俯冲带或前弧 | [ | ||||
石英闪长岩 | 123.3±1.5 | 弧前伸展 | [ | ||||
辉石岩脉 | 124.9±1.1 | ||||||
辉石岩脉 | 126.5±4.7 | ||||||
伟晶辉长岩 | 126.0±1.3 | 弧前过度伸展 | [ | ||||
辉长岩脉 | 0.704 903~0.705 041 | +8.2~+8.4 | 124.8±1.3 | ||||
斜长花岗岩 | 0.703 922~0.704 983 | +7.9~+8.0 | 125.1±1.5 | ||||
斜长花岗岩 | 127.2±1.0 | ||||||
异剥钙榴岩 | +8.1 | ||||||
仁布 | 玄武岩 | 0.704 53~0.706 02 | +4.69~+7.12 | 初始边缘洋盆 | [ | ||
夏鲁 | 辉长岩 | SSZ(弧后或弧前盆地) | [ | ||||
橄榄岩 | 洋中脊,后期经过俯冲改造 | [ | |||||
异剥钙榴岩 | 125.6±0.8 | 慢速-超慢速扩张的大洋 | [ | ||||
冲堆 | 辉长岩 | 129.1±1.2 | |||||
白马让 | 玄武岩 | 0.704 908~0.705 497 | +8.42~+8.50 | SSZ(俯冲带上的洋盆) | [ | ||
辉绿岩床 | 0.704 253~0.705 300 | +8.41~+8.40 | |||||
辉绿岩脉 | 0.703 297~0.704 270 | +8.51~+8.70 | |||||
雄玛 | 辉绿岩 | 136.4±2.2 | 陆内裂谷环境 | [ | |||
辉长岩 | 133.8±2.7 | ||||||
石英闪长岩 | 138.8±1.5 | ||||||
路曲 | 辉长岩 | +7.5~+9.3 | 128~130 | 晚期洋脊-海沟碰撞 | [ | ||
变形辉长岩 | +14.0~+17.1 | 124 |
表6 日喀则地区蛇绿岩特征
Table 6 Characteristics of ophiolite in the Xigaze area
地区 | 岩性 | (87Sr/86Sr)i | εNd(t) | 年龄/Ma | 构造环境 | 参考文献 | |
---|---|---|---|---|---|---|---|
吉定 | 辉绿岩 | 128±2 | SSZ(弧后盆地) | [ | |||
辉长岩 | 0.703 431~0.705 961 | +7.5~+9.5 | 慢速-超慢速扩张的大洋 | [ | |||
辉长岩脉 | 127.1±3.5 | 弧前伸展背景 | [ | ||||
辉绿岩脉 | 128.5±1.0 | [ | |||||
辉长岩 | 125.6 | 慢速-超慢速扩张的大洋 | [ | ||||
得村 | 基性岩 | 0.703 07~0.705 75 | +8.27~+10.10 | 洋中脊 | [ | ||
大竹卡 | 辉长岩 | 0.703 620~0.704 401 | +6.4~+10.9 | 慢速-超慢速扩张的大洋 | [ | ||
石英闪长岩 | 126.0±1.5 | [ | |||||
辉石岩脉 | 126.1±1.3 | 弧前伸展背景 | [ | ||||
橄榄辉石岩 | 124.4±1.3 | 慢速-超慢速扩张的大洋 | [ | ||||
层状辉长岩 | 126.2±1.0 | ||||||
层状辉长岩 | 127.6±1.0 | ||||||
辉长岩 | 124.2±1.3 | ||||||
异剥钙榴岩 | 125.9±1.2 | ||||||
彭仓 | 异剥钙榴岩 | +8.6 | 126.6±1.8 | 弧前过度伸展 | [ | ||
异剥钙榴岩 | +8.4 | 130.5±1.3 | |||||
斜长花岗岩 | 0.704 902 | +8.4~+8.9 | 129.8±1.5 | ||||
辉绿岩 | 0.704 653~0.705 283 | +8.3~+8.6 | |||||
群让 | 辉长岩 | 125.6±0.88 | SSZ(弧后盆地) | [ | |||
白岗 | 辉长岩 | 0.703 736~0.704 875 | +5.8~+8.8 | 慢速-超慢速扩张的大洋 | [ | ||
得几 | 玻安岩 | 俯冲带或前弧 | [ | ||||
石英闪长岩 | 123.3±1.5 | 弧前伸展 | [ | ||||
辉石岩脉 | 124.9±1.1 | ||||||
辉石岩脉 | 126.5±4.7 | ||||||
伟晶辉长岩 | 126.0±1.3 | 弧前过度伸展 | [ | ||||
辉长岩脉 | 0.704 903~0.705 041 | +8.2~+8.4 | 124.8±1.3 | ||||
斜长花岗岩 | 0.703 922~0.704 983 | +7.9~+8.0 | 125.1±1.5 | ||||
斜长花岗岩 | 127.2±1.0 | ||||||
异剥钙榴岩 | +8.1 | ||||||
仁布 | 玄武岩 | 0.704 53~0.706 02 | +4.69~+7.12 | 初始边缘洋盆 | [ | ||
夏鲁 | 辉长岩 | SSZ(弧后或弧前盆地) | [ | ||||
橄榄岩 | 洋中脊,后期经过俯冲改造 | [ | |||||
异剥钙榴岩 | 125.6±0.8 | 慢速-超慢速扩张的大洋 | [ | ||||
冲堆 | 辉长岩 | 129.1±1.2 | |||||
白马让 | 玄武岩 | 0.704 908~0.705 497 | +8.42~+8.50 | SSZ(俯冲带上的洋盆) | [ | ||
辉绿岩床 | 0.704 253~0.705 300 | +8.41~+8.40 | |||||
辉绿岩脉 | 0.703 297~0.704 270 | +8.51~+8.70 | |||||
雄玛 | 辉绿岩 | 136.4±2.2 | 陆内裂谷环境 | [ | |||
辉长岩 | 133.8±2.7 | ||||||
石英闪长岩 | 138.8±1.5 | ||||||
路曲 | 辉长岩 | +7.5~+9.3 | 128~130 | 晚期洋脊-海沟碰撞 | [ | ||
变形辉长岩 | +14.0~+17.1 | 124 |
[1] | WAKABAYASHI J, GHATAK A, BASU A R. Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: a perspective from geochemistry, metamorphism, geochronology, and regional geology[J]. Geological Society of America Bulletin, 2010, 122(9/10): 1548-1568. |
[2] | DILEK Y, FURNES H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123(3/4): 387-411. |
[3] | DILEK Y, FURNES H. Ophiolites and their origins[J]. Elements, 2014, 10(2): 93-100. |
[4] | 张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1): 1-12. |
[5] | PEARCE J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2): 101-108. |
[6] | MIYASHIRO A. Classification, characteristics, and origin of ophiolites[J]. Journal of Geology, 1975, 83(2): 249-281. |
[7] | PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16: 77-94. |
[8] | ZHOU M F, ROBINSON P T, MALPAS J, et al. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth sciences, 2001, 19(4): 517-534. |
[9] | 郑建平, 熊庆, 赵伊, 等. 俯冲带橄榄岩及其记录的壳幔相互作用[J]. 中国科学: 地球科学, 2019, 49(7): 1037-1058. |
[10] | 王希斌, 鲍佩声, 肖序常, 等. 西藏蛇绿岩[M]. 北京: 地质出版社, 1987. |
[11] | 王成善, 刘志飞, 何政伟. 西藏南部早白垩世雅鲁藏布江古蛇绿岩的识别与讨论[J]. 地质学报, 1999, 73(1): 7-14. |
[12] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[13] | 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 1-42. |
[14] | 张旗. 日喀则蛇绿岩研究中的几个问题[J]. 岩石学报, 2015, 31(1): 37-46. |
[15] | MILLER C, THÖNI M, FRANK W, et al. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet[J]. Lithos, 2003, 66(3/4): 155-172. |
[16] | 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩: 事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325. |
[17] | 肖文交, 敖松坚, 杨磊, 等. 喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局[J]. 中国科学: 地球科学, 2017, 47(6): 631-656. |
[18] | ZHANG L L, LIU C Z, WU F Y, et al. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: constraints on its formation setting[J]. Lithos, 2016, 258/259: 133-148. |
[19] | LIU C Z, ZHANG C, YANG L Y, et al. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault[J]. Lithos, 2014, 205: 127-141. |
[20] | LIU T, WU F Y, ZHANG L L, et al. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet[J]. Chemical Geology, 2016, 443: 67-86. |
[21] | LIU T, WU F Y, LIU C Z, et al. Variably evolved gabbroic intrusions within the Xigaze ophiolite (Tibet): new insights into the origin of ophiolite diversity[J]. Contributions to Mineralogy and Petrology, 2018, 173: 91. |
[22] | LIU T, WU F Y, LIU C Z, et al. Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet[J]. Contributions to Mineralogy and Petrology, 2019, 174: 23. |
[23] | ZHANG C, LIU C Z, WU F Y, et al. Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): petrology and tectonic setting[J]. Lithos, 2017, 286/287: 252-263. |
[24] | 陈根文, 夏斌, 钟志洪, 等. 西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义[J]. 矿物学报, 2003, 23(1): 91-96. |
[25] | DAI J G, WANG C S, POLAT A, et al. Rapid forearc spreading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172/173: 1-16. |
[26] | 李源, 李瑞保, 董天赐, 等. 日喀则蛇绿岩白马让岩体的穹窿形结构及构造意义[J]. 科学通报, 2016, 61(25): 2823-2833. |
[27] | XIONG F H, YANG J S, ROBINSON P T, et al. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: implications for a suprasubduction zone origin[J]. Journal of Asian Earth Sciences, 2017, 146(15): 56-75. |
[28] | 肖序常, 王军. 青藏高原构造演化及隆升的简要评述[J]. 地质论述, 1998, 44(4): 372-381. |
[29] | 刘小汉, 琚宜太, 韦利杰, 等. 再论雅鲁藏布江缝合带构造模型[J]. 中国科学D辑: 地球科学, 2009, 29(4): 448-463. |
[30] | BEZARD R, HÉBERT R, WANG C S, et al. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone[J]. Lithos, 2011, 125(1/2): 347-367. |
[31] | HÉBERT R, BEZARD R, GUILMETTE C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2): 377-397. |
[32] | 李文霞, 赵志丹, 朱弟成, 等. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别[J]. 岩石学报, 2012, 28(5): 1663-1673. |
[33] | 牛晓露, 赵志丹, 莫宣学, 等. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征[J]. 岩石学报, 2006, 22(12): 2875-2888. |
[34] | 王冉, 夏斌, 周国庆, 等. 西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄[J]. 科学通报, 2006, 51(1): 114-117. |
[35] | 夏斌, 李建峰, 刘立文, 等. 西藏桑桑蛇绿岩辉绿岩SHRIMP锆石U-Pb年龄: 对特提斯洋盆发育的年代学制约[J]. 地球化学, 2008, 37(4): 399-403. |
[36] | 李建峰, 夏斌, 刘立文, 等. 西藏群让蛇绿岩辉长岩SHRIMP锆石U-Pb年龄及地质意义[J]. 大地构造与成矿学, 2009, 33(2): 294-298. |
[37] | BAO P S, SU L, WANG J, et al. Study on the tectonic setting for the ophiolites in Xigaze, Tibet[J]. Acta Geologica Sinica (English Edition), 2013, 87(2): 395-42. |
[38] | 杨胜标, 李源, 杨经绥, 等. 西藏日喀则白马让蛇绿岩: 亚洲大陆边缘的小洋盆[J]. 岩石学报, 2017, 33(12): 3766-3782. |
[39] | MALPAS J, ZHOU M F, ROBINSON P T, et al. Geochemical and geochronological constraints on the origin and emplacement of the YarlungZangbo ophiolites, Southern Tibet[J]. Geological Society, London, Special Publications, 2003, 218: 191-206. |
[40] | 杨艳. 日喀则雄玛岩浆岩岩石学与年代学特征[D]. 北京: 中国地质大学(北京), 2017. |
[41] | 徐向珍, 杨经绥, 熊发挥, 等. 西藏雅鲁藏布江缝合带中段日喀则地幔橄榄岩中发现金刚石等异常矿物[J]. 地质学报, 2018, 92(7): 1389-1400. |
[42] | MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67. |
[43] | WAN X Q, WANG L, WANG C S, et al. Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet[J]. Journal of Asian Earth Sciences, 1997, 16(2): 217-223. |
[44] | DAI J G, WANG C S, ZHU D C, et al. Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous: insights from the Xigaze forearc basin[J]. Lithos, 2015, 218/219: 127-140. |
[45] | ZIABREV S V, AITCHISON J C, ABRAJEVITCH A V, et al. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet[J]. Journal of the Geological Society, 2003, 160(4): 591-599. |
[46] | AN W, HU X M, GARZANTI E, et al. Xigaze forearc basin revisited (South Tibet): provenance changes and origin of the Xigaze ophiolite[J]. Geological Society of America Bulletin, 2014, 126(11/12): 1595-1613. |
[47] | GIRARDEAU J, MERCIER J C C, YOU G Z. Origin of the Xigaze ophiolite, Yarlung Zangbo suture zone, southern Tibet[J]. Tectonophysics, 1985, 119(1): 407-433. |
[48] | MA Z L, LI G W, ZHENG Y F, et al. Variable exhumation history between the central and eastern Xigaze fore-arc basin, South Tibet: implications for underthrusting Indian slab dynamics[J]. Terra Nova, 2021, 35(5): 441-454. |
[49] | ZHAO M S, CHEN Y X, ZHENG Y F. Geochemical evidence for forearc metasomatism of peridotite in the Xigaze ophiolite during subduction initiation in Neo-Tethyan Ocean, south to Tibet[J]. Lithos, 2021, 380/381: 105896. |
[50] | MCDONOUGH W F, SUN S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. |
[51] | NIU Y L. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites[J]. Journal of Petrology, 1997, 38(8): 1047-1074. |
[52] | NIU Y L. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges[J]. Journal of Petrology, 2004, 45(12): 2423-2458. |
[53] | PARKINSON I J, PEARCE J A. Peridotites from the Izu-Bonin-Mariana Forearc(ODP Leg 125), evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting[J]. Journal of Petrology, 1998, 39(9): 1577-1618. |
[54] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. |
[55] | SALTERS V, STRACKE A. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(5): Q05B07. |
[56] | 冯光英, 杨经绥, 熊发挥, 等. 雅鲁藏布江蛇绿岩带西段错不扎地幔橄榄岩组成特征及岩石成因[J]. 中国地质, 2015, 42(5): 1337-1353. |
[57] | BOYNTON W V. Geochemistry of the rare earth elements: meteorite studies[M]//HENDERSON P. Rare earth element geochemistry. Amsterdam: Elservier, 1984: 63-114. |
[58] | HELLEBRAND E, SNOW J E, MÜHE R. Mantle melting beneath Gakkel Ridge(Arctic Ocean): abyssal peridotite spinel compositions[J]. Chemical Geology, 2002, 182(2/3/4): 227-235. |
[59] | UYSAL Í, ERSOY E Y, KARSLI O, et al. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry(major-trace-REE-PGE), and Re-Os isotope systematics[J]. Lithos, 2012, 132: 50-69. |
[60] | BEZARD R, HÉBERT R, WANG C S, et al. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone[J]. Lithos, 2011, 125(1/2): 347-367. |
[61] | 来盛民, 杨经绥, 熊发挥, 等. 西藏雅鲁藏布江缝合带东段泽当地幔橄榄岩特征及其意义[J]. 岩石学报, 2015, 31(12): 3629-3649. |
[62] | KRISHNAKANTA SINGH A. Petrology and geochemistry of abyssal peridotites from the Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt, Northeast India: implication for melt generation in mid-oceanic ridge environment[J]. Journal of Asian Earth Sciences, 2013, 66: 258-276. |
[63] | JAGOUTZ E, PALME H, BADDENHAUSEN H, et al. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules[M]//Proceedings of the 10th lunar and planetary science conference. New York: Pergamon Press, 1979: 2031-2050. |
[64] | DICK H J B, BULLEN T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76. |
[65] | KOSTOPOULOS D K. Melting of the shallow upper mantle: a new perspective[J]. Journal of Petrology, 1991, 32(4): 671-699. |
[66] | JAQUES A L, GREEN D H. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts[J]. Contributions to Mineralogy and Petrology, 1980, 73(3): 287-310. |
[67] | BARNES S J, ROEDER P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42(12): 2279-2302. |
[68] | DICK H J B, NATLAND J H C. Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1996, 147: 103-134. |
[69] | 张利, 杨经绥, 刘飞, 等. 南公珠错地幔橄榄岩: 雅鲁藏布江缝合带西段一个典型的大洋地幔橄榄岩[J]. 岩石学报, 2016, 32(12): 3649-3672. |
[70] | TAMURA A, ARAI S. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle[J]. Lithos, 2006, 90(1/2): 43-56. |
[71] | PEARCE J A, BARKER P F, EDWARDS S J, et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic[J]. Contributions to Mineralogy and Petrology, 2000, 139(1): 36-53. |
[72] | OZAWA K. Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan[J]. Journal of Petrology, 1994, 35(3): 647-678. |
[73] | FREY F A, SUEN J C, STOCKMAN H W. The Ronda high temperature peridotite: geochemistry and petrogenesis[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2469-2491. |
[74] | 连东洋, 杨经绥, 熊发挥, 等. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析[J]. 岩石学报, 2014, 30(8): 2164-2184. |
[75] | DUPUIS C, HÉBERT R, DUBOIS-CÔTÉ V, et al. Petrology and geochemistry of mafic rocks from mélange and flysch units adjacent to the Yarlung Zangbo Suture Zone, southern Tibet[J]. Chemical Geology, 2005, 214(3/4): 287-308. |
[76] | ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223-1254. |
[77] | KELEMEN P B, DICK H J, QUICK J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 1992, 358: 635-641. |
[78] | KELEMEN P B, SHIMIZU N, SALTERS V J M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels[J]. Nature, 1995, 375: 747-753. |
[79] | ZHOU M F, ROBINSON P T, MALPAS J, et al. REE and PGE geochemical constraints on the formation of dunite in the Luobusa ophiolite, Southern Tibet[J]. Journal of Petrology, 2005, 46(3): 615-639. |
[80] | ZHENG Y F, CHEN R X, ZHAO Z F. Chemical geodynamics of continental subduction-zone metamorphism: insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples[J]. Tectonophysics, 2009, 475(2): 327-358. |
[81] | CRAWFORD A J, BECCALUVA L, SERRI G. Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites[J]. Earth and Planetary Science Letters, 1981, 54(2): 346-356. |
[82] | ROSPABÉ M, CEULENEER G, BENOIT M, et al. Origin of the dunitic mantle-crust transition zone in the Oman ophiolite: the interplay between percolating magmas and high-temperature hydrous fluids[J]. Geology, 2017, 45(5): 471-474. |
[83] | DAI J G, WANG C S, STERN R J, et al. Forearc magmatic evolution during subduction initiation: insights from an early cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc[J]. Geological Society of America Bulletin, 2021, 133(3/4): 753-776. |
[84] | TIAN L R, ZHENG J P, XIONG Q, et al. Xigaze ophiolite (South Tibet) records complex melt-fluid-peridotite interaction in the crust-mantle transition zone beneath oceanic slow-ultraslow spreading centers[J]. Lithos, 2022, 414/415: 106623. |
[85] | LI Y, LI R B, ROBINSON P T, et al. Detachment faulting in the Xigaze ophiolite southern Tibet: new constraints on its origin and implications[J]. Gondwana Research, 2021, 94: 44-55. |
[86] | BARNES S J. Chromite in komatiites, 1. Magmatic controls on crystallization and composition[J]. Journal of Petrology, 1998, 39(10): 1689-1720. |
[87] | TAKAHASHI E. Origin of basaltic magmas: implications from peridotite melting experiments and an olivine fractionation model[J]. Bulletin of the Volcanological Society of Japan, 1986, 30: S17-S40. |
[88] | PAGÉ P, BÉDARD J H, SCHROETTER J M, et al. Mantle petrology and mineralogy of the Thetford Mines ophiolite complex[J]. Lithos, 2008, 100(1/2/3/4): 255-292. |
[89] | HATTORI K H, GUILLOT S. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): 1-27. |
[90] | HUANG W T, VAN HINSBERGEN D J J, MAFFIONE M, et al. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: evidence from paleomagnetism, sediment provenance, and stratigraphy[J]. Earth and Planetary Science Letters, 2015, 415: 142-153. |
[91] | CHEN G W, XIA B. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 406-422. |
[92] | 陈根文, 刘睿, 夏斌, 等. 西藏吉定蛇绿岩地球化学特征及其构造指示意义[J]. 岩石学报, 2015, 31(9): 2495-2507. |
[93] | 夏斌, 王冉, 陈根文. 西藏仁布蛇绿岩壳层熔岩的岩石地球化学及成因[J]. 高校地质学报, 2003, 9(4): 638-647. |
[94] | 李强, 夏斌, 温珍河, 等. 西藏日喀则蛇绿岩构造环境再讨论[J]. 矿物岩石地球化学通报, 2015, 34(5): 993-1006. |
[95] | XIA B, CHEN G W, WANG R, et al. Seamount volcanism associated with the Xigaze ophiolite, southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 396-405. |
[96] | VERMA S P. Seawater alteration effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in oceanic igneous rocks[J]. Chemical Geology, 1981, 34(1/2): 81-89. |
[97] | WHATTAM S A, STERN R J. The “subduction initiation rule”: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy and Petrology, 2011, 162(5): 1031-1045. |
[98] | STERN R J, REAGAN M, ISHIZUKA O, et al. To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites[J]. Lithosphere, 2012, 4(6): 469-483. |
[99] | 肖庆辉, 李廷栋, 潘桂棠, 等. 识别洋陆转换的岩石学思路: 洋内弧与初始俯冲的识别[J]. 中国地质, 2016, 43(3): 721-737. |
[100] | NOWELL G M, KEMPTON P D, NOBLE S R, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle[J]. Chemical Geology, 1998, 149(3/4): 211-233. |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[3] | 黄春梅, 李光明, 付建刚, 梁维, 张志, 王艺云. 藏南错那洞中新世早期淡色花岗岩岩石成因:全岩地球化学、矿物学特征约束[J]. 地学前缘, 2023, 30(5): 74-92. |
[4] | 徐啸, 余嘉豪, 向波, 郭晓玉, 李春森, 罗旭聪, 仝霄飞, 袁梓昭, 林燕琪, 时宏城. 拉萨地体东南缘地壳深部结构[J]. 地学前缘, 2023, 30(3): 221-232. |
[5] | 焦小芹, 张关龙, 牛花朋, 王圣柱, 于洪洲, 熊峥嵘, 周健, 谷文龙. 准噶尔盆地东北缘石炭系火山岩形成机制:对准噶尔洋盆闭合时限的新启示[J]. 地学前缘, 2022, 29(4): 385-402. |
[6] | 卢占武, 高锐, Simon KLEMPERER, 王海燕, 董树文, 李文辉, 李洪强. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217. |
[7] | 寇彩化, 刘燕学, 李江, 李廷栋, 丁孝忠, 刘勇, 靳胜凯. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘, 2022, 29(2): 218-233. |
[8] | 张继彪, 丁孝忠, 刘燕学. 扬子西缘洋岛型与岛弧型火山岩岩石成因与构造意义:从板内裂谷到洋-陆俯冲[J]. 地学前缘, 2021, 28(4): 250-266. |
[9] | 裴圣良, 丁汝福, 单立华, 杨武生. 新疆富蕴科克别克提基性杂岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地学前缘, 2020, 27(4): 184-198. |
[10] | 李刚, 蒋职权, 邵学峰, 高万里, 刘正宏. 医巫闾山中—晚侏罗世构造变形与同构造花岗岩的耦合关系[J]. 地学前缘, 2019, 26(2): 72-91. |
[11] | 欧波,魏启荣,许欢,王健,张敏,徐长君,金磊. 西藏南木林县格张地区早白垩世火山岩岩石成因[J]. 地学前缘, 2018, 25(6): 165-181. |
[12] | 魏启荣,赵闪,王健,张敏,许欢,欧波,徐长君,金磊. 西藏南木林县秦马弄地区二长花岗岩体岩石成因[J]. 地学前缘, 2018, 25(6): 136-151. |
[13] | 黄春梅,李光明,张志,梁维,黄勇,张林奎,付建刚. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(6): 182-195. |
[14] | 陈磊,王京彬,邓小华,吴湘滨,邹海洋,孙燕,许骏,张文东. 东天山卡拉塔格泥盆纪岩浆岩地球化学特征及成因[J]. 地学前缘, 2018, 25(5): 51-68. |
[15] | 王奕萱,王根厚,袁国礼,王行军,吕勇,林宇. 滇西三台山地幔橄榄岩的成因及其构造意义:来自地质学、矿物学和岩石地球化学的证据[J]. 地学前缘, 2018, 25(1): 138-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||