地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 139-146.DOI: 10.13745/j.esf.sf.2024.5.15

• 物联网在线监测大数据 • 上一篇    下一篇

面向地质封存及其泄漏风险评价的CO2物联网在线监测

马建华1,2,3(), 刘金锋1,2,3, 周永章1,2,3,*(), 郑益军4, 陆可飞1,2,3, 林星雨1,2,3, 王汉雨1,2,3, 张灿1,2,3   

  1. 1.中山大学 地球环境与地球资源研究中心, 广东 珠海 519000
    2.中山大学 地球科学与工程学院, 广东 珠海 519000
    3.广东省地质过程与矿产资源探查重点实验室, 广东 珠海 519000
    4.中国科学院 广州地球化学研究所, 广东 广州 510640
  • 收稿日期:2023-10-11 修回日期:2024-03-12 出版日期:2024-07-25 发布日期:2024-07-10
  • 通信作者: * 周永章(1963—),男,教授,主要从事大数据与数学地球科学、地球化学研究工作。E-mail: zhouyz@mail.sysu.edu.cn
  • 作者简介:马建华(1998—),男,博士研究生,主要从事大数据与地质智能监测研究工作。E-mail: 05161935@cumt.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFF0801201);国家自然科学基金联合基金重点支持项目(U1911202);广东省重点研发计划项目(2020B1111370001)

Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration

MA Jianhua1,2,3(), LIU Jinfeng1,2,3, ZHOU Yongzhang1,2,3,*(), ZHENG Yijun4, LU Kefei1,2,3, LIN Xingyu1,2,3, WANG Hanyu1,2,3, ZHANG Can1,2,3   

  1. 1. Center of Earth Environment & Resources, Sun Yat-sen University, Zhuhai 519000, China
    2. School of Earth Sciences & Engineering, Sun Yat-sen University, Zhuhai 519000, China
    3. Guangdong Provincial Key Lab of Geological Process and Mineral Resource Survey, Zhuhai 519000, China
    4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2023-10-11 Revised:2024-03-12 Online:2024-07-25 Published:2024-07-10

摘要:

CO2地质封存可以在控制CO2排放的同时兼顾社会经济发展,已成为实现双碳战略目标必不可少的技术途径。然而,在CO2地质封存过程中,由于封存的CO2存在向封存区外泄漏或渗漏的风险,这可能对环境以及周围生物造成严重影响。因此,CO2地质封存的安全性和有效性风险需要得到持续的监测,对于潜在泄漏的监测与识别是碳封存系统安全保障的关键环节。物联网在线监测技术具有的大范围、连续监测和智能分析等特征,较好地契合了地质封存场地的监测需求,但目前还没有在封存监测领域进行大规模应用。为了建立面向地质封存场地的物联网在线监测系统,首先介绍了传感器选择和传感器节点部署的依据,并提出了底层传感技术的设计思路,展示了已完成的碳排放在线监测系统。在传感器选择方面,采用红外CO2传感器为主、激光CO2传感器为辅、FT-IR巡逻监测的设计思路。在传感器节点部署方面,采用随机部署与固定部署结合,可移动部署实时优化的设计思路。在网络拓扑结构设计方面,在高泄漏风险的重点区域采用簇状拓扑和网状拓扑混合的方式,在边缘区域则采用星状拓扑、树状拓扑结构与主体区域相连的设计思路。未来伴随着传感器批量化和微型化生产的不断推进,传感器节点的分布组网将逐渐形成规模,物联网在线监测技术将在CO2地质封存场地的监测领域发挥更为重要的作用。

关键词: CO2地质封存, 在线监测, 大数据, 物联网, 泄漏风险评价

Abstract:

Geological sequestration can be used to reduce CO2 emission without much effect on economic growth. It has become an indispensable technical approach to achieving dual-carbon goals. However, geological sequestration carries significant environmental risks from CO2 leakage at storage sites. To ensure the safety and efficacy of carbon sequestration it is critical that potential leaks can be identified through continuous monitoring. In this regard, the Internet of Things (IoT) is ideal due to its large-scale, continuous monitoring, and intelligent analysis capabilities, yet this technology has not been widely implemented. This paper outlines the basis for sensor selection and sensor node deployment, proposes the design idea for underlying sensor technology, and establishes an IoT CO2 monitoring system for storage sites. Specifically, infrared CO2 sensor is selected as the primary sensor and laser CO2 sensor as the secondary sensor, along with FT-IR patrol monitoring; a combination of real-time optimization of mobile deployment, random deployment, and fixed deployment is used in sensor node deployment; a mix of cluster topology and mesh topology is used in high-risk areas, and star topology and tree topology are used in edge areas connected to the main area. As technology advances, sensor mass production and sensor miniaturization will lead to more efficient and scalable sensor networks, and IoT monitoring technology will play a crucial role in continuous monitoring of carbon storage sites.

Key words: geological carbon dioxide sequestration, online monitoring, big data, Internet of Things, leakage risk assessment

中图分类号: