地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 386-398.DOI: 10.13745/j.esf.sf.2022.12.57
吕钊1(), 许展2, 庞建章3, 王继春2, 王建平1,*(
), 袁硕浦1
收稿日期:
2021-06-22
修回日期:
2021-09-19
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
王建平(1972—),男,教授,主要从事矿床学的教学与科研工作。E-mail: 作者简介:
吕 钊(1996—),男,硕士,矿物学、岩石学、矿床学专业。E-mail: lvzhao01@qq.com
基金资助:
LÜ Zhao1(), XU Zhan2, PANG Jianzhang3, WANG Jichun2, WANG Jianping1,*(
), YUAN Shuopu1
Received:
2021-06-22
Revised:
2021-09-19
Online:
2023-05-25
Published:
2023-04-27
摘要:
斑岩铜矿形成后常常遭受后期抬升剥蚀和破坏改造,内蒙古白乃庙铜金矿床是中国北方造山带中少有的几个早古生代斑岩铜矿床之一,其变化保存过程研究具有理论和找矿双重意义。锆石裂变径迹和磷灰石裂变径迹热年代学研究表明,自150 Ma以来白乃庙铜金矿区总体剥蚀量为3.11~3.25 km。矿区内岩体隆升冷却呈快速—缓慢—快速阶梯状3个阶段:150~<90 Ma快速剥露阶段,构造应力以挤压作用为主,平均剥蚀速率0.045 7 mm/a;90~<20 Ma稳定剥蚀阶段,矿区构造应力由挤压转变为伸展,平均剥蚀速率0.003 3 mm/a;20 Ma至今快速剥露阶段,矿区构造应力为挤压作用,平均剥蚀速率0.038 8 mm/a。加里东期到燕山期,矿区受古亚洲洋俯冲、碰撞以及陆内造山活动的影响,白乃庙铜金矿成矿后处于挤压和伸展交替的环境,为白乃庙铜金矿的变化保存提供了有利的地质条件。
中图分类号:
吕钊, 许展, 庞建章, 王继春, 王建平, 袁硕浦. 内蒙古白乃庙铜金矿区侵入岩锆石和磷灰石裂变径迹年代学及其地质意义[J]. 地学前缘, 2023, 30(3): 386-398.
LÜ Zhao, XU Zhan, PANG Jianzhang, WANG Jichun, WANG Jianping, YUAN Shuopu. Zircon and apatite fission track chronology of intrusive rocks in the Bainaimiao Cu-Au deposit, Inner Mongolia[J]. Earth Science Frontiers, 2023, 30(3): 386-398.
图1 白乃庙铜金矿区地质图及样品分布(据文献[16⇓-18]修改)
Fig.1 Geological map of the mining district in the Bainaimiao Cu-Au deposit and location of sampling sites. Modified from [16⇓-18].
样品编号 | 经纬度 | 高程/m | 采样位置 | 岩性 |
---|---|---|---|---|
BNM-12 | 42°13'24.6″N 112°31'45.2″E | 1 342.6 | Ⅷ矿段北部露头 | 白云母花岗岩 |
BNM-14 | 42°13'27.4″N 112°31'50.4″E | 1 314.0 | Ⅷ矿段北部露头 | 石英闪长岩 |
BNM-19 | 42°13'37.0″N 112°31'33.1″E | 1 286.1 | Ⅷ矿段北部露头 | 石英闪长岩 |
BNM-33 | 42°13'47.0″N 112°30'23.8″E | 1 312.6 | 矿区中部露采坑 | 钾化白云母花岗岩 |
BNM-42 | 42°13'34.8″N 112°29'32.1″E | 1 289.9 | 矿区中部露头 | 钾化花岗闪长斑岩 |
ZK133301-2 | 约42°14'2.0″N 112°27'54.9″E | 450 | 13矿段钻孔编号ZK133301 | 钾化花岗闪长斑岩 |
ZK133301-3,4 | 约42°14'2.0″N 112°27'54.9″E | 790 | 13矿段钻孔编号ZK133301 | 钾化花岗闪长斑岩 |
表1 白乃庙铜金矿区锆石裂变径迹样品与磷灰石裂变径迹样品采样位置及岩性
Table 1 Sampling location and sample lithology data
样品编号 | 经纬度 | 高程/m | 采样位置 | 岩性 |
---|---|---|---|---|
BNM-12 | 42°13'24.6″N 112°31'45.2″E | 1 342.6 | Ⅷ矿段北部露头 | 白云母花岗岩 |
BNM-14 | 42°13'27.4″N 112°31'50.4″E | 1 314.0 | Ⅷ矿段北部露头 | 石英闪长岩 |
BNM-19 | 42°13'37.0″N 112°31'33.1″E | 1 286.1 | Ⅷ矿段北部露头 | 石英闪长岩 |
BNM-33 | 42°13'47.0″N 112°30'23.8″E | 1 312.6 | 矿区中部露采坑 | 钾化白云母花岗岩 |
BNM-42 | 42°13'34.8″N 112°29'32.1″E | 1 289.9 | 矿区中部露头 | 钾化花岗闪长斑岩 |
ZK133301-2 | 约42°14'2.0″N 112°27'54.9″E | 450 | 13矿段钻孔编号ZK133301 | 钾化花岗闪长斑岩 |
ZK133301-3,4 | 约42°14'2.0″N 112°27'54.9″E | 790 | 13矿段钻孔编号ZK133301 | 钾化花岗闪长斑岩 |
图2 白乃庙铜金矿区侵入岩手标本和镜下特征 a—花岗闪长斑岩手标本;b—花岗闪长斑岩正交偏光镜下;c—白云母花岗岩手标本;d—白云母花岗岩正交偏光镜下;e—石英闪长岩手标本;f—石英闪长岩正交偏光镜下。Pl—斜长石;Or—正长石;Qtz—石英;Mic—微斜长石。
Fig.2 Hand specimen and microscopic features of intrusive rocks
样品号 | 颗粒数 (n) | ρs(Ns)/ (105·cm-2) | ρi(Ni)/ (105·cm-2) | ρd(N)/ (105·cm-2) | P(χ2)/% | 中值年龄 (±1σ)/Ma | 池年龄 (±1σ)/Ma |
---|---|---|---|---|---|---|---|
BNM-14 | 35 | 135.734 (3 816) | 57.445 (1 615) | 16.414 (7 234) | 93.5 | 169±8 | 169±8 |
BNM-42 | 35 | 178.285 (5 170) | 15.683 (7 234) | 45.5 (7 234) | 45.5 | 169±8 | 169±7 |
ZK133301-2 | 34 | 155.76 (5 068) | 56.028 (1 823) | 14.952 (7 234) | 9.6 | 180±9 | 181±8 |
表2 白乃庙铜金矿区岩体锆石裂变径迹分析结果
Table 2 Results of zircon fission track analysis of rock samples
样品号 | 颗粒数 (n) | ρs(Ns)/ (105·cm-2) | ρi(Ni)/ (105·cm-2) | ρd(N)/ (105·cm-2) | P(χ2)/% | 中值年龄 (±1σ)/Ma | 池年龄 (±1σ)/Ma |
---|---|---|---|---|---|---|---|
BNM-14 | 35 | 135.734 (3 816) | 57.445 (1 615) | 16.414 (7 234) | 93.5 | 169±8 | 169±8 |
BNM-42 | 35 | 178.285 (5 170) | 15.683 (7 234) | 45.5 (7 234) | 45.5 | 169±8 | 169±7 |
ZK133301-2 | 34 | 155.76 (5 068) | 56.028 (1 823) | 14.952 (7 234) | 9.6 | 180±9 | 181±8 |
图3 白乃庙铜金矿区岩体锆石裂变径迹单颗粒年龄雷达图(左)与直方图(右)
Fig.3 Radar maps (left panel) and histograms (right panel) of zircon fission track single-grain ages for typical rock samples
样品号 | 高程/ m | 颗粒数 | ρs(Ns)/ (105·cm-2) | ρi(Ni)/ (105·cm-2) | ρd(Nd)/ (105·cm-2) | U/10-6 | P(χ2)/ % | 池年龄 (±1σ)/Ma | 平均径迹长度/ (μm±1σ)(Nj) | 标准 偏差/μm |
---|---|---|---|---|---|---|---|---|---|---|
BNM-12 | 1 342.6 | 31 | 12.205 (3 087) | 27.403 (6 931) | 12.4 (2 478) | 25.93 | 38 | 96.9±2.2 | 13.36±0.1 (101) | 1.97 |
BNM-14 | 1 314.0 | 31 | 6.877 (1 575) | 14.13 (3 236) | 12.5 (2 498) | 13.65 | 99 | 106.5±3.3 | 13.61±0.1 (83) | 1.91 |
BNM-19 | 1 286.1 | 30 | 5.446 (1 599) | 11.805 (3 466) | 12.6 (2 518) | 11.22 | 87 | 100.9±3.1 | 13.17±0.11 (98) | 1.96 |
BNM-33 | 1 312.6 | 29 | 14.49 (2 306) | 34.824 (5 542) | 12.8 (2 558) | 32.77 | 6 | 94.0±2.8 | 13.25±0.1 (102) | 1.85 |
BNM-42 | 1 289.9 | 30 | 6.546 (2 090) | 15.683 (5 007) | 12.9 (2 578) | 14.15 | 10 | 93.5±6.1 | 12.75±0.12 (100) | 1.71 |
ZK133301-2 | 450 | 32 | 10.26 (2 651) | 25.363 (6 553) | 13 (2 598) | 22.45 | 51 | 92.2±2.1 | 12.84±0.11 (100) | 1.94 |
ZK133301-3,4 | 790 | 29 | 9.592 (2 193) | 23.471 (5 366) | 13.1 (2 618) | 21.08 | 21 | 93.9±2.7 | 12.31±0.12 (99) | 1.84 |
表3 白乃庙铜金矿区岩体磷灰石裂变径迹分析结果
Table 3 Results of apatite fission track analysis of rock samples
样品号 | 高程/ m | 颗粒数 | ρs(Ns)/ (105·cm-2) | ρi(Ni)/ (105·cm-2) | ρd(Nd)/ (105·cm-2) | U/10-6 | P(χ2)/ % | 池年龄 (±1σ)/Ma | 平均径迹长度/ (μm±1σ)(Nj) | 标准 偏差/μm |
---|---|---|---|---|---|---|---|---|---|---|
BNM-12 | 1 342.6 | 31 | 12.205 (3 087) | 27.403 (6 931) | 12.4 (2 478) | 25.93 | 38 | 96.9±2.2 | 13.36±0.1 (101) | 1.97 |
BNM-14 | 1 314.0 | 31 | 6.877 (1 575) | 14.13 (3 236) | 12.5 (2 498) | 13.65 | 99 | 106.5±3.3 | 13.61±0.1 (83) | 1.91 |
BNM-19 | 1 286.1 | 30 | 5.446 (1 599) | 11.805 (3 466) | 12.6 (2 518) | 11.22 | 87 | 100.9±3.1 | 13.17±0.11 (98) | 1.96 |
BNM-33 | 1 312.6 | 29 | 14.49 (2 306) | 34.824 (5 542) | 12.8 (2 558) | 32.77 | 6 | 94.0±2.8 | 13.25±0.1 (102) | 1.85 |
BNM-42 | 1 289.9 | 30 | 6.546 (2 090) | 15.683 (5 007) | 12.9 (2 578) | 14.15 | 10 | 93.5±6.1 | 12.75±0.12 (100) | 1.71 |
ZK133301-2 | 450 | 32 | 10.26 (2 651) | 25.363 (6 553) | 13 (2 598) | 22.45 | 51 | 92.2±2.1 | 12.84±0.11 (100) | 1.94 |
ZK133301-3,4 | 790 | 29 | 9.592 (2 193) | 23.471 (5 366) | 13.1 (2 618) | 21.08 | 21 | 93.9±2.7 | 12.31±0.12 (99) | 1.84 |
图5 白乃庙铜金矿区代表性样品热历史模拟结果(左)与径迹长度分布直方图(右)
Fig.5 Thermal history simulation results (left panel) and histograms of track lengths (right panel) for representative samples
样品号 | 第1阶段 | 第2阶段 | 第3阶段 | 剥蚀量/ km | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
冷却速率/ (℃·Ma-1) | 剥蚀速率/ (mm·a-1) | 冷却速率/ (℃·Ma-1) | 隆升速率/ (mm·a-1) | 冷却速率/ (℃·Ma-1) | 隆升速率/ (mm·a-1) | |||||||||||||
BNM-12 | 2.00 | 0.042 9 | 0.07 | 0.001 5 | 1.67 | 0.047 7 | 3.18 | |||||||||||
BNM-14 | 2.10 | 0.045 1 | 0.27 | 0.005 8 | 0.60 | 0.017 1 | 3.11 | |||||||||||
BNM-19 | 2.00 | 0.042 9 | 0.20 | 0.004 3 | 1.00 | 0.028 6 | 3.18 | |||||||||||
BNM-33 | 2.10 | 0.045 1 | 0.14 | 0.003 1 | 1.25 | 0.035 7 | 3.18 | |||||||||||
BNM-42 | 1.67 | 0.035 8 | 0.14 | 0.003 1 | 1.50 | 0.042 9 | 3.22 | |||||||||||
ZK133301-2 | 2.22 | 0.047 6 | 0.07 | 0.001 5 | 1.75 | 0.050 0 | 3.25 | |||||||||||
ZK133301-3,4 | 2.38 | 0.051 0 | 0.12 | 0.002 6 | 2.33 | 0.066 6 | 3.25 | |||||||||||
平均值 | 2.04 | 0.043 7 | 0.15 | 0.003 3 | 1.36 | 0.038 8 | 3.19 |
表4 白乃庙铜金矿区岩体各阶段剥蚀速率与剥蚀量(150~0 Ma)
Table 4 Denudation rate and denudation amount in each stage of intrusion in the Bainaimiao Cu-Au deposit (150-0 Ma)
样品号 | 第1阶段 | 第2阶段 | 第3阶段 | 剥蚀量/ km | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
冷却速率/ (℃·Ma-1) | 剥蚀速率/ (mm·a-1) | 冷却速率/ (℃·Ma-1) | 隆升速率/ (mm·a-1) | 冷却速率/ (℃·Ma-1) | 隆升速率/ (mm·a-1) | |||||||||||||
BNM-12 | 2.00 | 0.042 9 | 0.07 | 0.001 5 | 1.67 | 0.047 7 | 3.18 | |||||||||||
BNM-14 | 2.10 | 0.045 1 | 0.27 | 0.005 8 | 0.60 | 0.017 1 | 3.11 | |||||||||||
BNM-19 | 2.00 | 0.042 9 | 0.20 | 0.004 3 | 1.00 | 0.028 6 | 3.18 | |||||||||||
BNM-33 | 2.10 | 0.045 1 | 0.14 | 0.003 1 | 1.25 | 0.035 7 | 3.18 | |||||||||||
BNM-42 | 1.67 | 0.035 8 | 0.14 | 0.003 1 | 1.50 | 0.042 9 | 3.22 | |||||||||||
ZK133301-2 | 2.22 | 0.047 6 | 0.07 | 0.001 5 | 1.75 | 0.050 0 | 3.25 | |||||||||||
ZK133301-3,4 | 2.38 | 0.051 0 | 0.12 | 0.002 6 | 2.33 | 0.066 6 | 3.25 | |||||||||||
平均值 | 2.04 | 0.043 7 | 0.15 | 0.003 3 | 1.36 | 0.038 8 | 3.19 |
[1] | TOSDAL R M, RICHARDS J P. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits[J]. Economic Geology, 2001, 14: 157-181. |
[2] |
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20-44.
DOI |
[3] | 侯增谦. 斑岩Cu-Mo-Au矿床: 新认识与新进展[J]. 地学前缘, 2004, 11(1): 131-144. |
[4] | 陈毓川. 中国主要成矿区带矿产资源远景评价: 全国成矿远景区划综合研究[M]. 北京: 地质出版社, 1999. |
[5] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[6] | 闵康, 高剑峰, 齐有强, 等. LA-ICP-MS/FT方法在矿床保存研究中的应用: 以赣东北德兴铜矿和银山铅锌矿床为例[J]. 大地构造与成矿学, 2020, 44(1): 80-91. |
[7] | 田朋飞, 袁万明, 杨晓勇. 热年代学基本原理、重要概念及地质应用[J]. 地质论评, 2020, 66(4): 975-1004. |
[8] |
TIAN P F, YANG X Y, YUAN W M. Formation and preservation of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia:insights from evidences of petrogenesis, geochemistry and apatite fission track dating[J]. Solid Earth Sciences, 2021, 6(2): 228-245.
DOI URL |
[9] |
GONG L, KOHN B P, ZHANG Z Y, et al. Exhumation and preservation of Paleozoic porphyry Cu deposits: insights from the yandong deposit, southern central Asian orogenic belt[J]. Economic Geology, 2021, 116(3): 607-628.
DOI URL |
[10] | 孟良义. 斑岩铜钼矿床的蚀变与矿化[J]. 科学通报, 1992, 37(23): 2162-2164. |
[11] |
LI W B, ZHONG R C, XU C, et al. U-Pb and Re-Os geochronology of the Bainaimiao Cu-Mo-Au deposit, on the northern margin of the North China Craton, Central Asia Orogenic Belt: implications for ore genesis and geodynamic setting[J]. Ore Geology Reviews, 2012, 48: 139-150.
DOI URL |
[12] | 毛景文, 周振华, 武广, 等. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 2013, 32(4): 716-730. |
[13] | 赵云, 王建平, 杨增海, 等. 内蒙古白乃庙铜矿床稳定同位素地球化学特征及其地质意义[J]. 现代地质, 2014, 28(6): 1103-1111. |
[14] | 吕钊, 王建平, 王继春, 等. 内蒙古白乃庙铜金矿床侵入岩年代学及其地质意义[J]. 现代地质, 2022, 36(1): 307-320. |
[15] | 李文博, 赖勇, 孙希文, 等. 内蒙古白乃庙铜金矿床流体包裹体研究[J]. 岩石学报, 2007, 23(9): 2165-2176. |
[16] |
ZHOU Z H, MAO J W, MA X H, et al. Geochronological framework of the Early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications[J]. Journal of Asian Earth Sciences, 2017, 144: 323-338.
DOI URL |
[17] | XIAO W J, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069-1089. |
[18] | 冯晓曦, 姚书振, 段明, 等. 内蒙古白乃庙铜(钼)矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 132-141. |
[19] | 叶俊林, 朱志澄, 向树元, 等. 内蒙地轴南缘盖层中逆冲断层的样式及形成机制[J]. 地球科学: 中国地质大学学报, 1987, 12(5): 519-527. |
[20] | 刘正宏, 徐仲元, 杨振升. 论内蒙古大青山地区逆冲推覆构造[J]. 中国区域地质, 1999, 18(4): 366-372. |
[21] | 陈志勇, 李玉玺, 王新亮, 等. 包头—呼和浩特北部地区逆冲推覆构造[J]. 地质通报, 2002, 21(增刊): 251-258. |
[22] | 张浩然. 内蒙古大青山东段逆冲推覆构造[D]. 北京: 中国地质大学(北京), 2009. |
[23] | 李刚, 刘正宏, 徐仲元, 等. 内蒙古白乃庙逆冲推覆构造的组成及其构造特征[J]. 吉林大学学报(地球科学版), 2012, 42(增刊2): 309-319. |
[24] | 周志广, 张达, 谷永昌, 等. 内蒙古白乃庙逆冲推覆构造特征及其地质意义[J]. 大地构造与成矿学, 2018, 42(1): 1-17. |
[25] | 曲光福. 白乃庙Au与Cu、Mo矿床成因及成矿模式探讨[J]. 黄金科学技术, 1990(8): 5-7, 23. |
[26] | 李益龙, 周汉文, 钟增球, 等. 华北与西伯利亚板块的对接过程: 来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb年龄证据[J]. 地球科学: 中国地质大学学报, 2009, 34(6): 931-938. |
[27] | 张金凤, 白新会. 内蒙古苏尼特右旗温都尔庙地区早石炭世火山岩的发现及其构造意义[J]. 岩石学报, 2016, 32(9): 2780-2792. |
[28] | 赵越, 陈斌, 张拴宏, 等. 华北克拉通北缘及邻区前燕山期主要地质事件[J]. 中国地质, 2010, 37(4): 900-915. |
[29] | 王挽琼. 华北板块北缘中段晚古生代构造演化:温都尔庙—集宁火成岩年代学、地球化学的制约[D]. 长春: 吉林大学, 2014. |
[30] | 聂凤军, 张可, 刘翼飞, 等. 华北克拉通北缘及邻区印支期岩浆活动与钼和金成矿作用[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1651-1666. |
[31] | 李俊建, 党智财, 赵泽霖, 等. 内蒙古白乃庙铜矿床成矿时代的研究[J]. 地质学报, 2015, 89(8): 1448-1457. |
[32] | 高旭, 周振华, 车合伟, 等. 内蒙古白乃庙铜-金-钼矿床侵入岩和围岩成因: 岩石地球化学和Hf同位素的证据[J]. 矿床地质, 2018, 37(2): 420-440. |
[33] | 聂凤军, 裴荣富, 吴良士, 等. 内蒙古白乃庙地区岩浆活动与金属成矿作用[M]. 北京: 北京科学技术出版社, 1993. |
[34] | 马阁, 申萍, 潘鸿迪, 等. 内蒙古白乃庙铜金矿床含矿斑岩地球化学、锆石U-Pb年代学、微量元素地球化学及成矿指示意义[J]. 地质学报, 2019, 93(12): 3144-3165. |
[35] | 梁一鸿, 和钟铧, 张宏颖. 白乃庙金矿床控矿构造解析[J]. 世界地质, 1999, 18(2): 58-65. |
[36] | 焦若鸿, 许长海, 张向涛, 等. 锆石裂变径迹(ZFT)年代学: 进展与应用[J]. 地球科学进展, 2011, 26(2): 171-182. |
[37] |
GLEADOW A J W, DUDDY I R. A natural long-term track annealing experiment for apatite[J]. Nuclear Tracks, 1981, 5(1/2): 169-174.
DOI URL |
[38] |
HURFORD A J, GREEN P F. The zeta age calibration of fission-track dating[J]. Chemical Geology, 1983, 41: 285-317.
DOI URL |
[39] | 杨莉, 袁万明, 王珂. 热年代学方法、技术手段及其在矿床地质中的研究进展[J]. 地球科学, 2018, 43(6): 1887-1902. |
[40] |
GREEN P F, DUDDY I R, GLEADOW A J W, et al. Thermal annealing of fission tracks in apatite[J]. Chemical Geology: Isotope Geoscience Section, 1986, 59: 237-253.
DOI URL |
[41] | GLEADOW A J W, BROWN R W. Fission track thermochronology and the long-term denudational response to tectonics[M]// SUMMERFIELD M A. Geomorphology and global tectonics, New York: Wiley, 2000: 57-75. |
[42] |
GLEADOW A J W, DUDDY I R, GREEN P F, et al. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology, 1986, 94(4): 405-415.
DOI URL |
[43] |
GREEN P F, DUDDY I R, LASLETT G M, et al. Thermal annealing of fission tracks in apatite 4. quantitative modelling techniques and extension to geological timescales[J]. Chemical Geology: Isotope Geoscience Section, 1989, 79(2): 155-182.
DOI URL |
[44] | 刘建辉, 张培震, 郑德文, 等. 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析[J]. 地球物理学报, 2010, 53(10): 2405-2414. |
[45] |
GLEADOW A J W, DUDDY I R, GREEN P F, et al. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages[J]. Earth and Planetary Science Letters, 1986, 78(2/3): 245-254.
DOI URL |
[46] | 陈刚, 赵重远, 李丕龙, 等. 合肥盆地构造热演化的裂变径迹证据[J]. 地球物理学报, 2005, 48(6): 1366-1374. |
[47] | 李勇, 陈宣华, 董树文, 等. 哈萨克斯坦阿克斗卡特大型斑岩铜矿床成矿时代与剥露历史研究[J]. 地质学报, 2012, 86(2): 295-306. |
[48] |
KETCHAM R A. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 275-314.
DOI URL |
[49] |
GALLAGHER K. Evolving temperature histories from apatite fission-track data[J]. Earth and Planetary Science Letters, 1995, 136(3/4): 421-435.
DOI URL |
[50] |
KETCHAM R A, CARTER A, DONELICK R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 2007, 92(5/6): 799-810.
DOI URL |
[51] | 袁万明, 杜杨松, 杨立强, 等. 西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析[J]. 岩石学报, 2007, 23(11): 2911-2917. |
[52] | 柳振江, 王建平, 郑德文, 等. 胶东西北部金矿剥蚀程度及找矿潜力和方向: 来自磷灰石裂变径迹热年代学的证据[J]. 岩石学报, 2010, 26(12): 3597-3611. |
[53] | 张学民, 王瑜. 热年代学与造山带隆升剥蚀速率: 古地温梯度的制约[J]. 地学前缘, 2004, 11(3): 243-244. |
[54] | 任战利. 中国北方沉积盆地构造热演化史恢复及其对比研究[D]. 西安: 西北大学, 1998. |
[55] | 袁万明. 矿床保存变化研究的热年代学技术方法[J]. 岩石学报, 2016, 32(8): 2571-2578. |
[56] | 胡骁. 内蒙古温都尔庙早古生代板块俯冲带的俯冲速度和消减深度[J]. 河北地质学院学报, 1985, 8(4): 33-40, 87. |
[57] | 唐克东. 中朝板块北侧褶皱带构造演化及成矿规律[M]. 北京: 北京大学出版社, 1992. |
[58] |
JIAN P, LIU D Y, KRÖNER A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth[J]. Lithos, 2008, 101(3/4): 233-259.
DOI URL |
[59] | 张拴宏, 赵越, 刘建民, 等. 华北地块北缘晚古生代: 早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志, 2010, 29(6): 824-842. |
[60] | 张超. 内蒙古苏尼特右旗地区白乃庙群的岩石组合、锆石U-Pb年代学特征及地质意义[D]. 长春: 吉林大学, 2013. |
[61] | 李进文, 王存贤, 侯万荣, 等. 内蒙古白乃庙地区金矿成矿作用[J]. 现代地质, 2003, 17(3): 275-280. |
[62] | 童英, 洪大卫, 王涛, 等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3): 395-412. |
[63] | 裴荣富, 吕凤翔, 范继璋, 等. 华北地块北缘及其北侧金属矿床成矿系列与勘查[M]. 北京: 地质出版社, 1998. |
[64] | 白新会. 内蒙古徐尼乌苏逆冲推覆构造的变形特征[D]. 长春: 吉林大学, 2015. |
[65] | 程银行, 张天福, 曾威, 等. 中国北方中新生代盆地砂岩型铀超常富集的驱动力[J]. 大地构造与成矿学, 2020, 44(4): 590-606. |
[66] | 刘欣雨, 张旗, 张成立, 等. 中新世全球重要事件及其意义: 数据挖掘的启示[J]. 科学通报, 2017, 62(15): 1645-1654. |
[67] | 周振华, 车合伟, 欧阳荷根, 等. 内蒙古白乃庙铜-金-钼矿床成矿机制: 来自流体包裹体和He-Ar同位素的证据[J]. 地质学报, 2017, 91(3): 542-560. |
[68] | 刘斌, 段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4): 345-352. |
[69] | 张德会, 徐九华, 余心起, 等. 成岩成矿深度: 主要影响因素与压力估算方法[J]. 地质通报, 2011, 30(1): 112-125. |
[70] |
STROBL M, HETZEL R, FASSOULAS C, et al. A long-term rock uplift rate for eastern Crete and geodynamic implications for the Hellenic subduction zone[J]. Journal of Geodynamics, 2014, 78: 21-31.
DOI URL |
[1] | 李庶波,王岳军,吴世敏. 珠江口盆地中—新生代热隆升格局的磷灰石和锆石裂变径迹反演[J]. 地学前缘, 2018, 25(1): 95-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||