地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 330-344.DOI: 10.13745/j.esf.sf.2022.4.22
范朝熙1(), 许成1,2, 崔莹1,*(
), 韦春婉1, 匡光喜1, 石爱国1, 李卓骐1
收稿日期:
2022-03-16
修回日期:
2022-04-20
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
崔莹
作者简介:
范朝熙(1998—),男,硕士研究生,矿物学、岩石学、矿床学专业。E-mail: fanchaoxi@stu.pku.edu.cn
基金资助:
FAN Chaoxi1(), XU Cheng1,2, CUI Ying1,*(
), WEI Chunwan1, KUANG Guangxi1, SHI Aiguo1, LI Zhuoqi1
Received:
2022-03-16
Revised:
2022-04-20
Online:
2022-07-25
Published:
2022-07-28
Contact:
CUI Ying
摘要:
碳酸岩是地表出露较少的地幔来源的岩石,其地幔交代作用已被广泛研究,而碳酸岩岩浆与地壳的反应过程却研究较少,目前已在中国草滩和丰镇地区、德国Kaiserstuhl地区、俄罗斯Petyayan-Vara地区和澳大利亚Nolans Bore矿床等各地被报道。碳酸岩岩浆与地壳反应的特征是可能形成大量富铁云母、辉石、榍石、钡冰长石等硅酸盐矿物并造成C-O和Sr-Nd同位素体系的扰动。实验岩石学研究发现碳酸岩岩浆在地幔与橄榄岩反应形成异剥橄榄岩,对应的在中下地壳反应形成反夕卡岩。碳酸岩岩浆与围岩的反应会造成局部Si的富集促使REE在早期岩浆阶段进入磷灰石,从而抑制稀土成矿。深部地壳的碳酸岩-硅酸岩反应在相同构造背景下通常不像浅部热液系统容易出露地表,并且其反应产物容易被误认为是夕卡岩矿物组合。因此,更多的高温高压实验研究以及对硅酸盐流体来源不是很清楚的高温夕卡岩矿物组合进行重新评估,将是揭示地壳深部反夕卡岩过程,特别是相关成矿作用的关键。
中图分类号:
范朝熙, 许成, 崔莹, 韦春婉, 匡光喜, 石爱国, 李卓骐. 碳酸岩岩浆与地壳反应综述[J]. 地学前缘, 2022, 29(4): 330-344.
FAN Chaoxi, XU Cheng, CUI Ying, WEI Chunwan, KUANG Guangxi, SHI Aiguo, LI Zhuoqi. Carbonatite magma and crustal metasomatism: A review[J]. Earth Science Frontiers, 2022, 29(4): 330-344.
图1 夕卡岩、霓长岩与反夕卡岩地质背景示意图(据文献[16]修改)
Fig.1 A schematic sketch outlining the geological setting of hydrothermal endoskarns, fenites, and antiskarns. Modified after [16]
图2 碳酸岩与地壳反应相关实例的岩石学特征(据文献[19-20,29⇓⇓-32]修改) a—草滩白云石碳酸岩、方解石碳酸岩和围岩片麻岩野外照片;b—碳酸岩与围岩接触带镜下照片,矿物主要为透辉石和金云母;c—丰镇碳酸岩和花岗岩接触带野外照片;d—丰镇碳酸岩与花岗岩接触带镜下照片,主要矿物为透辉石、钡冰长石和金云母;e—Kaiserstuhl碳酸岩中的正长岩捕虏体;f—Petyayan-Vara高Ti碳酸岩和主体碳酸岩;g—Kaiserstuhl碳酸岩中的辉石和云母;h—Petyayan-Vara碳酸岩中的富Ti氧化物;i—Nolans Bore钻孔样中的磷灰石脉和接触带硅酸盐矿物;j—Nolans Bore磷灰石环带背散射图像。Dol—白云石;Srp—蛇纹石;Fo—镁橄榄石;Cal—方解石;Mgt—磁铁矿;Ph/Phl—金云母;Hy—钡冰长石;Cpx—单斜辉石;Kf—钾长石;Bt—黑云母;Fe ox—铁氧化物;Ti ox—钛氧化物;Zeo—沸石;Ep—绿帘石;Aln—褐帘石;Di—透辉石;Ttn—榍石;Fap—氟磷灰石。
Fig.2 Petrological characteristics of examples of carbonatite associated with crustal reactions. Modified after [19-20,29⇓⇓-32].
研究区 | 地质背景 | 共生岩石组合 | 特征矿物 | 地球化学特征 |
---|---|---|---|---|
草滩 | 造山带 | 方解石碳酸岩、白云石碳酸岩、片麻岩 | 镁橄榄石 | 白云石碳酸岩比方解石碳酸岩具有更高的C同位素和更低Sr同位素组成 |
丰镇 | 造山带 | 花岗岩、辉石正长岩、碳酸岩 | 透辉石、钡冰长石 | 长石和辉石具有核边成分变化。碳酸岩和花岗岩有一致的Sr-Nd同位素特征 |
Kaiserstuhl | 大陆裂谷 | 碱玄岩、霞石岩、辉石岩、碳酸岩、正长岩 | 黑云母、透辉石 | 磷灰石具有核边成分变化,碳酸岩云母富Fe2+ |
Petyayan-Vara | 火成岩省 | 碳酸岩、高Ti碳酸岩、霓霞岩、辉石岩 | 板钛矿、透辉石、黑云母 | 主体的碳酸岩和接触带的高Ti碳酸岩具有不同C-O同位素组成 |
Nolans Bore | 火成岩省 | 麻粒岩、磷灰石脉 | 透辉石、榍石、钡冰长石 | 透辉石具有较高的(Lu/La)cn比值,相对于共生的榍石强烈富集Yb-Lu |
表1 碳酸岩与地壳反应的实例特征
Table 1 Example characteristics of carbonatite reaction with the crust
研究区 | 地质背景 | 共生岩石组合 | 特征矿物 | 地球化学特征 |
---|---|---|---|---|
草滩 | 造山带 | 方解石碳酸岩、白云石碳酸岩、片麻岩 | 镁橄榄石 | 白云石碳酸岩比方解石碳酸岩具有更高的C同位素和更低Sr同位素组成 |
丰镇 | 造山带 | 花岗岩、辉石正长岩、碳酸岩 | 透辉石、钡冰长石 | 长石和辉石具有核边成分变化。碳酸岩和花岗岩有一致的Sr-Nd同位素特征 |
Kaiserstuhl | 大陆裂谷 | 碱玄岩、霞石岩、辉石岩、碳酸岩、正长岩 | 黑云母、透辉石 | 磷灰石具有核边成分变化,碳酸岩云母富Fe2+ |
Petyayan-Vara | 火成岩省 | 碳酸岩、高Ti碳酸岩、霓霞岩、辉石岩 | 板钛矿、透辉石、黑云母 | 主体的碳酸岩和接触带的高Ti碳酸岩具有不同C-O同位素组成 |
Nolans Bore | 火成岩省 | 麻粒岩、磷灰石脉 | 透辉石、榍石、钡冰长石 | 透辉石具有较高的(Lu/La)cn比值,相对于共生的榍石强烈富集Yb-Lu |
图3 碳酸岩的地幔交代作用示意图(据文献[3]修改) 箭头象征着从地幔上升的碳酸岩熔体。实线和虚线为相边界,来自不同学者的合成及天然橄榄岩样品的实验(见文献[3])。◆是由脱碳反应(白云石+斜方辉石=单斜辉石+橄榄石+CO2)与相关相边界确定位置。
Fig.3 Sketch of carbonatite mantle metasomatism.Modified after [3]
图4 基于实验模拟出的碳酸岩与地壳反应及相关REE矿化事件卡通图(据文献[28]修改) a—无碱碳酸岩熔体侵入二氧化硅不饱和岩石,在晚期磷灰石中产生少量REE富集,大多数REE存在于碳酸盐和磷酸盐中(例如氟碳铈矿和独居石),均匀分布在整个碳酸岩的低温区;b—侵入二氧化硅饱和岩石的无碱碳酸岩熔体中大部分REE赋存于早期结晶的磷灰石,晚期结晶的磷灰石具有更高REE含量;c—富碱碳酸岩熔体侵入二氧化硅不饱和的岩石,其大部分LREE赋存于富碱碳酸盐矿物中,例如黄碳锶钠石,而HREE迁移到霓长岩化蚀变带;d—富碱碳酸岩熔体侵入二氧化硅饱和的岩石,大多数REE留在碳酸岩体中。
Fig.4 Schematic representation of the reaction between carbonatite and crust and associated REE mineralization event based on recent experimental simulations. Modified after [28].
图5 内蒙古丰镇地区碳酸岩、正长岩、花岗岩中磷灰石的稀土配分模式(数据引自文献[32,109])
Fig.5 Chondrite-normalized REE pattern of apatite in carbonatite, syenite and granite in Fengzhen area, Inner Mongolia.Data adapted from [32,109]
[1] | LE MAITRE R W, STRECKEISEN A, ZANETTIN B, et al. Igneous rocks: a classification and glossary of terms[M]. 2nd ed Cambridge: Cambridge University Press, 2002. |
[2] | BELL K. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks: a brief review[J]. Journal of Petrology, 1998, 39(11/12): 1987-1996. |
[3] | HARMER R E. The petrogenetic association of carbonatite and alkaline magmatism. Constraints from the Spitskop complex, South Africa[J]. Journal of Petrology, 1999, 40(4): 525-548. |
[4] | XU C, KYNICKY J, CHAKHMOURADIAN A R, et al. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China[J]. Lithos, 2010, 118(1/2): 145-155. |
[5] | 许成, 曾亮, 宋文磊, 等. 造山带碳酸岩起源与深部碳循环[J]. 矿物岩石地球化学通报, 2017, 36(2): 183, 213-221. |
[6] | DASGUPTA R, MALLIK A, TSUNO K, et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle[J]. Nature, 2013, 493(7431): 211-222. |
[7] | XU C, CHAKHMOURADIAN A R, TAYLOR R N, et al. Origin of carbonatites in the South Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206. |
[8] | THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79. |
[9] | GERVASONI F, KLEMME S, ROHRBACH A, et al. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts[J]. Lithos, 2017, 282/283: 173-186. |
[10] | LITASOV K, OHTANI E. The solidus of carbonated eclogite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and carbonatite liquid in the deep mantle[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 115-126. |
[11] | WENG Z, JOWITT S M, MUDD G M, et al. A detailed assessment of global rare earth element resources: opportunities and challenges[J]. Economic Geology, 2015, 110(8): 1925-1952. |
[12] | ZHOU B, LI Z, CHEN C. Global potential of rare earth resources and rare earth demand from clean technologies[J]. Minerals, 2017, 7(11): 203. |
[13] | GOODENOUGH K M, WALL F, MERRIMAN D. The rare earth elements: demand, global resources, and challenges for resourcing future generations[J]. Natural Resources Research, 2018, 27(2): 201-216. |
[14] | TREIMAN A H, ESSENE E J. A periclase-dolomite-calcite carbonatite from the Oka complex, Quebec, and its calculated volatile composition[J]. Contributions to Mineralogy and Petrology, 1984, 85(2): 149-157. |
[15] | DALOU C, KOGA K T, HAMMOUDA T, et al. Trace element partitioning between carbonatitic melts and mantle transition zone minerals: implications for the source of carbonatites[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 239-255. |
[16] | ANENBURG M, MAVROGENES J A. Carbonatitic versus hydrothermal origin for fluorapatite REE-Th deposits: experimental study of REE transport and crustal “antiskarn” metasomatism[J]. American Journal of Science, 2018, 318(3): 335-366. |
[17] | ELLIOTT H A L, WALL F, CHAKHMOURADIAN A R, et al. Fenites associated with carbonatite complexes: a review[J]. Ore Geology Reviews, 2018, 93: 38-59. |
[18] | PIRAJNO F. Effects of metasomatism on mineral systems and their host rocks: alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites[M]//HARLOV D E, AUSTRHEIM H. Metasomatism and the chemical transformation of rock. Heidelberg: Springer, 2013: 203-251. |
[19] | ANENBURG M, MAVROGENES J A, BENNETT V C. The fluorapatite p-ree-th vein deposit at Nolans Bore: genesis by carbonatite metasomatism[J]. Journal of Petrology, 2020, 61(1): egaa003. |
[20] | GIEBEL R J, PARSAPOOR A, WALTER B F, et al. Evidence for magma-wall rock interaction in carbonatites from the Kaiserstuhl volcanic complex (southwest Germany)[J]. Journal of Petrology, 2019, 60(6): 1163-1194. |
[21] | SCHONEVELD L, SPANDLER C, HUSSEY K. Genesis of the central zone of the Nolans Bore rare earth element deposit, northern Territory, Australia[J]. Contributions to Mineralogy and Petrology, 2015, 170(2): 11. |
[22] | PANDUR K, ANSDELL K M, KONTAK D J, et al. Petrographic and mineral chemical characteristics of the Hoidas lake deposit, northern Saskatchewan, Canada: constraints on the origin of a distal magmatic-hydrothermal REE system[J]. Economic Geology, 2016, 111(3): 667-694. |
[23] | EINAUDI M T, BURT D M. Introduction;terminology, classification, and composition of skarn deposits[J]. Economic Geology, 1982, 77(4): 745-754. |
[24] | MISRA K C. Skarn deposits[M]//MISRA K C. Understanding mineral deposits. Dordrecht: Springer, 2000: 414-449. |
[25] | CARTER L B, DASGUPTA R. Effect of melt composition on crustal carbonate assimilation: implications for the transition from calcite consumption to skarnification and associated CO2 degassing[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(10): 3893-3916. |
[26] | DI ROCCO T, FREDA C, GAETA M, et al. Magma chambers emplaced in carbonate substrate: petrogenesis of skarn and cumulate rocks and implications for CO2 degassing in volcanic areas[J]. Journal of Petrology, 2012, 53(11): 2307-2332. |
[27] | MEINERT L D. Igneous petrogenesis and skarn deposits[M]//KIRKHAM R V, SINCLAIR W D, THORPE R I. Mineral deposit modeling. Toronto:Geological Association of Canada, Special Paper, 1993, 40:569-583. |
[28] | ANENBURG M, MAVROGENES J A, FRIGO C, et al. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica[J]. Science Advances, 2020, 6(41): eabb6570. |
[29] | WEI C W, XU C, CHAKHMOURADIAN A R, et al. Carbon-strontium isotope decoupling in carbonatites from caotan (qinling, china): implications for the origin of calcite carbonatite in orogenic settings[J]. Journal of Petrology, 2020, 61(2): egaa024. |
[30] | FOMINA E N, KOZLOV E N. Stable (C, O) and radiogenic (Sr, Nd) isotopic evidence for REE-carbonatite formation processes in Petyayan-Vara (Vuoriyarvi massif, NW Russia)[J]. Lithos, 2021, 398/399: 106282. |
[31] | KUANG G, XU C, SHI A, et al. Mineralogical and geochemical constraints on origin of Paleoproterozoic clinopyroxene syenite in Trans-North China orogen[J]. Precambrian Research, 2020, 337: 105557. |
[32] | KUANG G, XU C, WEI C, et al. Petrogenesis of Paleoproterozoic alkali-feldspar granites associated with alkaline rocks from the Trans-North China Orogen[J]. Precambrian Research, 2021, 366: 106427. |
[33] | XU C, CHAKHMOURADIAN A R, KYNICKY J, et al. A Paleoproterozoic mantle source modified by subducted sediments under the North China craton[J]. Geochimica et Cosmochimica Acta, 2019, 245: 222-239. |
[34] | WOOLLEY A R C. K D R. Carbonatites:nomenclature, average chemical compositions, and element distribution[M]//Carbonatites:genesis and evolution. London: Unwin-Hyman, 1989: 1-14. |
[35] | WILSON M, DOWNES H. Tertiary quaternary extension-related alkaline magmatism in western and central Europe[J]. Journal of Petrology, 1991, 32(4): 811-849. |
[36] | ZIEGLER P A. Triassic rifts and facies patterns in western and central Europe[J]. Geologische Rundschau, 1982, 71(3): 747-772. |
[37] | KRAML M, PIK R, RAHN M, et al. A new multi-mineral age reference material for 40Ar/39Ar, (U-Th)/He and fission track dating methods: the limberg t3 tuff[J]. Geostandards and Geoanalytical Research, 2006, 30(2): 73-86. |
[38] | BRAUNGER S, MARKS M A W, WALTER B F, et al. The petrology of the Kaiserstuhl volcanic complex, SW Germany: the importance of metasomatized and oxidized lithospheric mantle for carbonatite generation[J]. Journal of Petrology, 2018, 59(9): 1731-1762. |
[39] | DOWNES H, BALAGANSKAYA E, BEARD A, et al. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review[J]. Lithos, 2005, 85(1/2/3/4): 48-75. |
[40] | KOZLOV E, FOMINA E, SIDOROV M, et al. The Petyayan-Vara carbonatite-hosted rare earth deposit (Vuoriyarvi, NW Russia): mineralogy and geochemistry[J]. Minerals, 2020, 10(1): 73. |
[41] | KOZLOV E, FOMINA E, SIDOROV M, et al. Ti-Nb mineralization of late carbonatites and role of fluids in its formation: Petyayan-Vara rare-earth carbonatites (Vuoriyarvi Massif, Russia)[J]. Geosciences, 2018, 8(8): 281. |
[42] | HUSTON D L, MAAS R, CROSS A, et al. The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications[J]. Mineralium Deposita, 2016, 51(6): 797-822. |
[43] | PAN Y, FLEET M E. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 13-49. |
[44] | CHAKHMOURADIAN A R, REGUIR E P, ZAITSEV A N, et al. Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance[J]. Lithos, 2017, 274/275: 188-213. |
[45] | DECRÉE S, BOULVAIS P, TACK L, et al. Fluorapatite in carbonatite-related phosphate deposits: the case of the Matongo carbonatite (Burundi)[J]. Mineralium Deposita, 2016, 51(4): 453-466. |
[46] | REGUIR E P, CHAKHMOURADIAN A R, PISIAK L, et al. Trace-element composition and zoning in clinopyroxene-and amphibole-group minerals: implications for element partitioning and evolution of carbonatites[J]. Lithos, 2012, 128/129/130/131: 27-45. |
[47] | PANDUR K, KONTAK D J, ANSDELL K M. Hydrothermal evolution in the Hoidas lake vein-type ree deposit, Saskatchewan, Canada: constraints from fluid inclusion microthermometry and evaporate mound analysis[J]. Canadian Mineralogist, 2014, 52(4): 717-743. |
[48] | PANDA N K, RAO A Y, KUMAR K R, et al. Anomalous REE concentration in carbonate-phosphate bearing phases from Narasimharajapuram area, Visakhapatnam district, Andhra Pradesh[J]. Current Science, 2015, 109(5): 860-862. |
[49] | CHAKHMOURADIAN A R, MUMIN A H, DEMENY A, et al. Postorogenic carbonatites at Eden Lake, Trans-Hudson orogen (northern Manitoba, Canada): geological setting, mineralogy and geochemistry[J]. Lithos, 2008, 103(3/4): 503-526. |
[50] | DJEDDI A, PARAT F, BODINIER J L, et al. The syenite-carbonatite complex of Ihouhaouene (Western Hoggar, Algeria): interplay between alkaline magma differentiation and hybridization of cumulus crystal mushes[J]. Frontiers in Earth Science, 2021, 8: 605116. |
[51] | GITTINS J. Carbonatite origin and diversity-reply[J]. Nature, 1989, 338(6216): 548-548. |
[52] | DALTON J A, PRESNALL D C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa[J]. Contributions to Mineralogy and Petrology, 1998, 131(2/3): 123-135. |
[53] | WALLACE M E, GREEN D H. An experimental-determination of primary carbonatite magma composition[J]. Nature, 1988, 335(6188): 343-346. |
[54] | BARKER D S. Calculated silica activities in carbonatite liquids[J]. Contributions to Mineralogy and Petrology, 2001, 141(6): 704-709. |
[55] | SONG W, XU C, QI L, et al. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 2015, 64: 756-765. |
[56] | XU C, CAMPBELL I H, ALLEN C M, et al. Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China[J]. Lithos, 2007, 95(3/4): 267-278. |
[57] | MASSUYEAU M, GARDÉS E, MORIZET Y, et al. A model for the activity of silica along the carbonatite-kimberlite-mellilitite-basanite melt compositional joint[J]. Chemical Geology, 2015, 418: 206-216. |
[58] | REGUIR E P, CHAKHMOURADIAN A R, HALDEN N M, et al. Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator[J]. Lithos, 2009, 112: 372-384. |
[59] | GITTINS J, ALLEN C R, COOPER A F. Phlogopitization of pyroxenite-its bearing on composition of carbonatite magmas[J]. Geological Magazine, 1975, 112(5): 503-507. |
[60] | JAIRETH S, HOATSON D M, MIEZITIS Y. Geological setting and resources of the major rare-earth-element deposits in Australia[J]. Ore Geology Reviews, 2014, 62: 72-128. |
[61] | HAMMOUDA T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle[J]. Earth and Planetary Science Letters, 2003, 214(1/2): 357-368. |
[62] | GIEBEL R J, MARKS M A W, GAUERT C D K, et al. A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa[J]. Lithos, 2019, 324: 89-104. |
[63] | VUORINEN J H, SKELTON A D L. Origin of silicate minerals in carbonatites from Alno Island, Sweden: magmatic crystallization or wall rock assimilation?[J]. Terra Nova, 2004, 16(4): 210-215. |
[64] | CHAKHMOURADIAN A R, REGUIR E P, MITCHELL R H. Titanite in carbonatitic rocks: genetic dualism and geochemical significance[J]. Periodico di Mineralogia, 2003, 72: 107-113. |
[65] | NESBITT H W, BANCROFT G M, FYFE W S, et al. Thermodynamic stability and kinetics of perovskite dissolution[J]. Nature, 1981, 289(5796): 358-362. |
[66] | WOOLLEY A R, KEMPE C. Carbonatites:nomenclature, average chemical compositions, and element distribution[M]//BELL K. Carbonatites:genesis and evolution. London: Unwin Hyman, 1989: 1-14. |
[67] | DASGUPTA R, HIRSCHMANN M M, DELLAS N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa[J]. Contributions to Mineralogy and Petrology, 2005, 149(3): 288-305. |
[68] | KERRICK D M, CONNOLLY J A D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling[J]. Earth and Planetary Science Letters, 2001, 189(1/2): 19-29. |
[69] | MOLINA J F, POLI S. Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts[J]. Earth and Planetary Science Letters, 2000, 176(3/4): 295-310. |
[70] | YAXLEY G M, GREEN D H. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime[J]. Earth and Planetary Science Letters, 1994, 128(3): 313-325. |
[71] | THOMSEN T B, SCHMIDT M W. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 17-31. |
[72] | YAXLEY G M, BREY G P. Phase relations of carbonate-bearing eclogite assemblages from 2. 5 to 5. 5 GPa: implications for petrogenesis of carbonatites[J]. Contributions to Mineralogy and Petrology, 2004, 146(5): 606-619. |
[73] | GUZMICS T, KODOLANYI J, KOVACS I, et al. Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary)[J]. Mineralogy and Petrology, 2008, 94(3/4): 225-242. |
[74] | GUZMICS T, MITCHELL R H, SZABO C, et al. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis[J]. Contributions to Mineralogy and Petrology, 2011, 161(2): 177-196. |
[75] | BLUNDY J, DALTON J. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 356-371. |
[76] | HIRSCHMANN M M, DASGUPTA R. A modified iterative sandwich method for determination of near-solidus partial melt compositions. I. Theoretical considerations[J]. Contributions to Mineralogy and Petrology, 2007, 154(6): 635-645. |
[77] | KLEMME S, VAN DER LAAN S R, FOLEY S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions[J]. Earth and Planetary Science Letters, 1995, 133(3/4): 439-448. |
[78] | HARMER R E, GITTINS J. The origin of dolomitic carbonatites: field and experimental constraints[J]. Journal of African Earth Sciences, 1997, 25(1): 5-28. |
[79] | DALTON J A, WOOD B J. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle[J]. Earth and Planetary Science Letters, 1993, 119(4): 511-525. |
[80] | HAMMOUDA T, CHANTEL J, DEVIDAL J-L. Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7220-7235. |
[81] | HAMMOUDA T, CHANTEL J, MANTHILAKE G, et al. Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface[J]. Geology, 2014, 42(10): 911-914. |
[82] | RAO A T. Study of the apatite-magnetite veins near Kasipatnam, Visakhapatnam district, Andhra Pradesh, India[J]. Tschermaks Mineralogische und Petrographische Mitteilungen, 1976, 23(2): 87-103. |
[83] | XIE Y L, LI Y X, HOU Z Q, et al. A model for carbonatite hosted REE mineralisation-the Mianning-Dechang REF belt, western Sichuan Province, China[J]. Ore Geology Reviews, 2015, 70: 595-612. |
[84] | FAN H R, YANG K F, HU F F, et al. The giant Bayan Obo REE-Nb-Fe deposit, China: controversy and ore genesis[J]. Geoscience Frontiers, 2016, 7(3): 335-344. |
[85] | HAMMOUDA T, KESHAV S. Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites[J]. Chemical Geology, 2015, 418: 171-188. |
[86] | XIE Y, HOU Z, YIN S, et al. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China[J]. Ore Geology Reviews, 2009, 36(1): 90-105. |
[87] | MARIANO A N. Nature of economic mineralization in carbonatites and related rocks[M]//BELL K. Carbonatites genesis and evolution. London: Unwin Hyman, 1989: 149-175. |
[88] | LIU S, FAN H R, YANG K F, et al. Fenitization in the giant Bayan Obo REE-Nb-Fe deposit: implication for REE mineralization[J]. Ore Geology Reviews, 2018, 94: 290-309. |
[89] | LIU Y, CHAKHMOURADIAN A R, HOU Z Q, et al. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry[J]. Mineralium Deposita, 2019, 54(5): 701-718. |
[90] | SHU X C, LIU Y. Fluid inclusion constraints on the hydrothermal evolution of the Dalucao carbonatite-related REE deposit, Sichuan Province, China[J]. Ore Geology Reviews, 2019, 107: 41-57. |
[91] | TROFANENKO J, WILLIAMS-JONES A E, SIMANDL G J, et al. The nature and origin of the REE mineralization in the Wicheeda carbonatite, British Columbia, Canada[J]. Economic Geology, 2016, 111(1): 199-223. |
[92] | WILLIAMS-JONES A E, PALMER D A S. The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatite, India: implications for fenitisation[J]. Chemical Geology, 2002, 185(3/4): 283-301. |
[93] | CHAKHMOURADIAN A R, WALL F. Rare earth elements: Minerals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333-340. |
[94] | BRÖGGER W G. Die eruptivegestein des kristianiagebietes, IV. Das fengebiet in telemark[M]. Norvegen: Naturv. Klasse, 1921. |
[95] | MOROGAN V. Mass-transfer and ree mobility during fenitization at Alno, Sweden[J]. Contributions to Mineralogy and Petrology, 1989, 103(1): 25-34. |
[96] | SINDERN S, KRAMM U. Volume characteristics and element transfer of fenite aureoles: a case study from the Iivaara alkaline complex, Finland[J]. Lithos, 2000, 51(1/2): 75-93. |
[97] | LE BAS M J. Fenites associated with carbonatites[J]. Canadian Mineralogist, 2008, 46: 915-932. |
[98] | 王凯怡. 与碳酸岩共生的霓长岩[J]. 地质科学, 2015, 50(1): 203-212. |
[99] | DOROSHKEVICH A G, VILADKAR S G, RIPP G S, et al. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India[J]. Canadian Mineralogist, 2009, 47(5): 1105-1116. |
[100] | 舒小超, 刘琰, 李德良, 等. 川西冕宁—德昌稀土矿带霓长岩的地球化学特征及地质意义[J]. 岩石学报, 2019, 35(5): 1372-1388. |
[101] | WOOLLEY A R, CHURCH A A. Extrusive carbonatites: a brief review[J]. Lithos, 2005, 85(1/2/3/4): 1-14. |
[102] | WOOLLEY A R. A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites[J]. Mineralogical Magazine, 1982, 46(338): 13-17. |
[103] | LEBAS M J. Carbonatite Magmas[J]. Mineralogical Magazine, 1981, 44(334): 133-140. |
[104] | RUBIE D C, GUNTER W D. The role of speciation in alkaline igneous fluids during fenite metasomatism[J]. Contributions to Mineralogy and Petrology, 1983, 82(2/3): 165-175. |
[105] | DOROSHKEVICH A G, RIPP G S. Isotopic systematics of the rocks of the Khalyuta carbonatite complex of western Transbaikalia[J]. Geochemistry International, 2009, 47(12): 1198-1211. |
[106] | LINNEN R, SAMSON I, WILLIAMS-JONES A, et al. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr Deposits[M]//SCOTT S D. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 13: 543-568. |
[107] | SCHLEICHER H. In-situ determination of trace element and REE partitioning in a natural apatite-carbonatite melt system using synchrotron XRF microprobe analysis[J]. Journal of the Geological Society of India, 2019, 93(3): 305-312. |
[108] | WALL F, MARIANO A N. Rare earth minerals in carbonatites:a discussion centred on the Kangankunde carbonatite, Malawi[M]//SCOTT S, DJONES A P, WALL F, et al. Rare earth minerals:chemistry, origin and ore deposits. London: Chapman and Hall, 1996: 193-226. |
[109] | FENG M, XU C, KYNICKY J, et al. Rare earth element enrichment in Palaeoproterozoic Fengzhen carbonatite from the North China block[J]. International Geology Review, 2016, 58(15): 1940-1950. |
[110] | ANDERSEN A K, CLARK J G, LARSON P B, et al. Mineral chemistry and petrogenesis of a HFSE (plus HREE) occurrence, peripheral to carbonatites of the Bear Lodge alkaline complex, Wyoming[J]. American Mineralogist, 2016, 101(7/8): 1604-1623. |
[111] | LIU Y, HOU Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China[J]. Journal of Asian Earth Sciences, 2017, 137: 35-79. |
[112] | 刘琰. 川西冕宁—德昌稀土成矿带霓辉正长岩-碳酸岩杂岩体成岩成矿时代[J]. 地质学报, 2015, 89(增刊): 164-167. |
[113] | EVANS M J, DERRY L A, FRANCE-LANORD C. Degassing of metamorphic carbon dioxide from the Nepal Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04021. |
[114] | PANINA L I. Multiphase carbonate-salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia)[J]. Contributions to Mineralogy and Petrology, 2005, 150(1): 19-36. |
[115] | JAGO B C, GITTINS J. The role of fluorine in carbonatite magma evolution[J]. Nature, 1991, 349(6304): 56-58. |
[116] | 杨源显. 方解石与含硅流体的水-岩反应实验及其对“硅化碳酸盐岩”储层成因的启示[J]. 高校地质学报, 2021, 27(2): 218-228. |
[117] | MOORE K R, WALL F, DIVAEV F K, et al. Mingling of carbonate and silicate magmas under turbulent flow conditions: evidence from rock textures and mineral chemistry in sub-volcanic carbonatite dykes, Chagatai, Uzbekistan[J]. Lithos, 2009, 110(1/2/3/4): 65-82. |
[118] | CHAKHMOURADIAN A R, REGUIR E P, ZAITSEV A N. Calcite and dolomite in intrusive carbonatites. I. Textural variations[J]. Mineralogy and Petrology, 2016, 110(2/3): 333-360. |
[119] | SONG W L, XU C, SMITH M P, et al. Genesis of the world’s largest rare earth element deposit, Bayan Obo, China: protracted mineralization evolution over similar to 1 b.y.[J]. Geology, 2018, 46(4): 323-326. |
[120] | CIMEN O, KUEBLER C, MONACO B, et al. Boron, carbon, oxygen and radiogenic isotope investigation of carbonatite from the Miaoya complex, central China: evidences for late-stage REE hydrothermal event and mantle source heterogeneity[J]. Lithos, 2018, 322: 225-237. |
[121] | CIMEN O, KUEBLER C, SIMONETTI S S, et al. Combined boron, radiogenic (Nd, Pb, Sr), stable (C, O) isotopic and geochemical investigations of carbonatites from the Blue River Region, British Columbia (Canada): implications for mantle sources and recycling of crustal carbon[J]. Chemical Geology, 2019, 529: 119240. |
[122] | XU C, KYNICKY J, SONG W L, et al. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab[J]. Nature Communications, 2018, 9: 2790. |
[123] | 刘琰, 舒小超. 碳酸岩型稀土矿床中的霓长岩化作用概述[J]. 矿物岩石地球化学通报, 2021, 40(5): 1025-1033. |
[1] | 杨道明, 潘荣昊, 王萌, 侯通. 成矿碳酸岩的实验岩石学研究现状与展望[J]. 地学前缘, 2022, 29(1): 54-64. |
[2] | 邓淼, 韦春婉, 许成, 石爱国, 李卓骐, 范朝熙, 匡光喜. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28. |
[3] | 张拴宏,赵越. 华北克拉通北部13.3~13.0亿年基性大火成岩省与稀土铌成矿事件[J]. 地学前缘, 2018, 25(5): 34-50. |
[4] | 晁会霞, 苏生瑞, 杨兴科. 湖北庙垭稀土矿床地质特征研究[J]. 地学前缘, 2016, 23(4): 102-108. |
[5] | 郑硌, 顾雪祥, 章永梅, 董树义, 彭义伟, 高海军, 吕鹏瑞. 安哥拉Huila省Bonga碳酸岩型铌矿床烧绿石地球化学组成、演化及其与岩浆热液作用过程的关系[J]. 地学前缘, 2014, 21(5): 69-89. |
[6] | 章永梅, 顾雪祥, 彭义伟, 郑硌, 张岩, 高海军, 董树义. 安哥拉Bonga碳酸岩型铌矿床地质地球化学特征及成因[J]. 地学前缘, 2014, 21(5): 50-68. |
[7] | 辛后田,罗照华,刘永顺,王树庆,张利忠. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J]. 地学前缘, 2012, 19(6): 167-178. |
[8] | 章永梅, 顾雪祥, 程文斌, 董树义, 景亮兵, 王立强, 张岩. 内蒙古柳坝沟金矿床原生晕地球化学特征及深部成矿远景评价[J]. 地学前缘, 2010, 17(2): 209-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||