地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 459-469.DOI: 10.13745/j.esf.sf.2021.1.58
朱莹(), 黎晏彰, 鲁安怀*(
), 丁竑瑞*(
), 李艳, 王长秋
收稿日期:
2020-05-10
修回日期:
2021-01-22
出版日期:
2022-01-25
发布日期:
2022-02-22
通信作者:
鲁安怀,丁竑瑞
作者简介:
朱 莹(1994—),女,博士研究生,主要从事环境矿物学研究。E-mail: yingzhu@pku.edu.cn
基金资助:
ZHU Ying(), LI Yanzhang, LU Anhuai*(
), DING Hongrui*(
), LI Yan, WANG Changqiu
Received:
2020-05-10
Revised:
2021-01-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
LU Anhuai,DING Hongrui
摘要:
利用拉曼光谱和红外光谱研究了方解石、白云石和菱镁矿的光谱学特征,探究了影响三种矿物红外辐射性能的因素。三种矿物的拉曼光谱(Raman)、中红外吸收光谱(MIR)、远红外吸收光谱(FIR)显示随着矿物中镁含量的增大将会影响CO32-的面外弯曲振动(ν2)、反对称伸缩振动(ν3)和平面内弯曲振动(ν4),使各光谱特征峰均向高频端迁移。基于黑体辐射定律以及在80 ℃、400~2 000 cm-1矿物的辐射能量谱,结果显示方解石、白云石、菱镁矿的发射率依次减少(0.951,0.938,0.895)。三种矿物的红外吸收光谱和发射光谱中的振动位置均受CO32-基频的显著影响,在1 300~1 650 cm-1均产生宽的低吸收带,该吸收带与CO32-的反对称伸缩振动相关,且吸收带范围(202,236,272 cm-1)与发射率之间呈负相关关系。因此,当最强化学键的振动出现在发射光谱窄的吸收带范围内会产生相对较高的辐射能和发射率。此外,矿物的晶体结构也会影响发射率,大的离子半径、键长和晶胞体积将降低辐射过程中能量的吸收,增强辐射特性。综上研究结果,方解石、白云石和菱镁矿的拉曼光谱和红外光谱揭示了金属原子的相对质量对光谱学特征的显著影响,其发射率可能受到C—O键的反伸缩振动范围、最强吸收带控制的最低发射率以及矿物晶体结构的共同影响。这项研究呈现了必要的光谱信息和热发射率数据以识别特定的碳酸盐矿物,为类似矿物的光谱特征研究奠定了基础;同时为进一步认识地壳中大量的碳酸盐矿物提供了研究方法,也为地外勘探的深入研究给予相关的理论基础。
中图分类号:
朱莹, 黎晏彰, 鲁安怀, 丁竑瑞, 李艳, 王长秋. 方解石-白云石-菱镁矿的中远红外光谱学特征研究[J]. 地学前缘, 2022, 29(1): 459-469.
ZHU Ying, LI Yanzhang, LU Anhuai, DING Hongrui, LI Yan, WANG Changqiu. Middle and far infrared spectroscopic analysis of calcite, dolomite and magnesite[J]. Earth Science Frontiers, 2022, 29(1): 459-469.
图1 方解石、白云石和菱镁矿样品的光谱分析结果 a—X射线衍射光谱;b—拉曼光谱;c—中红外吸收光谱;d—远红外吸收光谱。
Fig.1 (a) X-ray diffraction, (b) Raman, (c) mid-IR and (d) far-IR spectra of calcite (top trace), dolomite (middle trace) and magnesite (bottom trace) samples
图2 80 ℃下矿物的红外辐射能量谱(左)及发射光谱(右) a,b—方解石;c,d—白云石;e,f—菱镁矿。
Fig.2 Radiant energy (left panel) and emission (right panel) spectra of calcite (a, b), dolomite (c, d) and magnetite (e, f) at 80 ℃
样品名称 | 发射率 |
---|---|
方解石 | 0.951 |
白云石 | 0.938 |
菱镁矿 | 0.895 |
表1 样品的发射率值
Table 1 Emissivities of carbonate minerals
样品名称 | 发射率 |
---|---|
方解石 | 0.951 |
白云石 | 0.938 |
菱镁矿 | 0.895 |
图3 样品阳离子相对原子质量与光谱振动模式的关系 a—拉曼光谱;b—红外吸收光谱;c—远红外吸收光谱;d—红外发射光谱。白云石(CaMg(CO3)2)取Ca和Mg的平均相对原子质量;LV、LV-1、LV-2和LV-3均代表晶格振动。
Fig.3 Relationship between the relative atomic mass of cations and Roman (a), mid-IR (b), far-IR (c) or mid-IR emission (d) frequencies for different vibrational modes. Square—calcite, triangle—dolomite, circle—magnetite.
图4 样品发射率随 CO 3 2 -反对称伸缩振动范围(cm-1)的变化(a)及 CO 3 2 - 反对称伸缩振动(ν3)与发射率和最低发射率之间的关系(b)
Fig.4 Plots of (a) emissivity vs. CO 3 2 -asymmetric vibrational band range and (b) emissivity or lowest emissivity (red) vs. CO 3 2 - asymmetric stretching frequency
图5 样品发射率随阳离子半径(a)、金属—氧的键长(b)、碳—氧键长(c)以及晶胞体积的变化(d) (a据[48]修改,b据[49-50]修改,c据[51]修改,d据[52]修改) 白云石的阳离子半径和金属—氧半径取Ca、Mg平均值。
Fig.5 Plot of emissivity vs. cation radius (a, modified after [48]), (Ca/Mg)—O bond length (b, modified after [49-50]), C—O bond length (c, modified after [51]) and unit cell volume (d, modified after [52])
[1] | ARGAST S, DONNELLY T W. The chemical discrimination of clastic sedimentary components[J]. Journal of Sedimentary Research, 1987, 57(5):813-823. |
[2] | DICKINSON W R, SUCZEK C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12):2164-2182. |
[3] |
FRALICK P W, KRONBERG B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1):111-124.
DOI URL |
[4] | CHATZITHEODORIDIS E, TURNER G. Secondary minerals in the Nakhla Meteorite[J]. Meteoritics & Planetary Science, 1990, 25(4):354. |
[5] |
CLAYTON R N, MAYEDA T K. Isotopic composition of carbonate in EETA 79001 and its relation to parent body volatiles[J]. Geochimica et Cosmochimica Acta, 1988, 52(4):925-927.
DOI URL |
[6] |
GOODING J L, WENTWORTH S J, ZOLENSKY M E. Aqueous alteration of the Nakhla meteorite[J]. Meteoritics, 1991, 26(2):135-143.
DOI URL |
[7] |
MCKAY D S, GIBSON E K, THOMAS-KEPRTA K L, et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001[J]. Science, 1996, 273(5277):924-930.
DOI URL |
[8] |
TREIMAN A H, BARRETT R A, GOODING J L. Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite[J]. Meteoritics, 1993, 28(1):86-97.
DOI URL |
[9] |
EDWARDS H G M, VILLAR S E J, JEHLICKA J, et al. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10):2273-2280.
DOI URL |
[10] |
CHESTER R, ELDERFIELD H. The application of infra-red absorption spectroscopy to carbonate mineralogy[J]. Sedimentology, 1967, 9(1):5-21.
DOI URL |
[11] | ANGINO E E. Far infrared (500-30 cm-1) spectra of some carbonate minerals[J]. American Mineralogist, 1967, 52(1/2):137-148. |
[12] |
MORANDAT J, LORENZELLI V, LECOMTE J I. Détermination expérimentale et essai d’attribution des vibrations externes actives en infrarouge dans quelques carbonates métalliques a l’état cristallin[J]. Journal de Physique, 1967, 28(2):152-156.
DOI URL |
[13] |
BRUSENTSOVA T N, PEALE R E, MAUKONEN D, et al. Far infrared spectroscopy of carbonate minerals[J]. American Mineralogist, 2010, 95(10):1515-1522.
DOI URL |
[14] | LANE M D. Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite[J]. Journal of Geophysical Research: Planets, 1999, 104(E6):14099-14108. |
[15] |
FROST R L, KLOPROGGE J T. Infrared emission spectroscopic study of brucite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55(11):2195-2205.
DOI URL |
[16] |
FROST R L, BAHFENNE S, GRAHAM J. Infrared and infrared emission spectroscopic study of selected magnesium carbonate minerals containing ferric iron-implications for the geosequestration of greenhouse gases[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(4):1610-1616.
DOI URL |
[17] | LANE M D. Thermal emission spectroscopy of carbonates and evaporites: experimental, theoretical, and field studies[M]. Phoenix: Arizona State University, 1997. |
[18] |
EFFENBERGER H, MEREITER Κ, ZEMANN J. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1981, 156(1/2/3/4):233-244.
DOI URL |
[19] |
FROST R L, MARTENS W N, WAIN D L, et al. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 70(5):1120-1126.
DOI URL |
[20] |
GUNASEKARAN S, ANBALAGAN G, PANDI S. Raman and infrared spectra of carbonates of calcite structure[J]. Journal of Raman Spectroscopy, 2006, 37(9):892-899.
DOI URL |
[21] |
HERMAN R G, BOGDAN C E, SOMMER A J, et al. Discrimination among carbonate minerals by Raman spectroscopy using the laser microprobe[J]. Applied Spectroscopy, 1987, 41(3):437-440.
DOI URL |
[22] |
NICOLA J H, SCOTT J F, COUTO R M, et al. Raman spectra of dolomite [CaMg(CO3)2][J]. Physical Review B, 1976, 14(10):4676-4678.
DOI URL |
[23] |
RUTT H, NICOLA J. Raman spectra of carbonates of calcite structure[J]. Journal of Physics C: Solid State Physics, 1974, 7(24):4522.
DOI URL |
[24] | DUBRAWSKI J, CHANNON A, WARNE S S J. Examination of the siderite-magnesite mineral series by Fourier transform infrared spectroscopy[J]. American Mineralogist, 1989, 74(1/2):187-190. |
[25] | FARMER V C, FAKMEK V C. Mineralogical society monograph 4: the infrared spectra of minerals[R]. London: The Mineralogical Society of Great Britain and Ireland, 1974. |
[26] |
FROST R L, PALMER S J. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O: implications for the formula of nesquehonite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 78(4):1255-1260.
DOI URL |
[27] | JONES G C, JACKSON B. The spectra[M]// Infrared transmission spectra of carbonate minerals. Dordrecht: Springer Netherlands, 1993. |
[28] |
LEGODI M A, DE WAAL D, POTGIETER J H. Quantitative determination of CaCO3 in cement blends by FT-IR[J]. Applied Spectroscopy, 2001, 55(3):361-365.
DOI URL |
[29] |
WEIR C E, LIPPINCOTT E R. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1961, 65A(3):173-183.
DOI URL |
[30] | ADLER H H, KERR P F. Infrared spectra, symmentry and structure relations of some carbonate minerals[J]. American Mineralogist, 1963, 48(7/8):839-853. |
[31] | ELDERFIELD H, CHESTER R. The Effect of periodicity on the infrared absorption frequency v4 of anhydrous normal carbonate minerals[J]. American Mineralogist, 1971, 56(9/10):1600-1606. |
[32] | NYQUIST R A, KAGEL R O. Infrared spectra of inorganic compounds (3 800-45 cm-1) [M]. New York and London: Academic Press, 1971. |
[33] | WHITE W B. Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals[J]. American Mineralogist, 1971, 56(1/2):46-53. |
[34] | SCHEETZ B, WHITE W B. Vibrational spectra of the alkaline earth double carbonates[J]. American Mineralogist, 1977, 62(1/2):36-50. |
[35] |
YAMAMOTO A, UTIDA T, MURATA H, et al. Optically-active vibrations and effective charges of dolomite[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1975, 31(9/10):1265-1270.
DOI URL |
[36] | YOO B H, PARK C M, OH T J, et al. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin[J]. Journal of Cosmetic Science, 2002, 53(3):175-184. |
[37] | MOENKE H H W. Mineralspektrum II[M]. Berlin: Akademie Verlag, 1966. |
[38] | KING P L, RAMSEY M S, MCMILLAN P E, et al. Laboratory Fourier transform infrared spectroscopy methods for geologic samples[J]. Infrared Spectroscopy in Geochemistry, Exploration, and Remote Sensing, 2004, 33:57-91. |
[39] | CHRISTENSEN P R, BANDFIELD J L, HAMILTON V E, et al. A thermal emission spectral library of rock-forming minerals[J]. Journal of Geophysical Research: Planets, 2000, 105(E4):9735-9739. |
[40] |
HARDGROVE C J, ROGERS A D, GLOTCH T D, et al. Thermal emission spectroscopy of microcrystalline sedimentary phases: effects of natural surface roughness on spectral feature shape[J]. Journal of Geophysical Research: Planets, 2016, 121(3):542-555.
DOI URL |
[41] | MICHALSKI J R, KRAFT M D, SHARP T G, et al. Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from thermal emission spectrometer data[J]. Journal of Geophysical Research, 2006, 111(E3):E03004. |
[42] |
MICHALSKI J R, KRAFT M D, SHARP T G, et al. Mineralogical constraints on the high-silica Martian surface component observed by TES[J]. Icarus, 2005, 174(1):161-177.
DOI URL |
[43] | WENRICH M L, CHRISTENSEN P R. Optical constants of minerals derived from emission spectroscopy: application to quartz[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B7):15921-15931. |
[44] | SALISBURY J W, WALTER L S, VERGO N. Mid-infrared (2.1-25 μm) spectra of minerals[R]. Reston: US Geological Survey, 1987. |
[45] | 王宝明, 苏大昭, 张光寅. 红外高辐射材料的辐射特性及辐射机制[J]. 红外研究, 1983, 2(1):55-62. |
[46] | HAMILTON V E. Thermal infrared emission spectroscopy of the pyroxene mineral series[J]. Journal of Geophysical Research: Planets, 2000, 105(E4):9701-9716. |
[47] | WILSON E B, DECIUS J C, CROSS P C. Molecular vibrations: the theory of infrared and Raman vibrational spectra[J]. Journal of the Electrochemical Society, 1980, 102(9):235C. |
[48] | LIDE D R. CRC handbook of chemistry physics[M]. Boston: CRC, 1990. |
[49] |
JOVANOVSKI G, STEFOV V, ŠOPTRAJANOV B, et al. Minerals from Macedonia. IV. Discrimination between some carbonate minerals by FTIR spectroscopy[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2002, 177(3):241-253.
DOI URL |
[50] | REEDER R J. Crystal chemistry of the rhombohedral carbonates[J]. Reviews in Mineralogy, 1983 11(1):1-47. |
[51] |
BUSING W R, LEVY H A. The effect of thermal motion on the estimation of bond lengths from diffraction measurements[J]. Acta Crystallographica, 1964, 17(2):142-146.
DOI URL |
[52] |
VALENZANO L, NOËL Y, ORLANDO R, et al. Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite[J]. Theoretical Chemistry Accounts, 2007, 117(5/6):991-1000.
DOI URL |
[53] |
GAFFEY S J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 μm): anhydrous carbonate minerals[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(B2):1429.
DOI URL |
[54] |
KELLER W D, SPOTTS J H, BIGGS D L. Infrared spectra of some rock forming minerals[J]. American Journal of Science, 1952, 250(6):453-471.
DOI URL |
[1] | 杨志波, 季汉成, 鲍志东, 史燕青, 赵雅静, 向鹏飞. 白云石晶体结构和地球化学特征对沉积环境响应:以扬子地台晚埃迪卡拉纪灯影组白云岩为例[J]. 地学前缘, 2024, 31(3): 68-79. |
[2] | 远光辉, 操应长, 杨田, 王艳忠, 李晓艳, 葸克来, 贾珍臻. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘, 2013, 20(5): 207-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||