地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 259-271.DOI: 10.13745/j.esf.sf.2022.2.58
郭知鑫1,2,3(), 杨永太4,*(
), 任祎1, 王正庆1,2,5, 冯志刚1,2,3, 陈亮1,2,3, 唐振平1,2,3
收稿日期:
2021-06-16
修回日期:
2022-01-16
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
杨永太
作者简介:
郭知鑫(1989—),男,博士,讲师,主要从事沉积盆地分析、大地构造等方面的研究工作。E-mail: guozhixin@ustc.edu.cn
基金资助:
GUO Zhixin1,2,3(), YANG Yongtai4,*(
), REN Yi1, WANG Zhengqing1,2,5, FENG Zhigang1,2,3, CHEN Liang1,2,3, TANG Zhenping1,2,3
Received:
2021-06-16
Revised:
2022-01-16
Online:
2023-03-25
Published:
2023-01-05
Contact:
YANG Yongtai
摘要:
二连盆地是中国北方重要的油气基地、煤炭基地和铀矿床富集区。基底花岗岩是盆地重要的含铀岩系沉积物源和铀源,以及重要的油气储层。然而,至今对二连盆地基底花岗岩的形成年代、成岩后剥蚀抬升历史及其与盆地构造演化关系的认识仍然比较薄弱。本文以吉尔嘎朗图凹陷南部地区钻井揭露的基底花岗岩为研究对象,通过锆石U-Pb年龄分析、锆石和磷灰石裂变径迹年龄分析,结合盆地地层和构造演化历史,对吉尔嘎朗图凹陷南部基底花岗岩的形成和演化进行了系统研究。研究结果表明,凹陷南部地区基底花岗岩成岩时代为早侏罗世(约175 Ma),成岩后经历了晚侏罗世( (154±7) Ma、(146±7) Ma)和早白垩世中晚期( (114±8) Ma)两期冷却事件。本文认为早侏罗世花岗岩的形成与蒙古—鄂霍茨克洋板块南向俯冲有关,成岩后的两期冷却事件记录了二连盆地经历的两期挤压构造作用,其中晚侏罗世冷却事件可能与蒙古—鄂霍茨克洋的关闭有关,早白垩世中晚期的冷却事件可能与亚洲大陆东缘发生的陆-陆碰撞事件有关。
中图分类号:
郭知鑫, 杨永太, 任祎, 王正庆, 冯志刚, 陈亮, 唐振平. 二连盆地吉尔嘎朗图凹陷南部基底花岗岩形成演化及其大地构造背景研究[J]. 地学前缘, 2023, 30(2): 259-271.
GUO Zhixin, YANG Yongtai, REN Yi, WANG Zhengqing, FENG Zhigang, CHEN Liang, TANG Zhenping. Emplacement and episodic denudation of basement granites from the southern Jiergalangtu Sag, Erlian Basin and its tectonic implications[J]. Earth Science Frontiers, 2023, 30(2): 259-271.
图1 中国东北及其邻区地形和构造简图(a)和二连盆地地质简图(b)
Fig.1 Topographic and tectonic map of Northeast China and adjacent areas (a) and simplified geological map of the Erlian Basin (b)
图2 二连盆地吉尔嘎朗图凹陷简图(a)和吉尔嘎朗图凹陷南部地震反射剖面图(剖面位置见图2a)(b)
Fig.2 (a) Simplified geological map of the Jiergalangtu Sag, Erlian Basin and (b) interpreted seismic reflection profiles across the Jiergalangtu Sag (profile locations see Fig.2a)
图3 二连盆地地层柱状图(a)和吉尔嘎朗图凹陷J13钻井岩性录井图(钻井位置见图2a)(b)
Fig.3 (a) Stratigraphic section of the Erlian Basin and (b) section of Well J13 in the Jiergalangtu Sag (well location see Fig.2a)
图4 样品J13-503锆石U-Pb年龄谐和图和加权平均年龄(a)和样品J13-503典型锆石CL图及单颗粒锆石U-Pb年龄(b)
Fig.4 (a) Zircon U-Pb age concordia diagram and weighted mean age of and (b) representative cathodoluminescence (CL) images of zircons from sample J13-503
测试点 | wB/10-6 | Th/U | 同位素比值 | 年龄/Ma | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | |||||
No.1 | 72.322 6 | 205.902 9 | 0.35 | 0.056 6 | 0.002 8 | 0.498 8 | 0.027 3 | 0.065 5 | 0.001 5 | 474 | 110 | 411 | 19 | 409 | 9 | |||
No.2 | 51.930 9 | 144.453 2 | 0.36 | 0.057 2 | 0.003 8 | 0.515 8 | 0.035 7 | 0.064 7 | 0.001 4 | 499 | 145 | 422 | 24 | 404 | 9 | |||
No.3 | 529.173 3 | 991.404 7 | 0.53 | 0.053 6 | 0.002 9 | 0.380 9 | 0.021 4 | 0.049 7 | 0.000 8 | 356 | 121 | 328 | 16 | 313 | 5 | |||
No.4 | 356.560 4 | 619.291 2 | 0.58 | 0.054 2 | 0.002 7 | 0.364 6 | 0.019 6 | 0.047 9 | 0.000 9 | 380 | 112 | 316 | 15 | 302 | 6 | |||
No.5 | 82.487 8 | 184.761 0 | 0.45 | 0.055 5 | 0.003 3 | 0.489 2 | 0.030 1 | 0.063 5 | 0.001 1 | 433 | 131 | 404 | 20 | 397 | 7 | |||
No.6 | 74.537 4 | 191.061 5 | 0.39 | 0.055 6 | 0.003 2 | 0.497 8 | 0.029 7 | 0.064 5 | 0.001 2 | 435 | 126 | 410 | 20 | 403 | 7 | |||
No.7 | 1 252.287 0 | 1 726.476 3 | 0.73 | 0.049 1 | 0.003 7 | 0.190 4 | 0.014 9 | 0.027 6 | 0.000 7 | 150 | 165 | 177 | 13 | 176 | 4 | |||
No.8 | 91.779 1 | 197.121 1 | 0.47 | 0.058 5 | 0.003 3 | 0.502 5 | 0.030 4 | 0.063 2 | 0.001 4 | 548 | 123 | 413 | 21 | 395 | 9 | |||
No.9 | 89.974 9 | 255.809 5 | 0.35 | 0.056 6 | 0.003 1 | 0.488 9 | 0.028 8 | 0.063 0 | 0.001 4 | 477 | 121 | 404 | 20 | 394 | 8 | |||
No.10 | 529.911 8 | 981.100 4 | 0.54 | 0.052 7 | 0.002 1 | 0.355 3 | 0.015 6 | 0.048 3 | 0.000 9 | 316 | 90 | 309 | 12 | 304 | 6 | |||
No.11 | 508.327 1 | 1 096.640 7 | 0.46 | 0.052 8 | 0.002 6 | 0.349 5 | 0.017 9 | 0.047 6 | 0.000 8 | 320 | 110 | 304 | 13 | 300 | 5 | |||
No.12 | 714.894 3 | 1 119.501 2 | 0.64 | 0.054 3 | 0.003 2 | 0.353 5 | 0.021 7 | 0.047 0 | 0.000 9 | 385 | 130 | 307 | 16 | 296 | 6 | |||
No.13 | 68.603 9 | 185.322 1 | 0.37 | 0.055 7 | 0.003 4 | 0.480 7 | 0.031 4 | 0.063 4 | 0.001 4 | 439 | 136 | 399 | 21 | 396 | 9 | |||
No.14 | 88.012 2 | 600.125 5 | 0.15 | 0.055 6 | 0.003 8 | 0.412 4 | 0.029 6 | 0.053 3 | 0.001 1 | 436 | 153 | 351 | 21 | 334 | 7 | |||
No.15 | 365.206 1 | 1 116.210 6 | 0.33 | 0.052 3 | 0.002 8 | 0.352 0 | 0.020 1 | 0.048 4 | 0.000 9 | 297 | 121 | 306 | 15 | 304 | 6 | |||
No.16 | 369.511 3 | 670.596 3 | 0.55 | 0.052 9 | 0.002 7 | 0.359 7 | 0.019 8 | 0.049 2 | 0.000 9 | 326 | 116 | 312 | 15 | 309 | 6 | |||
No.17 | 201.125 4 | 700.258 2 | 0.29 | 0.054 0 | 0.003 2 | 0.354 7 | 0.021 6 | 0.047 5 | 0.000 8 | 370 | 131 | 308 | 16 | 299 | 5 | |||
No.18 | 843.309 7 | 1 139.384 4 | 0.74 | 0.051 0 | 0.002 3 | 0.239 4 | 0.011 7 | 0.034 2 | 0.000 7 | 241 | 102 | 218 | 10 | 217 | 4 | |||
No.19 | 712.025 7 | 1 168.131 9 | 0.61 | 0.051 1 | 0.003 3 | 0.271 9 | 0.018 8 | 0.038 2 | 0.000 9 | 245 | 146 | 244 | 15 | 242 | 5 | |||
No.20 | 1 362.781 1 | 2 088.091 8 | 0.65 | 0.047 6 | 0.002 8 | 0.192 2 | 0.012 0 | 0.027 7 | 0.000 7 | 81 | 126 | 178 | 10 | 176 | 4 | |||
No.21 | 573.120 6 | 865.675 0 | 0.66 | 0.053 1 | 0.007 3 | 0.297 4 | 0.042 2 | 0.041 5 | 0.001 5 | 331 | 288 | 264 | 33 | 262 | 9 | |||
No.22 | 712.110 8 | 1 349.716 5 | 0.53 | 0.051 8 | 0.002 6 | 0.321 7 | 0.017 0 | 0.044 6 | 0.000 7 | 277 | 114 | 283 | 13 | 281 | 5 | |||
No.23 | 381.550 6 | 698.050 2 | 0.55 | 0.052 4 | 0.003 7 | 0.347 2 | 0.025 3 | 0.047 5 | 0.001 0 | 302 | 156 | 303 | 19 | 299 | 6 | |||
No.24 | 629.499 5 | 1 222.431 8 | 0.52 | 0.051 9 | 0.002 1 | 0.324 7 | 0.014 1 | 0.044 9 | 0.000 7 | 279 | 92 | 286 | 11 | 283 | 4 | |||
No.25 | 350.847 8 | 679.377 6 | 0.52 | 0.055 3 | 0.002 9 | 0.403 2 | 0.023 2 | 0.052 9 | 0.001 3 | 425 | 115 | 344 | 17 | 332 | 8 | |||
No.26 | 590.549 9 | 1 251.131 7 | 0.47 | 0.052 2 | 0.001 9 | 0.366 1 | 0.014 2 | 0.050 3 | 0.000 7 | 295 | 82 | 317 | 11 | 316 | 4 | |||
No.27 | 478.792 9 | 1 244.205 2 | 0.38 | 0.051 6 | 0.002 2 | 0.345 4 | 0.015 5 | 0.047 6 | 0.000 8 | 269 | 95 | 301 | 12 | 300 | 5 | |||
No.28 | 1 276.954 9 | 1 748.331 1 | 0.73 | 0.051 3 | 0.003 4 | 0.195 6 | 0.013 8 | 0.027 2 | 0.000 7 | 252 | 145 | 181 | 12 | 173 | 4 |
表1 样品J13-503 LA-ICP-MS锆石U-Pb年龄分析结果表
Table 1 LA-ICP-MS zircon U-Pb dating results for sample J13-503
测试点 | wB/10-6 | Th/U | 同位素比值 | 年龄/Ma | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | |||||
No.1 | 72.322 6 | 205.902 9 | 0.35 | 0.056 6 | 0.002 8 | 0.498 8 | 0.027 3 | 0.065 5 | 0.001 5 | 474 | 110 | 411 | 19 | 409 | 9 | |||
No.2 | 51.930 9 | 144.453 2 | 0.36 | 0.057 2 | 0.003 8 | 0.515 8 | 0.035 7 | 0.064 7 | 0.001 4 | 499 | 145 | 422 | 24 | 404 | 9 | |||
No.3 | 529.173 3 | 991.404 7 | 0.53 | 0.053 6 | 0.002 9 | 0.380 9 | 0.021 4 | 0.049 7 | 0.000 8 | 356 | 121 | 328 | 16 | 313 | 5 | |||
No.4 | 356.560 4 | 619.291 2 | 0.58 | 0.054 2 | 0.002 7 | 0.364 6 | 0.019 6 | 0.047 9 | 0.000 9 | 380 | 112 | 316 | 15 | 302 | 6 | |||
No.5 | 82.487 8 | 184.761 0 | 0.45 | 0.055 5 | 0.003 3 | 0.489 2 | 0.030 1 | 0.063 5 | 0.001 1 | 433 | 131 | 404 | 20 | 397 | 7 | |||
No.6 | 74.537 4 | 191.061 5 | 0.39 | 0.055 6 | 0.003 2 | 0.497 8 | 0.029 7 | 0.064 5 | 0.001 2 | 435 | 126 | 410 | 20 | 403 | 7 | |||
No.7 | 1 252.287 0 | 1 726.476 3 | 0.73 | 0.049 1 | 0.003 7 | 0.190 4 | 0.014 9 | 0.027 6 | 0.000 7 | 150 | 165 | 177 | 13 | 176 | 4 | |||
No.8 | 91.779 1 | 197.121 1 | 0.47 | 0.058 5 | 0.003 3 | 0.502 5 | 0.030 4 | 0.063 2 | 0.001 4 | 548 | 123 | 413 | 21 | 395 | 9 | |||
No.9 | 89.974 9 | 255.809 5 | 0.35 | 0.056 6 | 0.003 1 | 0.488 9 | 0.028 8 | 0.063 0 | 0.001 4 | 477 | 121 | 404 | 20 | 394 | 8 | |||
No.10 | 529.911 8 | 981.100 4 | 0.54 | 0.052 7 | 0.002 1 | 0.355 3 | 0.015 6 | 0.048 3 | 0.000 9 | 316 | 90 | 309 | 12 | 304 | 6 | |||
No.11 | 508.327 1 | 1 096.640 7 | 0.46 | 0.052 8 | 0.002 6 | 0.349 5 | 0.017 9 | 0.047 6 | 0.000 8 | 320 | 110 | 304 | 13 | 300 | 5 | |||
No.12 | 714.894 3 | 1 119.501 2 | 0.64 | 0.054 3 | 0.003 2 | 0.353 5 | 0.021 7 | 0.047 0 | 0.000 9 | 385 | 130 | 307 | 16 | 296 | 6 | |||
No.13 | 68.603 9 | 185.322 1 | 0.37 | 0.055 7 | 0.003 4 | 0.480 7 | 0.031 4 | 0.063 4 | 0.001 4 | 439 | 136 | 399 | 21 | 396 | 9 | |||
No.14 | 88.012 2 | 600.125 5 | 0.15 | 0.055 6 | 0.003 8 | 0.412 4 | 0.029 6 | 0.053 3 | 0.001 1 | 436 | 153 | 351 | 21 | 334 | 7 | |||
No.15 | 365.206 1 | 1 116.210 6 | 0.33 | 0.052 3 | 0.002 8 | 0.352 0 | 0.020 1 | 0.048 4 | 0.000 9 | 297 | 121 | 306 | 15 | 304 | 6 | |||
No.16 | 369.511 3 | 670.596 3 | 0.55 | 0.052 9 | 0.002 7 | 0.359 7 | 0.019 8 | 0.049 2 | 0.000 9 | 326 | 116 | 312 | 15 | 309 | 6 | |||
No.17 | 201.125 4 | 700.258 2 | 0.29 | 0.054 0 | 0.003 2 | 0.354 7 | 0.021 6 | 0.047 5 | 0.000 8 | 370 | 131 | 308 | 16 | 299 | 5 | |||
No.18 | 843.309 7 | 1 139.384 4 | 0.74 | 0.051 0 | 0.002 3 | 0.239 4 | 0.011 7 | 0.034 2 | 0.000 7 | 241 | 102 | 218 | 10 | 217 | 4 | |||
No.19 | 712.025 7 | 1 168.131 9 | 0.61 | 0.051 1 | 0.003 3 | 0.271 9 | 0.018 8 | 0.038 2 | 0.000 9 | 245 | 146 | 244 | 15 | 242 | 5 | |||
No.20 | 1 362.781 1 | 2 088.091 8 | 0.65 | 0.047 6 | 0.002 8 | 0.192 2 | 0.012 0 | 0.027 7 | 0.000 7 | 81 | 126 | 178 | 10 | 176 | 4 | |||
No.21 | 573.120 6 | 865.675 0 | 0.66 | 0.053 1 | 0.007 3 | 0.297 4 | 0.042 2 | 0.041 5 | 0.001 5 | 331 | 288 | 264 | 33 | 262 | 9 | |||
No.22 | 712.110 8 | 1 349.716 5 | 0.53 | 0.051 8 | 0.002 6 | 0.321 7 | 0.017 0 | 0.044 6 | 0.000 7 | 277 | 114 | 283 | 13 | 281 | 5 | |||
No.23 | 381.550 6 | 698.050 2 | 0.55 | 0.052 4 | 0.003 7 | 0.347 2 | 0.025 3 | 0.047 5 | 0.001 0 | 302 | 156 | 303 | 19 | 299 | 6 | |||
No.24 | 629.499 5 | 1 222.431 8 | 0.52 | 0.051 9 | 0.002 1 | 0.324 7 | 0.014 1 | 0.044 9 | 0.000 7 | 279 | 92 | 286 | 11 | 283 | 4 | |||
No.25 | 350.847 8 | 679.377 6 | 0.52 | 0.055 3 | 0.002 9 | 0.403 2 | 0.023 2 | 0.052 9 | 0.001 3 | 425 | 115 | 344 | 17 | 332 | 8 | |||
No.26 | 590.549 9 | 1 251.131 7 | 0.47 | 0.052 2 | 0.001 9 | 0.366 1 | 0.014 2 | 0.050 3 | 0.000 7 | 295 | 82 | 317 | 11 | 316 | 4 | |||
No.27 | 478.792 9 | 1 244.205 2 | 0.38 | 0.051 6 | 0.002 2 | 0.345 4 | 0.015 5 | 0.047 6 | 0.000 8 | 269 | 95 | 301 | 12 | 300 | 5 | |||
No.28 | 1 276.954 9 | 1 748.331 1 | 0.73 | 0.051 3 | 0.003 4 | 0.195 6 | 0.013 8 | 0.027 2 | 0.000 7 | 252 | 145 | 181 | 12 | 173 | 4 |
图5 样品J13-503磷灰石裂变径迹年龄雷达图(a),磷灰石裂变径迹年龄分布统计直方图及拟合曲线(b),磷灰石裂变径迹长度统计直方图(c),锆石裂变径迹年龄雷达图(d)和锆石裂变径迹年龄分布统计直方图及拟合曲线(e)
Fig.5 Single grain fission track dating results for sample J13-503. (a) Radial plot of apatite ages. (b) Histogram and probability density plot of apatite ages with curve fitting. (c) Histogram of apatite track lengths. (d) Radial plot of zircon ages. (d) Histogram and probability density plot of zircon ages with curve fitting.
图6 侏罗纪—早白垩世二连盆地地层、构造,吉尔嘎朗图凹陷基底花岗岩形成、演化和大地构造事件汇总图
Fig.6 A brief summary of the tectonostratigraphic evolution of the Erlian Basin, emplacement and episodic denudation of basement granites from the southern Jiergalangtu Sag, and tectonic events in East Asia in the Jurassic-Early Cretaceous
图7 早侏罗世中国东北及其邻区大地构造恢复图(据文献[9,44]修改)(a)和晚侏罗世晚期—早白垩世初中国东北及其邻区大地构造恢复图(据文献[9,15]修改)(b)
Fig.7 Schematic tectonic reconstruction of Northeast China and adjacent areas during the (a) Early Jurassic (modified after [9,44]) and (b) late Late Jurassic-early Early Cretaceous (modified after [9,15])
[1] |
AOUIZERAT A, XIAO W J, SCHULMANN K, et al. Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China[J]. Journal of Asian Earth Sciences, 2020, 194: 104258.
DOI URL |
[2] |
LI Y, XU W L, ZHU R X, et al. Late Jurassic to early Early Cretaceous tectonic nature on the NE Asian continental margin: constraints from Mesozoic accretionary complexes[J]. Earth-Science Reviews, 2020, 200: 103042.
DOI URL |
[3] |
LIU Y J, LI W M, FENG Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148.
DOI URL |
[4] |
LI S Q, HE S, CHEN F K. Provenance changes across the Mid-Cretaceous unconformity in basins of northeastern China: evidence for an integrated paleolake system and tectonic transformation[J]. GSA Bulletin, 2021, 133(1/2): 185-198.
DOI URL |
[5] |
LIN W, WEI W. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synthesis[J]. International Geology Review, 2020, 62(7/8): 811-839.
DOI URL |
[6] |
XU W L, PEI F P, WANG F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74: 167-193.
DOI URL |
[7] |
JI Z, WAN C B, MENG Q A, et al. Chronostratigraphic framework of Late Mesozoic terrestrial strata in the Hailar-Tamtsag Basin, Northeast China, and its geodynamic implication[J]. Geological Journal, 2020, 55(7): 5197-5215.
DOI URL |
[8] |
SUO Y H, LI S Z, CAO X Z, et al. Mesozoic-Cenozoic Basin inversion and geodynamics in East China: a review[J]. Earth-Science Reviews, 2020, 210: 103357.
DOI URL |
[9] |
YANG Y T, GUO Z X, SONG C C, et al. A short-lived but significant Mongol-Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous[J]. Gondwana Research, 2015, 28(3): 1096-1116.
DOI URL |
[10] |
ZHANG F Q, DILEK Y, CHEN H L, et al. Structural architecture and stratigraphic record of Late Mesozoic sedimentary basins in NE China: tectonic archives of the Late Cretaceous continental margin evolution in East Asia[J]. Earth-Science Reviews, 2017, 171: 598-620.
DOI URL |
[11] | 鲁超, 焦养泉, 彭云彪, 等. 二连盆地马尼特坳陷西部幕式裂陷作用对铀成矿的影响[J]. 地质学报, 2016, 90(12): 3483-3491. |
[12] | 聂逢君, 李满根, 邓居智, 等. 内蒙古二连裂谷盆地“同盆多类型”铀矿床组合与找矿方向[J]. 矿床地质, 2015, 34(4): 711-729. |
[13] | 王东东, 邵龙义, 张强, 等. 二连盆地群下白垩统含煤地层聚煤特征分析[J]. 中国矿业大学学报, 2013, 42(2): 257-265. |
[14] | 赵贤正, 金凤鸣, 漆家福, 等. 二连盆地早白垩世复式断陷构造类型及其石油地质意义[J]. 天然气地球科学, 2015, 26(7): 1289-1298. |
[15] |
GUO Z X, YANG Y T, ZHAO X Z, et al. Early Cretaceous tectonostratigraphic evolution of the Erlian Basin, NE China: a record of Late Mesozoic intraplate deformation in East Asia[J]. Marine and Petroleum Geology, 2019, 110: 539-564.
DOI URL |
[16] | 梁宏斌, 吴冲龙, 李林波, 等. 二连盆地层序地层单元统一划分及格架层序地层学[J]. 地球科学: 中国地质大学学报, 2010, 35(1): 97-106. |
[17] |
漆家福, 赵贤正, 李先平, 等. 二连盆地早白垩世断陷分布及其与基底构造的关系[J]. 地学前缘, 2015, 22(3): 118-128.
DOI |
[18] | 刘佳林, 刘武生, 虞航, 等. 二连盆地巴彦乌拉铀矿区花岗岩锆石U-Pb年龄和Hf同位素特征及地质意义[J]. 地质通报, 2020, 39(8): 1285-1295. |
[19] | 聂逢君, 李满根, 严兆彬, 等. 内蒙古二连盆地砂岩型铀矿目的层赛汉组分段与铀矿化[J]. 地质通报, 2015, 34(10): 1952-1963. |
[20] | 秦平, 郭广峰, 齐跃敏, 等. 二连盆地乌兰花凹陷混合花岗岩潜山油藏储集层评价与分布规律研究[J]. 录井工程, 2020, 31(2): 124-129. |
[21] | 赵政嘉, 顾玉洁, 史原鹏, 等. 二连盆地乌兰花凹陷花岗岩储层改造技术研究及应用[J]. 中国矿业, 2019, 28(5): 72-76. |
[22] |
WANG T, TONG Y, ZHANG L, et al. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 2017, 145: 368-392.
DOI URL |
[23] |
GUO Z X, SHI Y P, YANG Y T, et al. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: implications for the collision of the Okhotomorsk Block with East Asia[J]. Journal of Asian Earth Sciences, 2018, 154: 49-66.
DOI URL |
[24] |
GUO Z X, ZHAO X Z, YANG Y T, et al. Jurassic-earliest Cretaceous tectonostratigraphic evolution of the Erlian Basin, Northeast China: records of polyphase intracontinental deformation in Northeast Asia[J]. Marine and Petroleum Geology, 2018, 96: 405-428.
DOI URL |
[25] | GRAHAM S A, COPE T, JOHNSON C L, et al. Sedimentary basins of the Late Mesozoic extensional domain of China and Mongolia[M]//ROBERTS D G, BALLY A W. Regional geology and tectonics:phanerozoic rift systems and sedimentary basins. Amsterdam: Elsevier, 2012: 442-461. |
[26] |
GRAHAM S A, HENDRIX M S, JOHNSON C L, et al. Sedimentary record and tectonic implications of Mesozoic rifting in Southeast Mongolia[J]. Geological Society of America Bulletin, 2001, 113(12): 1560-1579.
DOI URL |
[27] |
JOHNSON C L. Polyphase evolution of the East Gobi Basin: sedimentary and structural records of Mesozoic-Cenozoic intraplate deformation in Mongolia[J]. Basin Research, 2004, 16(1): 79-99.
DOI URL |
[28] | JOHNSON C L. Sedimentary basins in transition: distribution and tectonic settings of Mesozoic strata in Mongolia[J]. Geological Society of America Special Papers, 2015, 513: 543-560. |
[29] |
MENG Q R. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3/4): 155-174.
DOI URL |
[30] | WIEDENBECK M, ALLÉ P, CORFU F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and ree analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23. |
[31] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[32] | LUDWIG K R. User’s manual for isoplot 3.00: a geochronological toolkit for microsoft excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4(2): 1-70. |
[33] |
GLEADOW A J W. Fission-track dating methods: what are the real alternatives?[J]. Nuclear Tracks, 1981, 5(1/2): 3-14.
DOI URL |
[34] |
HURFORD A J, GREEN P F. The zeta age calibration of fission-track dating[J]. Chemical Geology, 1983, 41: 285-317.
DOI URL |
[35] |
BELLEMANS F, DECORTE F, DENHAUTE P V. Composition of srm and cn u-doped glasses: significance for their use as thermal neutron fluence monitors in fission track dating[J]. Radiation Measurements, 1995, 24(2): 153-160.
DOI URL |
[36] |
BRANDON M T. Decomposition of fission-track grain-age distributions[J]. American Journal of Science, 1992, 292(8): 535-564.
DOI URL |
[37] |
GALBRAITH R F. On statistical models for fission track counts[J]. Journal of the International Association for Mathematical Geology, 1981, 13(6): 471-478.
DOI URL |
[38] |
BRANDON M T. Probability density plot for fission-track grain-age samples[J]. Radiation Measurements, 1996, 26(5): 663-676.
DOI URL |
[39] |
HOSKIN PW O. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
DOI URL |
[40] |
LI S Q, HEGNER E, YANG Y Z, et al. Age constraints on Late Mesozoic lithospheric extension and origin of bimodal volcanic rocks from the Hailar Basin, NE China[J]. Lithos, 2014, 190/191: 204-219.
DOI URL |
[41] | 刘震, 朱文奇, 孙强, 等. 中国含油气盆地地温-地压系统[J]. 石油学报, 2012, 33(1): 1-17. |
[42] | 张拴宏, 赵越, 刘健, 等. 华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义[J]. 岩石学报, 2007, 23(3): 625-638. |
[43] | ZONENSHAIN L P, KUZMIN M I, NATAPOV L M. Geology of the USSR: a plate-tectonic synthesis[M]. Washington, DC: American Geophysical Union, 1990. |
[44] |
ZORIN Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics, 1999, 306(1): 33-56.
DOI URL |
[45] |
TANG J, XU W L, WANG F, et al. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China[J]. Gondwana Research, 2016, 31: 218-240.
DOI URL |
[46] |
DONSKAYA T V, GLADKOCHUB D P, MAZUKABZOV A M, et al. Late Paleozoic- Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean[J]. Journal of Asian Earth Sciences, 2013, 62: 79-97.
DOI URL |
[47] |
DONSKAYA T V, GLADKOCHUB D P, MAZUKABZOV A M, et al. Mesozoic granitoids in the structure of the Bezymyannyi metamorphic-core complex (western Transbaikalia)[J]. Russian Geology and Geophysics, 2016, 57(11): 1591-1605.
DOI URL |
[48] |
REN Q, ZHANG S H, WU H C, et al. Further paleomagnetic results from the -155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol-Okhotsk suture[J]. Gondwana Research, 2016, 35: 180-191.
DOI URL |
[49] | VAN DER VOO R, VAN HINSBERGEN D J J, DOMEIER M, et al. Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: a paleomagnetic and seismological-tomographic analysis[J]. Geological Society of America Special Papers, 2015, 513: 589-606. |
[50] |
WU L, KRAVCHINSKY V A, GU Y J, et al. Absolute reconstruction of the closing of the Mongol-Okhotsk Ocean in the Mesozoic elucidates the genesis of the slab geometry underneath Eurasia[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 4831-4851.
DOI URL |
[51] | JOLIVET M, DE BOISGROLLIER T, PETIT C, et al. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology[J]. Tectonics, 2009, 28(3): 1-21. |
[52] |
VAN DER BEEK P A, DELVAUX D, ANDRIESSEN P A M, et al. Early Cretaceous denudation related to convergent tectonics in the baikal region, SE Siberia[J]. Journal of the Geological Society, 1996, 153(4): 515-523.
DOI URL |
[53] |
HEUMANN M J, JOHNSON C L, WEBB L E. Plate interior polyphase fault systems and sedimentary basin evolution: a case study of the East Gobi Basin and East Gobi Fault Zone, southeastern Mongolia[J]. Journal of Asian Earth Sciences, 2018, 151: 343-358.
DOI URL |
[54] | DARBY B, DAVIS G, ZHENG Y D. Structural evolution of the southwestern Daqing Shan, Yinshan belt, Inner Mongolia, China[J]. Geological Society of America Memoirs, 2001, 194: 199-214. |
[55] |
WANG Y C, DONG S W, SHI W, et al. The Jurassic structural evolution of the western Daqingshan area, eastern Yinshan belt, North China[J]. International Geology Review, 2017, 59(15): 1885-1907.
DOI URL |
[56] | DAVIS G A, ZHENG Y, CONG W, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[J]. Geological Society of America Memoirs, 2001, 194: 171-197. |
[57] |
LI C M, ZHANG C H, COPE T D, et al. Out-of-sequence thrusting in polycyclic thrust belts: an example from the Mesozoic Yanshan belt, North China Craton[J]. Tectonics, 2016, 35(9): 2082-2116.
DOI URL |
[58] | 张科峰, 邓彬, 章凤奇, 等. 海拉尔盆地早白垩世早期挤压变形事件的厘定及其构造意义[J]. 地球科学, 2016, 41(7): 1141-1155. |
[59] |
GUO Z X, YANG Y T, ZYABREV S, et al. Tectonostratigraphic evolution of the Mohe-Upper Amur Basin reflects the final closure of the Mongol-Okhotsk Ocean in the latest Jurassic-earliest Cretaceous[J]. Journal of Asian Earth Sciences, 2017, 145: 494-511.
DOI URL |
[60] | 包超民, 王孔忠. 浙江中生代火山—沉积地层和构造运动[J]. 中国区域地质, 1999, 18(2): 201-204. |
[61] | 顾知微. 论闽浙运动[J]. 地层学杂志, 2005, 29(1): 1-6. |
[62] |
LI J H, ZHANG Y Q, DONG S W, et al. Cretaceous tectonic evolution of South China: a preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
DOI URL |
[63] |
TONG W X, TOBISCH O T. Deformation of granitoid plutons in the Dongshan area, Southeast China: constraints on the physical conditions and timing of movement along the Changle-Nanao shear zone[J]. Tectonophysics, 1996, 267(1/2/3/4): 303-316.
DOI URL |
[64] | 王志洪, 卢华复. 长乐-南澳韧性剪切带40Ar/39Ar热年代学研究[J]. 中国科学D辑: 地球科学, 1997, 27(4): 294-299. |
[65] |
WU L, MONIÉ P, WANG F, et al. Multi-phase cooling of Early Cretaceous granites on the Jiaodong peninsula, East China: evidence from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 2018, 160: 334-347.
DOI URL |
[66] |
ZHANG J, WANG Y N, ZHANG B H, et al. Tectonothermal events in the central North China Craton since the Mesozoic and their tectonic implications: constraints from low-temperature thermochronology[J]. Tectonophysics, 2021, 804: 228769.
DOI URL |
[67] | JIA J L, WU Y J, MIAO C S, et al. Tectonic controls on the sedimentation and thermal history of supra-detachment basins: a case study of the Early Cretaceous Fuxin basin, NE China[J]. Tectonics, 2021, 40(5), e2020TC006535. |
[68] |
BURG J P, DAVY P, MARTINOD J. Shortening of analogue models of the continental lithosphere: new hypothesis for the formation of the Tibetan Plateau[J]. Tectonics, 1994, 13(2): 475-483.
DOI URL |
[69] |
CRADDOCK J P, VAN DER PLUIJM B A. Sevier-Laramide deformation of the continental interior from calcite twinning analysis, west-central North America[J]. Tectonophysics, 1999, 305(1/2/3): 275-286.
DOI URL |
[70] |
VAN DER PLUIJM B A, CRADDOCK J P, GRAHAM B R, et al. Paleostress in cratonic North America: implications for deformation of continental interiors[J]. Science, 1997, 277(5327): 794-796.
DOI URL |
[71] |
SUO Y H, LI S Z, JIN C, et al. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 2019, 196: 102884.
DOI URL |
[72] |
YANG Y T. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013, 126: 96-115.
DOI URL |
[73] |
CHARVET J, LAPIERRE H, YU Y W. Geodynamic significance of the Mesozoic volcanism of southeastern China[J]. Journal of Southeast Asian Earth Sciences, 1994, 9(4): 387-396.
DOI URL |
[74] |
FAURE M, MARCHADIER Y, RANGIN C. Pre-Eocene Synmetamorphic Structure in the Mindoro-Romblon-Palawan Area, West Philippines, and implications for the history of southeast Asia[J]. Tectonics, 1989, 8(5): 963-979.
DOI URL |
[75] |
FAURE M, NATALIN B. The geodynamic evolution of the eastern Eurasian margin in Mesozoic times[J]. Tectonophysics, 1992, 208(4): 397-411.
DOI URL |
[76] |
RATSCHBACHER L, HACKER B R, CALVERT A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1/2): 1-53.
DOI URL |
[77] |
FAURE M. The pre-Cretaceous structure of the outer belt of southwest Japan[J]. Tectonophysics, 1985, 113(1/2): 139-162.
DOI URL |
[78] |
OTSUKI K. Oblique subduction, collision of microcontinents and subduction of oceanic ridge: their implications on the Cretaceous tectonics of Japan[J]. The Island Arc, 1992, 1(1): 51-63.
DOI URL |
[1] | 刘金萍, 王改云, 简晓玲, 朱传庆, 胡小强, 袁晓蔷, 王超. 北黄海东部次盆地构造热机制与成烃效应[J]. 地学前缘, 2024, 31(4): 206-218. |
[2] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[3] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[4] | 项鑫, 黄传炎, 曹兰柱, 曹强, 江涛, 张宇飞, 宋宇, 徐婕. 二连盆地洼槽区非常规油气富集模式及勘探潜力[J]. 地学前缘, 2023, 30(6): 462-472. |
[5] | 陈雷, 聂潇, 刘凯, 庞绪勇, 张英利. 东秦岭官坡地区火炎沟伟晶岩型锡铌钽矿床矿物学和年代学特征[J]. 地学前缘, 2023, 30(5): 40-58. |
[6] | 吕钊, 许展, 庞建章, 王继春, 王建平, 袁硕浦. 内蒙古白乃庙铜金矿区侵入岩锆石和磷灰石裂变径迹年代学及其地质意义[J]. 地学前缘, 2023, 30(3): 386-398. |
[7] | 王璐琳, 刘晓鸿, 张志光. 香港世界地质公园东平洲平洲组新发现火山岩的锆石U-Pb测年、地球化学及地质意义[J]. 地学前缘, 2023, 30(2): 239-258. |
[8] | 王嘉琦, 李宗星, 刘奎. 柴达木盆地东部燕山期剥蚀量恢复:来自地球物理和低温热年代学的证据[J]. 地学前缘, 2022, 29(4): 371-384. |
[9] | 任飞, 尹福光, 彭智敏, 潘桂棠, 魏栋. 班公湖—怒江俯冲增生杂岩带东段晚古生代辉绿岩锆石U-Pb年龄、Hf同位素特征及其构造意义[J]. 地学前缘, 2022, 29(2): 164-179. |
[10] | 张良, 张恒, 龚成强, 丁孝忠, 张传恒, 刘勇, 高林志, 刘燕学. 滇中南中元古代撮科蛇绿混杂岩地质特征及构造背景[J]. 地学前缘, 2022, 29(2): 180-197. |
[11] | 寇彩化, 刘燕学, 李江, 李廷栋, 丁孝忠, 刘勇, 靳胜凯. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘, 2022, 29(2): 218-233. |
[12] | 张继彪, 丁孝忠, 刘燕学. 扬子西缘洋岛型与岛弧型火山岩岩石成因与构造意义:从板内裂谷到洋-陆俯冲[J]. 地学前缘, 2021, 28(4): 250-266. |
[13] | 陈志刚, 李永胜, 于晓飞, 王颖, 甄世民, 公凡影. 大兴安岭北段小柯勒河花岗斑岩地球化学、Hf同位素组成及锆石U-Pb定年[J]. 地学前缘, 2021, 28(4): 267-282. |
[14] | 张晓旭, 苏尚国, 刘美玉, 王为柱. 甘肃金川早古生代正长花岗岩锆石SHRIMP U-Pb年代学、岩石学、地球化学特征及其构造意义[J]. 地学前缘, 2021, 28(4): 283-298. |
[15] | 魏巍, 朱筱敏, 朱世发, 何明薇, 孙书洋, 王名巍. 二连盆地额仁淖尔凹陷下白垩统湖相云质岩优质储层特征及控制因素[J]. 地学前缘, 2021, 28(1): 214-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||