地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 406-435.DOI: 10.13745/j.esf.sf.2023.6.11
张旗1,2(), 翟明国1,2, 魏春景3, 周李岗1,2, 黄广宇1,2, 陈万峰4, 焦守涛5,6, 汤军7, 刘睿8, 原杰9, 王振10,11, 王跃11, 袁方林1,2
收稿日期:
2023-01-12
修回日期:
2023-06-07
出版日期:
2023-11-25
发布日期:
2023-11-25
作者简介:
张旗(1937—),男,研究员,主要从事岩石学和地球化学相关的科研工作。E-mail: zq1937@126.com
基金资助:
ZHANG Qi1,2(), ZHAI Mingguo1,2, WEI Chunjing3, ZHOU Ligang1,2, HUANG Guangyu1,2, CHEN Wanfeng4, JIAO Shoutao5,6, TANG Jun7, LIU Rui8, YUAN Jie9, WANG Zhen10,11, WANG Yue11, YUAN Fanglin1,2
Received:
2023-01-12
Revised:
2023-06-07
Online:
2023-11-25
Published:
2023-11-25
摘要:
花岗岩的成因既是古老的问题,也是当前急迫的科学前沿。100年前花岗岩的火成论与变成论之争,以火成论压倒变成论而收兵。近百年的研究证明,火成论并非完美,关键是玄武岩浆分离结晶成花岗岩的机理受到严峻的挑战。而今,花岗岩源自下地壳变质出熔已经成为不争的事实,说明花岗岩的源头是变质岩。关于花岗岩成因的理论很多,经过多年的筛选,可能花岗岩形成的四阶段理论(从产生、分凝、上升到侵位)是比较合适的。在对该理论详细研究的基础上,本文提出了一个新的花岗岩四阶段理论:从产生、形成、上升到侵位。这是对花岗岩形成过程的描述。如果强调花岗岩形成的机理,则可表述为从出熔、聚集、上升到侵位。四个阶段分为两段:产生和形成(出熔和聚集)是升温过程;上升和侵位是降温过程。该理论的核心是本文提出的“下地壳岩浆房”的猜想,这指的是由部分熔融产生的熔体经聚集形成的巨大空间。首先,这个猜想解决了下地壳岩浆的空间占位问题。由于下地壳原地部分熔融熔出的产物(熔体+残留体)仅仅是物质组成形式发生了变化,不存在空间占位问题,下地壳总体积基本不变。只要存在持续的地幔加热过程,岩浆房体积可以逐渐增大一直到变得非常大。其次,关于花岗岩上升的驱动力问题,我们认为,可能正是下地壳岩浆房上覆的几十公里厚的地层静压力,在岩浆房沿着破裂带溢出时转换为巨大的压力驱使岩浆向上运移,而非岩浆自身的浮力。因此,从理论上,花岗岩上升的速度是非常快的,地质上几乎是瞬间实现的。再次,本理论还合理地解释了花岗岩侵位空间这个古老的难题:下地壳岩浆房上升移出,原先的空间即刻被上覆地层压实填充,造成上覆地层的塌陷,并传递到脆性的上地壳;同时引起上地壳支撑薄弱部位出现构造真空,为上升的岩浆提供驻足空间而完成岩浆侵位过程。很明显,从下地壳岩浆房的消失、转移到上地壳岩浆侵位,实现了空间的置换。看来,“下地壳岩浆房”概念的提出,较好地解决了花岗岩许多传统争议问题。猜想需要论证和证伪,为了深入研究上述问题,本文建议建立两门边缘学科:变质岩浆岩石学和物理地质学。
中图分类号:
张旗, 翟明国, 魏春景, 周李岗, 黄广宇, 陈万峰, 焦守涛, 汤军, 刘睿, 原杰, 王振, 王跃, 袁方林. 新时代花岗岩的新理论:花岗岩四阶段理论探讨[J]. 地学前缘, 2023, 30(6): 406-435.
ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, HUANG Guangyu, CHEN Wanfeng, JIAO Shoutao, TANG Jun, LIU Rui, YUAN Jie, WANG Zhen, WANG Yue, YUAN Fanglin. A new granitization theory: Discussion on the four-stage granitization theory[J]. Earth Science Frontiers, 2023, 30(6): 406-435.
图2 花岗岩演化的p-T轨迹 浅色细虚线表示进变质作用p-T轨迹,浅色粗虚线表示经历了深熔作用的残留相的p-T轨迹,深色粗实线表示部分熔融形成的花岗岩的四阶段模式的p-T轨迹。附图说明了花岗岩形成与演化期间的主要过程。花岗岩产生自变质岩进变质作用p-T轨迹的某处,地幔上涌导致下地壳温度剧烈升高,但是压力不变(地壳厚度不变),故产生阶段大体是一个等压升温过程。在此期间,随温度不同可能萃取出不同的熔体,如熔体1、熔体2、熔体3等(它们的部分熔融程度也不同)。熔体移出,留下的为变质岩残留体,如残留相1、残留相2、残留相3等(图中未表示)。在p-T轨迹拐弯处开始岩浆的形成阶段,这是花岗岩温度最高的阶段,在这里及其附近可能是适合下地壳岩浆房出现的部位。不同成分的熔体、脉体等在岩浆房内发生一系列的变化和演化,形成各种不同的花岗质岩浆。此后为岩浆快速上升阶段,这是一个等温降压过程。而侵位则是花岗岩的冷却固结阶段,为等压降温的趋势。故花岗岩p-T轨迹大体是一个方框形的曲线(注:图顶部的4个小图,熔体和脉体参考了文献[32]的图5,黑云母分解和角闪石分解图则取自文献[32]的图4)
Fig.2 p-T paths of granite
图3 部分熔融形成的初始熔体 深色箭头指的是初始熔体(白色细脉),成分(退变质后)为斜长石、钾长石和少量黑云母;浅色条表示比例尺,长度1 mm。
Fig.3 Initial melt (white veins indicated by red arrows) formed by partial melting
图4 全球扩张中心中酸性岩主元素图 图中深色区域为数据点密度分布范围,我们将所有数据密度分为5级,只保留最密集的3级:从内而外,随着颜色的变浅,分别为全部数据的20%,40%和60%,下同。
Fig.4 Major element geochemistry of intermediate-acid rocks of spreading centers along MOR
图5 全球扩张中心中酸性岩(熔体+花岗岩)的Nb-Y图和Rb-(Nb+Y)图(点线据文献[50])
Fig.5 Nb vs. Y and Rb vs. Nb+Y discrimination diagrams for intermediate-acid rocks of spreading centers along MOR
图6 全球扩张中心w(K2O)<2.0%的中酸性岩(花岗岩+熔体)的Nb-Y图和Rb-(Nb+Y)图
Fig.6 Nb vs. Y and Rb vs. Nb+Y discrimination diagrams for intermediate-acid rocks (with w(K2O)<2.0%) of spreading centers along MOR
图9 碰撞造山带地壳在主动型张裂作用条件下因软流圈地幔上涌加热导致的脱水和水化熔融模式图(据文献[50])
Fig.9 Asthenosphere heating model for coupled dehydration-hydration processes for partial melting of the orogenic crust at active rifts. Adapted from [50].
图11 冀东英云闪长质片麻岩样品J13在NCKFMASHTO(+q)体系中的p-T视剖面图(据文献[64]修改)
Fig.11 p-T apparent section calculated in the NCKFMASHTO (+q) system for tonalite gneiss sample J13 from eastern Hebei. Modified after [64].
图12 冀东英云闪长质片麻岩J13在0.7、1.0和2.0 GPa压力条件下升温熔融过程中各矿物相及熔体含量变化(据文献[64]修改) a0-a6、b0-b5、c0-c3分别对应图11中选取的不同温压点;图中深色方框为本文厘定的形成花岗岩的最佳温度范围。
Fig.12 Changes of mineral phases and melt content of tonalite gneiss sample J13 during heating and melting at 0.7, 1.0 and 2.0 GPa. Modified after [64].
图13 不同原岩形成的不同花岗岩及岩浆房示意图 数字表示不同的原岩及不同的岩浆房,原岩1部分熔融形成的熔体汇聚形成的岩浆房为1,原岩2形成的岩浆房为2,以此类推。不同的岩浆房可以合并,汇聚形成规模更大的岩浆房。
Fig.13 Schematic diagram of different granites and magma chambers formed by different source rocks
图14 岩浆上升侵位示意图 A—岩浆上升侵位之前的状态:下地壳岩浆房形成,白色箭头表示岩浆由于密度低产生的一个向上的浮力。B—岩浆房上覆地层出现软弱带或裂隙,岩浆房破裂,岩浆上升,岩浆房上覆几十公里的地层压力(浅色箭头)即是岩浆上升的驱动力。由于岩浆属于流体,具有不可压缩性,故上覆压力全部转换成驱使岩浆上升的动力(浅色箭头),这个力非常巨大,故岩浆上升的速度是非常快的。岩浆上升到地壳浅部脆性地壳,挤出一个空间(黑色箭头)。这个空间是主动形成的,不是被动形成的。原因是岩浆上升,岩浆房被压缩,岩浆房上覆地层塌陷,于是在适当的位置留下了可以供岩浆进入的空间。C—下地壳岩浆房的岩浆基本上转移到上地壳岩浆侵位处,显然,这个侵位空间主要是下地壳岩浆房消失、地层塌陷置换过来的,不存在单纯岩浆强力挤压的作用。由于地层基本上是水平的,在地层水平延展方向应力最低,故侵位的巨型花岗岩大多呈平板状分布。但是,不排除有向上的挤压力(图中的浅色箭头),那是岩浆的热烘烤了上覆地层,使上覆地层构造弱化导致的。下地壳岩浆房消失以后,留下的残余岩浆不可能长期保持岩浆状态,将被强烈压缩,转变为混合岩或花岗质片麻岩,下地壳岩浆房即不复存在。
Fig.14 Schematic diagram of magma ascent and emplacement
图16 Sawmill Canyon 岩体野外照片(据文献[71]) 左图:下部为早期的Half Dome花岗闪长岩,席状带为南北走向,被晚期东西走向的Cathedral Peak淡色花岗岩席状岩墙所截断。右图:Half Dome 花岗闪长岩中不同程度弯曲的纹影带。
Fig.16 Field photos of the sheeted zones in Sawmill Canyon. Adapted from [71].
图17 Sawmill Canyon岩体层状结构野外照片(据文献[71]) 左图:Sawmill Canyon岩体层状条带被Cathedral Peak伟晶岩岩墙切割。层状条带的厚度从1 m左右至厘米级;许多层的底部具由镁铁质和副矿物富集组成的纹影,顶部主要为粗粒的长英质岩石。有些含钾长石巨晶,有些无巨晶。右图:镁铁质-长英质纹影层,边界界线截然,局部被断层错断,刻度尺为10 cm。
Fig.17 Field photos of layering in Sawmill Canyon. Adapted from [71].
图18 格陵兰西南部Tigssaluk和Alangorssuag花岗岩侵入体中富含黑云母的不同类型的纹影(据文献[65]) 1—纹影具有清晰的底部,上部模糊,整体让人联想到有节奏的分层(也有人认为是堆晶的证据);2—卷曲的纹影,可能是流动受阻造成的;3—薄镁铁质层向上汇合,仿佛在其形成过程中受到下方障碍物的影响;4—平行纹影,底部清晰,上部模糊,含有大量平行排列的长石晶体(不是堆晶形成的)。
Fig.18 Different types of schlieren rich in biotite in the Tigssaluk and Alangorssuag granite intrusions in southwestern Greenland. Adapted from [65].
图19 花岗岩空间占位模式图 A—正常地壳,下地壳底部为角闪岩相(浅色,数字表示岩石密度)。B—地幔上涌,下地壳部分熔融形成花岗岩(深色),残留相为麻粒岩相(浅色),可表示为:V角闪岩相(密度2.8)= V花岗岩(密度2.6)+ V残留的麻粒岩相(密度2.9)(密度单位为g/cm3)。在下地壳,花岗岩占位空间等于部分熔融形成熔体后残余体压缩留下的空间(B图),因此,部分熔融形成花岗岩不存在空间占位问题。C—花岗岩上升侵位,下地壳岩浆房消失,被上覆地层填补,造成岩浆房上部地层塌陷。假定这个规模巨大的岩浆房为100 km ×50 km ×10 km,引起的垮塌可能波及整个中地壳和上地壳,地壳下部具韧性,上部具脆性,塌陷表现也不同。由于塌陷留下的空间正好被向上侵入的花岗岩占据,因此,花岗岩上升大体相当于把下地壳岩浆房搬运到上地壳岩基出露的位置。所以,花岗岩侵位的空间是地层塌陷主动空出来的,不是花岗岩侵入被动挤出来的,是花岗岩置换造成的。
Fig.19 Space occupancy pattern of granite
图20 岩浆凝固期间晶体和熔体之间几何关系的模式图(据文献[65]) 第1阶段形成孤立的晶体,晶体逐渐长大(但不下沉到岩浆房底部形成堆晶岩);第2阶段晶体相连形成框架;第3阶段晶间从互相联通到互相隔绝,再到熔体消失。
Fig.20 Pattern diagram of geometric relationship between crystal and melt during magma solidification. Adapted from [65].
图21 花岗岩侵位示意图(据文献[58]) 美国华盛顿雷尼尔山国家公园中新世—上新世的塔图什侵入体横剖面示意图。
Fig.21 Schematic cross sections from Miocene-Pliocene Tatoosh complex in Mount Rainier National Park, Washington. Adapted from [58].
[1] | PETFORD N, 崔迎春. 地壳中花岗岩浆的生成、运移和就位[J]. 世界地质, 2001, 20(4): 321-326. |
[2] |
BROWN M. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens[J]. Earth-Science Reviews, 1994, 36(1/2): 83-130.
DOI URL |
[3] | PETFORD N, CLEMENS J D, VIGNERESSE J L. Application of information theory to the formation of granitic rocks[M]//BOUCHEZ J L, HUTTON D H W, STEPHENS W E. Granite: from segregation of melt to emplacement fabrics. Dordrecht: Springer, 1997: 3-10. |
[4] | 桑隆康, 马昌前. 岩石学[M]. 北京: 地质出版社, 2022. |
[5] | RUDNICK R L, GAO S. Composition of the continental crust[M]//WALTER M J. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[6] |
BROWN M. The mechanism of melt extraction from lower continental crust of orogens[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95(1/2): 35-48.
DOI URL |
[7] |
VIGNERESSE J L. Crustal regime of deformation and ascent of granitic magma[J]. Tectonophysics, 1995, 249(3/4): 187-202.
DOI URL |
[8] |
SAWYER E W, CESARE B, BROWN M. When the continental crust melts[J]. Elements, 2011, 7(4): 229-234.
DOI URL |
[9] | BROWN M, RUSHMER T. Evolution and differentiation of the continental crust[M]. Cambridge: Cambridge University Press, 2006. |
[10] |
BOWEN N L. Diffusion in silicate melts[J]. The Journal of Geology, 1921, 29(4): 295-317.
DOI URL |
[11] | BOWEN N L. The evolution of the igneous rocks[M]. Princeton: Princeton University Press, 1928. |
[12] |
HOLLISTER L S, CRAWFORD M L. Melt-enhanced deformation: a major tectonic process[J]. Geology, 1986, 14(7): 558-561.
DOI URL |
[13] |
HOLLISTER L S. The role of melt in the uplift and exhumation of orogenic belts[J]. Chemical Geology, 1993, 108(1/2/3/4): 31-48.
DOI URL |
[14] | 曾令森, 高利娥,SALEEBY J B. 变泥质岩递进部分熔融作用的构造物理学效应[J]. 地质通报, 2008, 27(12): 1992-2000. |
[15] |
HANDY M R. The solid-state flow of polymineralic rocks[J]. Journal of Geophysical Research, 1990, 95(B6): 8647-8661.
DOI URL |
[16] |
SAWYER E W. Melt segregation in the continental crust[J]. Geology, 1994, 22(11): 1019-1022.
DOI URL |
[17] |
HANDY M R, WISSING S, STREIT J E. Strength and structure of mylonite with combined frictional-viscous rheology and varied bimineralic composition[J]. Tectonophysics, 1999, 303(1/2/3/4): 175-191.
DOI URL |
[18] |
VIGNERESSE J L, BARBEY P, CUNEY M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer[J]. Journal of Petrology, 1996, 37(6): 1579-1600.
DOI URL |
[19] |
VILÀ M, FERNÁNDEZ M, JIMÉNEZ-MUNT I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling[J]. Tectonophysics, 2010, 490(3/4): 152-164.
DOI URL |
[20] |
CLARK C, FITZSIMONS I C W, HEALY D, et al. How does the continental crust get really hot?[J]. Elements, 2011, 7(4): 235-240.
DOI URL |
[21] |
BEA F. The sources of energy for crustal melting and the geochemistry of heat-producing elements[J]. Lithos, 2012, 153: 278-291.
DOI URL |
[22] |
BROWN M. Granite: from genesis to emplacement[J]. Geological Society of America Bulletin, 2013, 125(7/8): 1079-1113.
DOI URL |
[23] |
LAURENT O, COUZINIÉ S, ZEH A, et al. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U-Pb dating in the eastern French Massif Central[J]. International Journal of Earth Sciences, 2017, 106(2): 421-451.
DOI URL |
[24] |
ZHENG Y F, CHEN R X. Regional metamorphism at extreme conditions: implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 2017, 145: 46-73.
DOI URL |
[25] |
ENGLAND P C, THOMPSON A B. Pressure-temperature-time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4): 894-928.
DOI URL |
[26] |
GAO P, ZHENG Y F, ZHAO Z F. Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis[J]. Lithos, 2016, 266/267: 133-157.
DOI URL |
[27] | JOHANNES W, HOLTZ F. Petrogenesis and experimental petrology of granitic rocks[M]. Berlin, Heidelberg: Springer, 1996. |
[28] |
CLEMENS J D, VIELZEUF D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2/3/4): 287-306.
DOI URL |
[29] |
ANNEN C, BLUNDY J D, SPARKS R S J. The sources of granitic melt in Deep Hot Zones[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2008, 97(4): 297-309.
DOI URL |
[30] |
WYLLIE P J, OSMASTON M F, MORRISON M A. Constraints imposed by experimental petrology on possible and impossible magma sources and products[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1984, 310(1514): 439-456.
DOI URL |
[31] |
MÜNTENER O, ULMER P. Arc crust formation and differentiation constrained by experimental petrology[J]. American Journal of Science, 2018, 318(1): 64-89.
DOI URL |
[32] | JACOB J B, MOYEN J F. Granite and related rocks[M]//ASHTON H. Encyclopedia of geology. Amsterdam: Elsevier, 2021: 170-183. |
[33] |
JIN Z M, LI H, BORCH R S. Microstructures of olivine and stresses in the upper mantle beneath eastern China[J]. Tectonophysics, 1989, 169(1/2/3): 23-50.
DOI URL |
[34] | HIRTH G, KOHLSTEDT D L. Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15441-15449. |
[35] |
SAWYER E W. Melt segregation and magma flow in migmatites: implications for the generation of granite magmas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87(1/2): 85-94.
DOI URL |
[36] | 刘正宏, 徐仲元, 杨振升. 部分熔融与高级变质岩流变机制: 以内蒙古大青山高级变质岩为例[J]. 地学前缘, 2008, 15(3)168-177. |
[37] | GILL R. Igneous rocks and processes: a practical guide[M]. Chichester: Wiley-Blackwell, 2010. |
[38] | 魏春景. 麻粒岩相变质作用与花岗岩成因: Ⅱ 变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟[J]. 岩石学报, 2016, 32(6): 1625-1643. |
[39] | JACKSON M D, CHEADLE M J, ATHERTON M P. Quantitative modeling of granitic melt generation and segregation in the continental crust[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B7): 2332. |
[40] |
JACKSON M D, GALLAGHER K, PETFORD N, et al. Towards a coupled physical and chemical model for tonalite-trondhjemite-granodiorite magma formation[J]. Lithos, 2005, 79(1/2): 43-60.
DOI URL |
[41] |
GETSINGER A, RUSHMER T, JACKSON M D, et al. Generating high Mg-numbers and chemical diversity in tonalite-trondhjemite-granodiorite (TTG) magmas during melting and melt segregation in the continental crust[J]. Journal of Petrology, 2009, 50(10): 1935-1954.
DOI URL |
[42] |
FAURE F, TROLLIARD G, MONTEL J M, et al. Nano-petrographic investigation of a mafic xenolith (Maar de Beaunit, Massif Central, France)[J]. European Journal of Mineralogy, 2001, 13(1): 27-40.
DOI URL |
[43] |
WEI C S, ZHENG Y F, ZHAO Z F, et al. Oxygen and neodymium isotope evidence for recycling of juvenile crust in Northeast China[J]. Geology, 2002, 30(4): 375-378.
DOI URL |
[44] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. |
[45] |
ZHENG Y F, ZHANG S B, ZHAO Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1/2): 127-150.
DOI URL |
[46] |
ZHENG Y F, WU R X, WU Y B, et al. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383.
DOI URL |
[47] |
QIAN X, WANG Y J, FENG Q L, et al. Zircon U-Pb geochronology, and elemental and Sr-Nd-Hf-O isotopic geochemistry of post-collisional rhyolite in the Chiang Khong area, NW Thailand and implications for the melting of juvenile crust[J]. International Journal of Earth Sciences, 2017, 106(4): 1375-1389.
DOI URL |
[48] |
TANG Y W, CHEN L, ZHAO Z F, et al. Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese Orogen, southern Tibet[J]. Geological Society of America Bulletin, 2020, 132(7/8): 1347-1364.
DOI URL |
[49] | 张旗, 赵大升, 李达周. 云南新平县双沟蛇绿岩中地幔岩初始熔融物[J]. 岩石学报, 1991, 7(1): 1-15, 95. |
[50] |
ZHENG Y F, GAO P. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 2021, 402/403: 106232.
DOI URL |
[51] |
PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94.
DOI URL |
[52] |
SHAW H R. Viscosities of magmatic silicate liquids: an empirical method of prediction[J]. American Journal of Science, 1972, 272(9): 870-893.
DOI URL |
[53] |
DAVIDSON C, SCHMID S M, HOLLISTER L S. Role of melt during deformation in the deep crust[J]. Terra Nova, 1994, 6(2): 133-142.
DOI URL |
[54] |
WHITTINGTON A G, TRELOAR P J. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya[J]. Mineralogical Magazine, 2002, 66(1): 53-91.
DOI URL |
[55] | 李江海. 麻粒岩相变质的岩石学成因模式[J]. 地质科技情报, 1996, 15(1): 7-12. |
[56] |
FYFE W S. A discussion on the evolution of the Precambrian crust: the granulite facies, partial melting and the Archaean crust[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1973, 273(1235): 457-461.
DOI URL |
[57] | ASHWORTH J R. Migmatites[M]. London: Blackie Academic and Professional, 1985. |
[58] | BEST M G. Igneous and metamorphic petrology[M]. 2nd ed. Malden: Blackwell Science, 2003. |
[59] | MEHNERT K R. Migmatites and the origin of granitic rocks[M]. Amsterdam: Elsevier, 1968. |
[60] | PETFORD N. Segregation of tonalitic-trondhjemitic melts in the continental crust: the mantle connection[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15735-15743. |
[61] |
PETFORD N, KOENDERS M A. Self-organisation and fracture connectivity in rapidly heated continental crust[J]. Journal of Structural Geology, 1998, 20(9/10): 1425-1434.
DOI URL |
[62] |
PETFORD N, CRUDEN A R, MCCAFFREY K J W, et al. Granite magma formation, transport and emplacement in the Earth’s crust[J]. Nature, 2000, 408(6813): 669-673.
DOI |
[63] |
GUERNINA S, SAWYER E W. Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec[J]. Journal of Metamorphic Geology, 2003, 21(2): 181-201.
DOI URL |
[64] | 张世伟, 魏春景, 段站站. 冀东太古宙奥长花岗质岩石的成因模拟[J]. 中国科学: 地球科学, 2017, 47(4): 494-508. |
[65] | PITCHER W S. The nature and origin of granite[M]. London: Blackie Academic and Professional, 1993. |
[66] | HARKER A. The natural history of igneous rocks[M]. New York: Hafner Publishing Company, 1965. |
[67] |
REID J B Jr, MURRAY D P, HERMES O D, et al. Fractional crystallization in granites of the Sierra Nevada: how important is it?[J]. Geology, 1993, 21(7): 587-590.
DOI URL |
[68] |
BLUNDY J, CASHMAN K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631-650.
DOI URL |
[69] |
COLEMAN D S, GRAY W, GLAZNER A F. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California[J]. Geology, 2004, 32(5): 433-436.
DOI URL |
[70] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[71] | HUBER N K, BATEMAN P C, WAHRHAFTIG C. Geologic map of Yosemite National Park and vicinity, California[CM]. U.S. Geological Survey Miscellaneous Investigations Series Map I-1874, 1:125000. California: USGS Publications Warehouse, 1989. |
[72] |
CASTRO A. On granitoid emplacement and related structures: a review[J]. Geologische Rundschau, 1987, 76(1): 101-124.
DOI URL |
[73] | GROUT F F. Scale models of structures relating to batholiths[J]. American Journal of Science, 1945, 243A: 260-284. |
[74] | RAMBERG H. Gravity, deformation, and the Earth’s crust: in theory, experiments, and geological application[M]. 2nd ed. London: Academic Press, 1981. |
[75] | COBBING J. The geology and mapping of granite batholiths[M]. Berlin, Heidelberg: Springer, 2000. |
[76] | PETFORD N. Granite on the move[J]. New Scientist, 1991, 129(1773): 44-48. |
[77] | 陈国能. 花岗岩成因与成矿理论研究进展: 原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144. |
[78] |
BRYON D N, ATHERTON M P, HUNTER R H. The interpretation of granitic textures from serial thin sectioning, image analysis and three-dimensional reconstruction[J]. Mineralogical Magazine, 1995, 59(395): 203-211.
DOI URL |
[79] |
BRYON D N, ATHERTON M P, HUNTER R H, et al. The description of the primary textures of “Cordilleran” granitic rocks[J]. Contributions to Mineralogy and Petrology, 1994, 117(1): 66-75.
DOI URL |
[80] | SPURR J E. A consideration of igneous rocks and their segregation or differentiation as related to the occurrence of ores[J]. Transactions of the American Institute of Mining Engineers, 1903, 33: 288-340. |
[81] |
WYLLIE P J. Crustal anatexis: an experimental review[J]. Tectonophysics, 1977, 43(1/2): 41-71.
DOI URL |
[82] | TREUIL M, JORON J L. Utilisation des l ments hybromagmaphiles pour la simplification de lamodlisation quantitative des processus magmatiques[J]. Societa Italiana di Mineralogia e Petrologia, 1975, 31: 125-174. |
[83] |
ALLÈGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
DOI URL |
[84] | 南京大学地质系矿物岩石教研室. 火成岩岩石学[M]. 北京: 地质出版社, 1980. |
[85] |
CLEMENS J D, PETFORD N. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings[J]. Journal of the Geological Society, 1999, 156(6): 1057-1060.
DOI URL |
[86] | CLEMENS J D. Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility[M]. Cambridge: Cambridge University Press, 2006. |
[87] |
SAWYER E W. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks[J]. Journal of Metamorphic Geology, 2001, 19(3): 291-309.
DOI URL |
[88] |
BROWN M. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences[J]. Journal of the Geological Society, 2007, 164(4): 709-730.
DOI URL |
[89] |
BROWN M. The spatial and temporal patterning of the deep crust and implications for the process of melt extraction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1910): 11-51.
DOI URL |
[90] |
JOHNSON T, YAKYMCHUK C, BROWN M. Crustal melting and suprasolidus phase equilibria: from first principles to the state-of-the-art[J]. Earth-Science Reviews, 2021, 221: 103778.
DOI URL |
[91] |
MORFIN S, SAWYER E W, BANDYAYERA D. Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec[J]. Lithos, 2013, 168/169: 200-218.
DOI URL |
[92] |
SCHWINDINGER M, WEINBERG R F. A felsic MASH zone of crustal magmas: feedback between granite magma intrusion and in situ crustal anatexis[J]. Lithos, 2017, 284/285: 109-121.
DOI URL |
[93] | 张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008. |
[94] |
张旗, 翟明国, 魏春景, 等. 一个新的花岗岩成因分类: 基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 2022, 29(4): 319-329.
DOI |
[95] | 张旗, 原杰, 焦守涛, 等. 花岗岩三级分类刍议[J]. 矿物岩石地球化学通报, 2022, 41(3): 657-667. |
[96] | CHAPPELL B W, WHITE A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174. |
[97] |
WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
DOI URL |
[98] | 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124. |
[99] | 洪大卫. 花岗岩研究的最新进展及发展趋势[J]. 地学前缘, 1994, 1(2): 79-86. |
[100] | 王德滋, 沈渭洲. 中国东南部花岗岩成因与地壳演化[J]. 地学前缘, 2003, 10(3): 209-220. |
[101] | 王涛. 花岗岩研究与大陆动力学[J]. 地学前缘, 2000, 7(增刊): 137-146. |
[102] | 肖庆辉, 邢作云, 张昱, 等. 当代花岗岩研究的几个重要前沿[J]. 地学前缘, 2003, 10(3): 221-229. |
[103] | PLUMMER C C, MCGEARY D, CARLSON D H. Physical geology[M]. Boston: McGraw-Hill, 2001. |
[1] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[2] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[3] | 尹青青, 唐菊兴, 项新葵, 赵晓彦, 汪方跃, 徐裕敏, 郭虎, 余振东, 谢金玲, 代晶晶, 彭勃. 赣北彭山还原性S型花岗岩成因及其对Sn富集的启示:来自锆石微量元素的证据[J]. 地学前缘, 2024, 31(3): 133-149. |
[4] | 李光洁, 陈永清, 尚志, 刘世博. 扬子地块西缘峨山新元古代高分异I型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39. |
[5] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[6] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
[7] | 王子烨, 左仁广. 基于多源数据融合的喜马拉雅淡色花岗岩识别[J]. 地学前缘, 2023, 30(5): 216-226. |
[8] | 郭伟康, 李光明, 付建刚, 张海, 张林奎, 吴建阳, 董随亮, 杨玉林. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义[J]. 地学前缘, 2023, 30(5): 275-297. |
[9] | 黄春梅, 李光明, 付建刚, 梁维, 张志, 王艺云. 藏南错那洞中新世早期淡色花岗岩岩石成因:全岩地球化学、矿物学特征约束[J]. 地学前缘, 2023, 30(5): 74-92. |
[10] | 王涛, 李积清, 韩杰, 王泰山, 李玉龙, 袁博武. 东昆仑大水沟东地区稀土矿化石英正长岩地球化学、年代学及Hf同位素特征[J]. 地学前缘, 2023, 30(4): 283-298. |
[11] | 骆念岗, 高莲凤, 张振国, 尹志刚, 崔建宇, 吴君飞, 邢杰, 丁恺, 高晨阳, 王月. 早白垩世华北克拉通东部岩石圈减薄过程和机制:来自辽宁本溪北大山岩体的证据[J]. 地学前缘, 2023, 30(3): 340-365. |
[12] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
[13] | 郭知鑫, 杨永太, 任祎, 王正庆, 冯志刚, 陈亮, 唐振平. 二连盆地吉尔嘎朗图凹陷南部基底花岗岩形成演化及其大地构造背景研究[J]. 地学前缘, 2023, 30(2): 259-271. |
[14] | 张旗, 翟明国, 魏春景, 周李岗, 陈万峰, 焦守涛, 王跃, 袁方林. 一个新的花岗岩成因分类:基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 2022, 29(4): 319-329. |
[15] | 朱小辉, 陈丹玲, 冯益民, 任云飞, 张欣. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 2022, 29(2): 241-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||