地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 319-329.DOI: 10.13745/j.esf.sf.2022.6.11

• 非主题来稿选登 • 上一篇    下一篇

一个新的花岗岩成因分类:基于变质岩深熔作用理论与大数据的证据

张旗1,2(), 翟明国1,2, 魏春景3, 周李岗1,2, 陈万峰4, 焦守涛5,6, 王跃7, 袁方林1,2   

  1. 1.中国科学院 地质与地球物理研究所, 北京 100029
    2.岩石圈演化国家重点实验室, 北京 100029
    3.北京大学 地球与空间科学学院, 北京 100871
    4.兰州大学 地质科学与矿产资源学院 甘肃省西部矿产资源重点实验室, 甘肃 兰州 730000
    5.中国地质调查局 发展研究中心, 北京 100037
    6.自然资源部 地质信息工程技术创新中心, 北京 100037
    7.中国地质大学(北京) 地球科学与资源学院, 北京 100083
  • 收稿日期:2022-05-20 修回日期:2022-06-10 出版日期:2022-07-25 发布日期:2022-07-28
  • 作者简介:张 旗(1937—),男,研究员,从事岩石学和地球化学相关的科研工作。E-mail: zq1937@126.com
  • 基金资助:
    自然资源部深地科学与探测技术实验室开放课题(202211);国家自然科学基金重大项目(41890834);中国科学院重点项目(QYZDY-SSWDQc017);中国科学院重点项目(41000000);国家重点研发计划项目“基于地质云的地质灾害基础信息提取与大数据分析挖掘(2018YFC1505501);国家重点研发计划项目“基于‘地质云’平台的深部找矿知识挖掘(2016YFC0600510);国家自然科学基金项目“大数据环境下的滑坡危险性评估模型构建方法研究(41872253);中国地质调查局项目“地球科学数据集成与服务(DD20221785)

Innovative petrogenetic classification of granitoids: Perspective from metamorphic anatexis and big data

ZHANG Qi1,2(), ZHAI Mingguo1,2, WEI Chunjing3, ZHOU Ligang1,2, CHEN Wanfeng4, JIAO Shoutao5,6, WANG Yue7, YUAN Fanglin1,2   

  1. 1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. State Key Laboratory of Lithospheric Evolution, Beijing 100029, China
    3. School of Earth and Space Sciences, Peking University, Beijing 100871, China
    4. Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
    5. Development Research Center, China Geological Survey, Beijing 100037, China
    6. Technology Innovation Center of Geological Information, Ministry of Natural Resources, Beijing 100037, China
    7. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2022-05-20 Revised:2022-06-10 Online:2022-07-25 Published:2022-07-28

摘要:

花岗岩目前的ISMA分类不是一个系统的分类,花岗岩分类可能需要从花岗岩的起源来考虑。花岗岩源自变质岩,可能是来自地幔或玄武质岩浆底侵带来的热导致的下地壳底部发生部分熔融的熔体形成的。因此,花岗岩与变质岩源岩有成因联系和因果关系,变质岩为母,花岗岩为子。根据埃达克岩与残留相平衡的理论,埃达克岩形成于斜长石消失线之上。那么,出现在石榴石出现线之上的是什么花岗岩呢?出现在石榴石出现线之下的又是什么花岗岩呢?本文即尝试从这个思路来探讨花岗岩的分类,并采用大数据方法予以佐证,得到的初步结果可以将花岗岩分为3类:(1)位于斜长石消失线之上的为高Sr低Y型花岗岩(高压,代表加厚的地壳);(2)位于斜长石消失线与石榴石出现线之间的为低Sr低Y类型花岗岩(中压,代表正常厚度的地壳);(3)位于石榴石出现线之下的为高Y型花岗岩(低压,代表减薄的地壳)。大数据研究的结果支持上述分类,给出的地球化学标志大体是:Sr含量为400×10-6,Y含量为(20~35)×10-6

关键词: 花岗岩分类, 变质岩, 部分熔融, 深熔作用, 残留相, 大数据

Abstract:

The current ISMA classification of granitoids is not systematic and lacks petrogenetic specification. Most granitoids may have originated from anatexis of metamorphic rocks under lower crustal conditions, triggered by conductive and/or advective heating from asthenosphere mantle uprising and basaltic magma underplating. Thus, granitoid petrogenesis is causally related to metamorphism, and, to some extent, there is a parent-child relation between metamorphic rocks and granitoids. If adakites are formed by partial melting of eclogites under high-pressure (HP) conditions without plagioclase, what about granitoid types formed by partial melting under medium-pressure (MP) conditions with the presence of both plagioclase and garnet, or under low-pressure (LP) conditions without garnet? On the basis of these considerations, combined with big data technology, we proposed an alternative granitoid classification scheme. Granitoids are classified into three types: (1) high Sr-low Y type formed under HP conditions without plagioclase in subducted slabs or thickened crustal regions; (2) low Sr-low Y type formed under MP conditions with both plagioclase and garnet in normal or slightly thickened crustal regions; and (3) low Sr-high Y type formed under LP conditions without garnet in extended crustal regions. Big data statistics suggested that the above three granitoid types can be roughly demarcated by the geochemical criteria-Sr content of 400×10-6 and Y content of (20-35)×10-6.

Key words: classification of granitoids, metamorphism, partial melting, anatexis, residue, big data

中图分类号: