[1] |
陈建平, 李靖, 谢帅, 等. 中国地质大数据研究现状[J]. 地质学刊, 2017, 41(3): 353-366.
|
[2] |
周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2): 327-331, 344.
|
[3] |
周永章, 陈川, 张旗, 等. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 2020, 44(2): 173-182.
|
[4] |
周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263.
|
[5] |
翟明国, 杨树锋, 陈宁华, 等. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 2018, 33(8): 825-831.
|
[6] |
QIU Q J, MA K, LV H R, et al. Construction and application of a knowledge graph for iron deposits using text mining analytics and a deep learning algorithm[J]. Mathematical Geosciences, 2023, 55(3): 423-456.
|
[7] |
QIU Q J, XIE Z, MA K, et al. BERTCWS: unsupervised multi-granular Chinese word segmentation based on a BERT method for the geoscience domain[J]. Annals of GIS, 2023, 29(3): 387-399.
|
[8] |
WANG C B, LI Y J, CHEN J G. Text mining and knowledge graph construction from geoscience literature legacy: a review[R]// MA X, MOOKERJEE M, HSU L, et al. Recent advancement in geoinformatics and data science. Boulder, Colorado: Geological Society of America, 2023: 11-28.
|
[9] |
WANG C B, MA X G, CHEN J G, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers and Geosciences, 2018, 112: 112-120.
|
[10] |
WANG C B, LI Y J, CHEN J G, et al. Named entity annotation schema for geological literature mining in the domain of porphyry copper deposits[J]. Ore Geology Reviews, 2023, 152: 105243.
|
[11] |
HART P E, DUDA R O, EINAUDI M T. Prospector: a computer-based consultation system for mineral exploration[J]. Journal of the International Association for Mathematical Geology, 1978, 10(5): 589-610.
|
[12] |
张东晓. 科学机器学习中的知识嵌入与知识发现[R/OL]. (2023-01-28)[2024-01-15]. https://www.jiqizhixin.com/articles/2023-01-28-2.
|
[13] |
吴飞. 数据驱动与知识引导相互结合的智能计算[J]. 智能系统学报, 2022, 17(1): 217-219.
|
[14] |
SINGHAL A. Official Google Blog: introducing the knowledge graph: things, not strings[R/OL]. (2015-01-02)[2023-12-04]. https://www.mendeley.com/catalogue/ca10852b-1f48-3172-9b4f-8b521878b39d/.
|
[15] |
BRODARIC B, GAHEGAN M. Representing geoscientific knowledge in cyberinfrastructure: some challenges, approaches, and implementations[M]//Geoinformatics: data to knowledge. Boulder, Colorado: Geological Society of America, 2006.
|
[16] |
BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323.
|
[17] |
周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学: 地球科学, 2021, 51(7): 1070-1079.
|
[18] |
GIL Y, PIERCE S A, BABAIE H, et al. Intelligent systems for geosciences[J]. Communications of the ACM, 2018, 62(1): 76-84.
|
[19] |
NORMILE D. Earth scientists plan a ‘geological Google’[J]. Science, 2019, 363(6430): 917.
|
[20] |
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
|
[21] |
PETERS S E, ZHANG C, LIVNY M, et al. A machine reading system for assembling synthetic paleontological databases[J]. PLoS One, 2014, 9(12): e113523.
|
[22] |
HUSSON J M, PETERS S E, ROSS I, et al. Macrostrat and GeoDeepDive: a platform for geological data integration and deep-time research[C/OL]// Proceedings of the AGU fall meeting 2016 abstracts. San Francisco: American Geophysical Union, 2016[2023-09-01]. https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/187029.
|
[23] |
ZHANG C. DeepDive: a data management system for automatic knowledge base construction[D]. Madison, WI: The University of Wisconsin-Madison, 2015.
|
[24] |
KOSKELA R, RAMAMURTHY M, PEARLMAN J, et al. Earthcube: a community-driven cyberinfrastructure for the geosciences[C/OL]// Proceedings of 19th EGU general assembly conference abstracts. Vienna, Austria: European Geosciences Union, 2017: 5884[2023-06-15]. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-5884-1.pdf.
|
[25] |
成秋明. 深时数字地球: 全球古地理重建与深时大数据[J]. 国际学术动态, 2019(6): 28-29.
|
[26] |
WANG C S, HAZEN R M, CHENG Q M, et al. The Deep-Time Digital Earth program: data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): nwab027.
|
[27] |
STEPHENSON M H, CHENG Q M, WANG C S, et al. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme[J]. Episodes, 2020, 43(4): 1057-1062.
|
[28] |
MA X G, MA C, WANG C B. A new structure for representing and tracking version information in a deep time knowledge graph[J]. Computers and Geosciences, 2020, 145: 104620.
|
[29] |
RASKIN R G, PAN M J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Computers and Geosciences, 2005, 31(9): 1119-1125.
|
[30] |
COX S J D, RICHARD S M. A geologic timescale ontology and service[J]. Earth Science Informatics, 2015, 8(1): 5-19.
|
[31] |
WANG C B, MA X G, CHEN J G. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information[J]. Computers and Geosciences, 2018, 115: 12-19.
|
[32] |
MENTES H. Design and development of a mineral exploration ontology[D]. Atlanta, GA: Georgia State University, 2012.
|
[33] |
WANG C B, TAN L Q, LI Y J, et al. Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits[J]. Earth Science Informatics, 2024: 1-12. https://doi.org/10.1007/s12145-024-01307-5.
|
[34] |
李国和, 杨新颖, 叶婷, 等. 海相油气地质的概念本体知识系统设计与实现[J]. 计算机应用, 2010, 30(2): 532-536.
|
[35] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
DOI
|
[36] |
BABAIE H A, OLDOW J S, BABAEI A, et al. Designing a modular architecture for the structural geology ontology[M]//Geoinformatics: data to knowledge. Boulder, Colorado: Geological Society of America, 2006. 2006.
|
[37] |
ZHONG J, AYDINA A, MCGUINNESS D L. Ontology of fractures[J]. Journal of Structural Geology, 2009, 31(3): 251-259.
|
[38] |
MANTOVANI A, PIANA F, LOMBARDO V. Ontology-driven representation of knowledge for geological maps[J]. Computers and Geosciences, 2020, 139: 104446.
|
[39] |
LIU G, WANG Y N, WU C L. Research and application of geological hazard domain ontology[C/OL]// 2010 18th international conference on geoinformatics. Beijing: IEEE, 2010: 1-6[2011-06-16]. https://www.doi.org/10.1109/GEOINFORMATICS.2010.5567498.
|
[40] |
RUEDA C, BERMUDEZ L, FREDERICKS J. The MMI ontology registry and repository: a portal for marine metadata interoperability[C/OL]// Oceans 2009. Biloxi: IEEE, 2009: 1-6[2010-09-01]. https://www.doi.org/10.23919/OCEANS.2009.5422206.
|
[41] |
黄刚. 知识图谱构建方法及其在油气勘探开发领域应用研究[D]. 大庆: 东北石油大学, 2019.
|
[42] |
QIU Q J, XIE Z, WU L, et al. BiLSTM-CRF for geological named entity recognition from the geoscience literature[J]. Earth Science Informatics, 2019, 12(4): 565-579.
|
[43] |
QIU Q J, XIE Z, WU L, et al. GNER: a generative model for geological named entity recognition without labeled data using deep learning[J]. Earth and Space Science, 2019, 6(6): 931-946.
|
[44] |
QIU Q J, XIE Z, WU L. A cyclic self-learning Chinese word segmentation for the geoscience domain[J]. Geomatica, 2018, 72(1): 16-26.
|
[45] |
HUANG L, DU Y F, CHEN G Y. GeoSegmenter: a statistically learned Chinese word segmenter for the geoscience domain[J]. Computers and Geosciences, 2015, 76: 11-17.
|
[46] |
LI S, CHEN J P, XIANG J. Prospecting information extraction by text mining based on convolutional neural networks: a case study of the lala copper deposit, China[J]. IEEE Access, 2018, 6: 52286-52297.
|
[47] |
ZHU Y Q, ZHOU W W, XU Y, et al. Intelligent learning for knowledge graph towards geological data[J]. Scientific Programming, 2017, 2017: 5072427.
|
[48] |
王永志, 金樑, 朱月琴, 等. 基于大数据技术的地学文档关键词提取算法研发[J]. 地球物理学进展, 2018, 33(3): 1274-1281.
|
[49] |
QIU Q J, XIE Z, WU L, et al. Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques[J]. Earth Science Informatics, 2020, 13(4): 1393-1410.
|
[50] |
ZHOU X G, GONG R B, SHI F G, et al. PetroKG: construction and application of knowledge graph in upstream area of PetroChina[J]. Journal of Computer Science and Technology, 2020, 35(2): 368-378.
|
[51] |
HOLDEN E J, LIU W, HORROCKS T, et al. GeoDocA-Fast analysis of geological content in mineral exploration reports: a text mining approach[J]. Ore Geology Reviews, 2019, 111: 102919.
|
[52] |
PETERS S E, HUSSON J M, WILCOTS J. The rise and fall of stromatolites in shallow marine environments[J]. Geology, 2017, 45(6): 487-490.
|
[53] |
MOORE E K, HAO J H, PRABHU A, et al. Geological and chemical factors that impacted the biological utilization of cobalt in the Archean eon[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(3): 743-759.
|
[54] |
赵鹏大. “三联式” 资源定量预测与评价: 数字找矿理论与实践探讨[J]. 地球科学, 2002, 27(5): 482-489.
|
[55] |
赵鹏大. 关于数字地质[C]// 中国地质学会. 第十届全国数学地质与地学信息学术研讨会论文集. 武汉: 中国地质大学出版社, 2011.
|
[56] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573.
|
[57] |
左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘, 2021, 28(3): 49-55.
DOI
|
[58] |
左仁广, 彭勇, 李童, 等. 基于深度学习的地质找矿大数据挖掘与集成的挑战[J]. 地球科学, 2021(1): 350-358.
|
[59] |
赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7): 1255-1259.
|
[60] |
张金川, 陈世敬, 李中明, 等. 页岩气资源智能评价[J]. 油气藏评价与开发, 2021, 11(4): 476-486.
|
[61] |
肖克炎, 孙莉, 李楠, 等. 大数据思维下的矿产资源评价[J]. 地质通报, 2015, 34(7): 1266-1272.
|
[62] |
WÓJCIK S, OSMAN T, ZAWADA P. Semanticapproach for prospectivity analysis of mineral deposits[C]// Proceedings of the 2nd international conference on geographical information systems theory, applications and management. Rome, Italy: Science and Technology Press, 2016: 180-189.
|
[63] |
MCGREGOR J, SMYTH C, POOLE D. Ontology-based reasoning applications for mineral exploration and hazard mapping[C/OL]// Proceedings of 21th EGU general assembly conference abstracts, Vienna, Austria: European Geosciences Union, 2019: 11552[2020-02-16]. https://ui.adsabs.harvard.edu/abs/2019EGUGA..2111552M/abstract.
|
[64] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI
|
[65] |
杨明莉, 薛林福, 冉祥金, 等. 智能矿产地质调查方法: 以甘肃大桥-崖湾地区为例[J]. 岩石学报, 2021, 37(12): 3880-3892.
|
[66] |
LI S, CHEN J P, LIU C. Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data[J]. Minerals, 2022, 12(5): 616.
|
[67] |
LI S, LIU C, CHEN J. Mineral prospecting prediction via transfer learning based on geological big data: a case study of Huayuan, Hunan, China[J]. Minerals, 2023, 13(4): 504.
|
[68] |
吴永亮, 贾志杰, 陈建平, 等. 基于大数据智能的找矿模型构建与预测[J]. 中国矿业, 2017, 26(9): 79-84.
|
[69] |
LAWLEY C J M, GADD M G, PARSA M, et al. Applications of natural language processing to geoscience text data and prospectivity modeling[J]. Natural Resources Research, 2023, 32(4): 1503-1527.
|
[70] |
罗转霞. 云南省锡矿领域语义关系抽取及知识图谱构建[D]. 武汉: 中国地质大学(武汉), 2023.
|